
Theoret. Comput. Fluid Dynamics (2000) 13: 397–419
Theoretical and Computational

© Springer-Verlag 2000

Fluid Dynamics

Response of the Sphere Wake to Freestream Fluctuations

R. Mittal
Department of Mechanical Engineering, University of Florida,

Gainesville, FL 32611, U.S.A.

Communicated by M.Y. Hussaini

Received 5 October 1999 and accepted 14 October 1999

Abstract. Direct numerical simulations have been used to investigate the response of the wake of a sphere to
freestream fluctuations. This study has been motivated by the need to understand particle-induced turbulence
enhancement in particulate flows. A sequence of simulations of flow past a sphere have been carried out where
the frequency and amplitude of the freestream fluctuations and the flow Reynolds number has been varied
systematically. It has been suggested that turbulence enhancement is primarily caused by vortex shedding
from particles (Gore and Crowe, 1989; Hetsroni, 1989). Our simulations of the forced wake indicate that
turbulence enhancement may be attributed to natural vortex shedding only when the freestream fluctuation
level is low and the Reynolds number is greater than about 300. In addition to natural vortex shedding,
the current simulations also suggest another mechanism for turbulence enhancement. It is found that in
the presence of freestream fluctuations, the wake behaves like an oscillator and returns large amounts of
kinetic energy to the surrounding fluid at resonance. This mechanism is not associated with natural vortex
shedding and is therefore capable of enhancing freestream turbulence even at Reynolds numbers less than
300. Simulations also indicate that when the turbulence intensity of the carrier fluid is high, this resonance
mechanism might be solely responsible for turbulence enhancement. Finally, our simulations also suggest a
possible explanation for the correlation between turbulence enhancement and the ratio of the particle size to
the size of energy containing eddies of turbulence found by Gore and Crowe (1989).

1. Introduction

Particulate flows abound in nature as well as in engineering applications and in most cases the flow in question
is turbulent. It has been known for some time now that depending on the particular flow configuration, the
addition of particles can either reduce or enhance the turbulence level in the carrier phase. Understanding this
effect of the particles on the turbulence of the carrier phase is extremely important since in many particulate
flows of interest, turbulence can have a significant effect on the transport of mass, momentum, energy,
and species and for a particular application this effect may be desirable or undesirable. This has been the
motivation for a large number of studies on particle–turbulence interaction that have been carried out to date.

One of the earliest attempt at understanding the various aspects of gas-particle flows was made by
Owen (1969). He postulated that the particle Stokes number was the key parameter that controlled particle–
turbulence interaction. The particle Stokes number,S, is defined as the ratio of the particle aerodynamic
response time to the characteristic time scale of the energy-containing motion (or eddy turnover time). For
S ¿ 1, he argued that the rapid response of the particles to the eddy motion would extract energy out of the
turbulence which would subsequently be dissipated, thereby leading to a reduction in the turbulent intensity.
For S & 1, he argued that the particles would respond partially to the turbulent motions and still be able
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to extract and dissipate some turbulent energy. Finally, forS À 1 he suggested that the particles could be
considered as fixed in space and their effect on turbulence would be distortional, similar to the effect of a
gauze screen.

Hetsroni (1989) has postulated that the enhancement of turbulence is due to vortex shedding from particles
and that the particle Reynolds number (Rep = urd/v whereur is the velocity of particle relative to the
surrounding fluid andd is the diameter of the particle) primarily determines the degree to which turbulence
is enhanced. However, in experiments it is difficult to estimate the particle Reynolds number, much less
observe vortex shedding from the particles and therefore only indirect support for this postulate could be
provided. Based mainly on the data from the experiments of Tsuji and coworkers (1982, 1984, 1988),
Hetsroni concluded that particles withRep < 100 suppressed turbulence whereas particles withRep > 400
enhanced it. In the intermediate range, not enough data was available and the effect on turbulence was mixed.
Based on the fact that Achenbach (1974) had reported that natural vortex shedding from a sphere immersed
in a steady, uniform stream (referred to in this paper as natural vortex shedding) starts at a Reynolds number
(Red = U∞d/v whereU∞ is the freestream velocity) of about 400, Hetsroni concluded that turbulence
enhancement was due to vortex shedding from particles. However, other investigations have shown that
vortex shedding in the sphere wake is initiated at Reynolds numbers as low as 290 (Margavey and Bishop,
1961; Natarajan and Acrivos, 1993). Furthermore, it is also not clear to what extent natural vortex shedding
is affected by freestream fluctuations. In an experimental investigation Wu and Faeth (1994) found that low
intensity (. 4% turbulence intensity) freestream turbulence does not alter the vortex shedding process in
any significant manner. The effect of higher intensity turbulence on natural vortex shedding is however not
known. Recent simulations by Yusof (1996) have shown that in the presence of higher intensity (> 12%)
freestream turbulence the wake of a sphere can become unstable at Reynolds numbers as low as 100 which
indicates that natural vortex shedding might not be the only mechanism for turbulence enhancement

An explanation of the effect of particles on turbulence has also been provided by Gore and Crowe (1989)
who compiled data from numerous experiments on multiphase flows. They plotted the relative increase in
turbulence intensity versus the particle-to-eddy size ratioγd (γd = dp/le wheredp is the diameter of the
particle andle is the characteristic size of the energy containing eddies in the turbulent fluid) and made the
interesting observation that turbulence was enhanced only whenγd & 0.1. Data extracted from this plot is
reproduced in Figure 1. The explanation put forth by Gore and Crowe to explain the observed trend was
that dispersion of small particles extracts energy out of the fluid turbulence whereas fluctuations created by
vortex shedding in the wake of large particles adds to the energy of turbulence. However, no explanation was
provided regarding the particular value ofγd where this transition from turbulence suppression to turbulence
enhancement took place.

Recently Pan and Bannerjee (1997) have investigated the effect of large particles on wall-bounded tur-
bulence through numerical simulations. In their simulations, a finite number of large particles have been
included in the flow with the particles modeled through a momentum forcing technique. The study indicates
that small particles tend to suppress turbulence by diminishing sweep events whereas larger particles have
exactly the opposite effect. This is an extremely interesting and useful finding since it directly connects the
effect of particles to an important mechanism of turbulence production. Furthermore, this study also clearly
demonstrates how additional insight into particle-induced turbulence modulation can be gained by including
finite particle size effects in numerical simulations. However, this study does not address the interaction of
particles with turbulence away from the wall. Furthermore, no attempt has been made in this study to connect
turbulence enhancement with vortex shedding from particles.

In summary, even though the explanations of Hetsroni (1989) and Gore and Crowe (1989) seem plausible,
there is no direct evidence to support the argument that vortex shedding from particles is indeed a factor
in particle-induced turbulence enhancement since vortex shedding from particles in a turbulent flow has
not been observed in experiments or in simulations. Furthermore, a clear understanding of the physical
mechanism that leads to transition from turbulence suppression to enhancement at a particle-to-eddy size
ratio of about 0.1 is also not forthcoming. Addition of energy to the carrier phase due to vortex shedding
as suggested by Hetsroni and Gore and Crowe is one possibility. There are, however, other mechanisms
related to the finite size of the particle that might play a role in particle–turbulence interaction. There is
the possibility that the particle-to-eddy size ratio might itself be an important parameter and the underlying
physical mechanism connected with the direct interaction of energy-containing turbulent eddies and wake
vortices of similar length scales.
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Figure 1. Percentage change in turbulence intensity versus particle-to-eddy size ratio. The data in this plot have been extracted from
the paper of Gore and Crowe (1989). The vertical dashed line indicates the particle-to-eddy size ratio above which turbulent is enhanced
by the particles.

Since vortex shedding from particles is hypothesized to be the key mechanism responsible for turbulence
enhancement, it is appropriate to review briefly the current state of knowledge regarding vortex shedding from
spheres immersed in a uniform, steady flow. Margavey and Bishop (1961) carried out the first comprehensive
experimental study of the low Reynolds number sphere wake and categorized the various regimes that were
observed. According to their experiments, the sphere wake is steady and axisymmetric below a Reynolds
number of about 200. BeyondRed = 200, the wake becomes nonaxisymmetric and dye visualizations exhibit
the peculiar “double-thread” type signature. This regime has also been studied in detail by Nakamura (1976)
and recent calculations by Natarajan and Acrivos (1993) also indicate a bifurcation to this state at about
Red = 210. The stability calculations show that this is a regular bifurcation withkϕ = 1 as the most unstable
azimuthal mode (see Figure 3).

The double-thread wake remains steady up to a Reynolds numbers of about 277 where it first becomes
susceptible to unsteady disturbances (Natarajan and Acrivos, 1993). The stability calculations suggest that
kϕ = 1 is again the mode that is most unstable during this Hopf bifurcation. Vortex shedding in the sphere
wake has been observed to appear at a Reynolds number of about 290 and is characterized by the formation
of streamwise-oriented vortex loops that are shed periodically in the near wake (Margavey and Bishop,
1961; Margavey and MacLatchy, 1965; Sakamoto and Haniu, 1995). The vortex shedding process at these
Reynolds numbers is peculiar in that the unsteady wake seems to exhibit a planar symmetry. This has been
observed in the experiments of Sakamoto and Haniu (1995) who have indicated that this planar symmetric
regime extends up toRed = 420. A detailed DNS study of this regime has recently been carried out using
the current solver (Mittal, 1999b) and this study indicates that planar symmetry is lost as early asRed = 375.
Once planar symmetry is lost, the vortex shedding process becomes extremely complicated with vortex
loops forming at different azimuthal locations in each shedding cycle. Furthermore, as the Reynolds number
is increased to about 500, the vortex loops close in on themselves as they convect downstream and form
compact vortex rings. This phenomena has been observed in experiments (Margavey and Bishop, 1961) as
well as in direct numerical simulations (Mittal, 1999a).

Sakamoto and Haniu (1990, 1995) have systematically measured the vortex shedding Strouhal number for
a large range of Reynolds numbers and data extracted from their plot is presented in Figure 2. The Strouhal
number is defined asSt = fd/U∞ wheref is the shedding frequency. We have limited this plot to the lower
range of Reynolds numbers (Red < 3000) which is of relevance to particulate flows. The curve marked “low
mode” corresponds to the shedding of large-scale vortex loops in the near wake and the Strouhal number
for this mode extends from about 0.15 to 0.20 over the range of interest. Measurements of Ormieres and
Provensal (1998) and Margavey and Bishop (1961) have also been plotted and these indicate a noticeable
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Figure 2. Variation of Strouhal number with Reynolds number for the wake of a sphere. The thin solid and dashed curves denotes
the Strouhal number corresponding to the low mode and high mode, respectively, measured by Sakamoto and Haniu (1990). Strouhal
numbers obtained from other experiments and our numerical simulations have also been plotted.

spread in the measured Strouhal number at low Reynolds numbers. The lowest measured Strouhal numbers
has a value of about 0.1. Strouhal numbers obtained from our simulations (Mittal, 1999a) have also been
plotted and these lie between the measured values. In addition to the low mode, there is also the so-called
“high mode” which appears at a Reynolds number of about 800. This mode is associated with the formation
of small scale Kelvin–Helmholtz vortices in the separated shear layers similar to the Bloor–Gerrard vortices
observed in cylinder wakes (Bloor, 1964). Unlike the low mode, the shedding frequency of the high mode
increases rapidly with Reynolds number and the Strouhal number of this mode varies from 0.2 to about 1.0
in the range of interest.

Most studies indicate that turbulence enhancement by particles is a consequence of the interaction between
individual particles and the turbulent flow and that particle–particle interaction does not play a significant
role in this phenomenon. It therefore stands to reason that some of the underlying physical mechanisms can
be understood by studying the interaction of a single particle with a turbulent flow. A number of studies have
therefore been performed where the objective has been to understand the interaction between a spherical
particle and a turbulent or unsteady flow (Wu and Faeth, 1995; Yusof, 1996; Kimet al., 1997a,b). A similar
viewpoint is adopted in the current study in that here too we have studied flow past a single, stationary
spherical particle. In addition to this, we simplify the situation further by replacing the turbulent flow with a
sinusoidally oscillating freestream. Thus, the flow studied here consists of a sphere immersed in a freestream
where the cross-flow (transverse) component of velocity is oscillated sinusoidally. We believe that this
approach simplifies the flow configuration while retaining some of the relevant flow physics. It is expected
that a comprehensive analysis of this simpler flow configuration using direct numerical simulations will help
us identify mechanisms responsible for particle-induced turbulence enhancement. It should be pointed out
that even this simplified flow configuration has a large multidimensional parameter space which is indicative
of the complexity of this problem. The key parameters in this flow are the frequency and amplitude of the
freestream fluctuation and the flow Reynolds number. In the current study we have performed a sequence of
simulations with the objective of understanding the behavior of the forced sphere wake over a wide range
of these parameters.

2. Computational Methodology

A solver based on a Fourier–Chebyshev spectral collocation (Canutoet al., 1988) has been developed for
direct numerical simulation of three-dimensional, viscous, incompressible flow past a prolate spheroid. Flow
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Figure 3. Surface mesh used in the current simulation. The Cartesian as well as the spherical coordinate systems are shown.

past a sphere can be solved as a special case. Here we present only a brief outline of the solver used for the
current simulations. For a detailed description the reader is referred to Mittal (1999a).

The governing equations are the unsteady, incompressible Navier–Stokes equations given by continuity

∇ · u = 0, (1)

momentum conservation
∂u

∂t
+u · ∇u = −∇P +

1
Red
∇2u, (2)

whereu andP are the velocity and pressure, respectively. Furthermore, in the above equationsRed is
the Reynolds number based on the freestream velocity (U∞) and diameter (d) of the sphere. The above
equations are transformed to the prolate spheroidal coordinate system and discretized on an orthogonal
curvilinear body-fitted grid. The surface grid for our sphere simulations is shown in Figure 3. The azimuthal
directionϕ is periodic over 2π and this allows us to use a Fourier collocation method in this direction. In the
θ-direction, which is referred to as the wall-tangential direction, the flow is periodic not overπ but over 2π,
and a restricted Fourier series is used for computing derivatives along this direction. The singularity in the
coordinate transformation at the poles which are located atθ = 0 andπ has been avoided by distributing the
collocation points in such a manner as to avoid these locations. The algorithm also allows us to cluster points
in the wake in theθ direction. The semi-infinite flow domain is truncated to a large but finite distance and
a Chebyshev collocation method is used in this nonperiodic direction. Thus, spectral discretization is used
in all three directions and this results in a highly accurate computation of the derivatives. A typical mesh
used in the current simulations contains 121 points in the radial direction and 80 points in theθ direction. In
the azimuthal direction, the number of points range from 24 for low Reynolds number to 32 for the higher
Reynolds number simulations. Furthermore, the outer boundary of the domain extends to 20d for all our
simulations. Figure 4 shows a typical mesh used in our simulations. Previous simulations (Mittal, 1999a,b)
in this Reynolds number regime have guided us in the choice of the grid and the domain size. Fourier spectra
of the flow variables is monitored in both theθ andϕ directions and at least five orders of magnitude decay
in the energy is ensured. In addition, to show conclusively that 24 azimuthal points are adequate for the
low Reynolds number forced wake simulations, we have carried out one such simulation with 32 azimuthal
points. A comparison of the results on the two meshes shows no significant differences, thereby confirming
the adequacy of the azimuthal resolution.

A two-step time-split scheme (Chorin, 1968) is used for advancing the solution in time. The intermediate
velocity field is obtained first by advancing through the advection–diffusion equation; and a second-order
accurate, semi-implicit method is used for this step. The radial and azimuthal viscous terms are discretized
in an implicit manner using a Crank–Nicolson scheme. All other terms such as the nonlinear convection
and other cross-terms that result from the curvilinear nature of the coordinate system are treated explicitly
using a second-order Adams–Bashforth scheme. The next step is pressure correction and this requires the
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Figure 4. Typical grid used in the current simulation. Note that only a two-dimensional projection of the grid is shown. The three-
dimensional grid is obtained by rotating this mesh about thex-axis.

solution of the pressure Poisson equation which is solved with a homogeneous Neumann condition on
the boundaries. Finally, the pressure correction is added to the intermediate velocity and a divergence-free
velocity field is obtained. A higher-order intermediate velocity boundary condition is used which results in
accurate imposition of the no-slip, no-penetration condition on the body. Details of the time-split scheme
can be found in Mittal and Balachandar (1996) and Mittal (1999a).

Since the flow domain is truncated to a finite extent in the current simulations, appropriate boundary
conditions are required at the outer boundary. Inviscid flow past the spheroid is computed first and this
is used as the inflow boundary condition as well as the initial condition. At the outflow boundary we use
a previously developed nonreflective boundary condition which allows vortical disturbances to exit the
computational domain in a smooth manner without any significant reflections. This boundary treatment has
been tested extensively in cylindrical and spheroidal geometries and details of these tests can be found in
Mittal and Balachandar (1996) and Mittal (1999a).

3. Results

3.1. Sphere in a Steady Uniform Flow

The current study focuses on the 100< Red < 350 regime and before we investigate the response of the
sphere wake to freestream fluctuations it is insightful to elucidate, through flow visualizations, the topology
of the wake and the dynamics of natural vortex shedding when the sphere is immersed in a uniform,
steady flow. Here we have chosen to focus on two Reynolds numbers:Red = 150 and 350 which represent
steady and unsteady wake regimes, respectively. In these two simulations, a small nonaxisymmetric velocity
perturbation is provided for a short time duration on the sphere surface at the beginning of the simulation.
For Reynolds numbers lower than 210, this perturbation is not amplified and the flow eventually returns to
an axisymmetric state. However, at higher Reynolds numbers, this perturbation is amplified by the inherent
instability of the wake, and depending on the Reynolds number, either leads to a steady, nonaxisymmetric
state or to vortex shedding. Each simulation is continued until a stationary state is obtained and this can take
up to 300 nondimensional time units (d/U∞). Statistics are then accumulated over a time interval of about
300d/U∞.

AtRed = 150 the wake is axisymmetric and steady and Figure 5 show the streamline pattern and azimuthal
vorticity (ωϕ) contours on oner–θ plane of the domain. The flow looks similar to what one would observe
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Figure 5. (a) Streamline plot of the axisymmetric flow obtained atRed = 150 on one azimuthal plane. (b) Corresponding contour plot
of azimuthal vorticityωϕ.

in the steady wake of a circular cylinder. AtRed = 350, however, the wake exhibits vortex shedding and
Figure 6 shows two views of the vortex topology observed for this flow at one time instant. In our previous
studies (Mittal and Balachandar, 1995a), complex three-dimensional vortical structures in cylinder wakes
have been identified successfully by the imaginary part of the eigenvalue of the velocity gradient tensor
(denoted byλi ) and we use the same method here for extracting the vortical structures in the sphere wake.
Thus, throughout this paper vortical structures in the sphere wake have been visualized by plotting one
isosurface ofλi . The particular value ofλi is chosen so as to bring out the most salient features of the
vortex topology. For the sphere wake, we have found thatλi = 0.1 captures all the important features of the
topology and this value has been used for all the flow visualizations presented in this paper.

The most striking feature observed in the bottom view of Figure 6 is the apparent symmetry of the wake
about a plane passing through the wake centerline. Change in the orientation of the plane of symmetry can
be detected by computing the phase angle between the two component of side force on the sphere. For this

Figure 6. Two views of the vortex topology observed in the wake of a sphere atRed = 350. The vortical structures have been visualized
by plotting one isosurface ofλi corresponding to a value of 0.1. (a) Perspective view of the wake which shows the interconnected loop
structure of the vortices. (b) View along the plane of symmetry. The symmetry plane is indicated by a dash-dot line. The isosurface has
been terminated near the sphere surface so as to show the position of the sphere clearly.
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Figure 7. Time averaged azimuthal spectra of the azimuthal velocity component at four locations in the sphere wake. The coordinates
of the four locations are shown in the legend.

flow it has been shown (Mittal, 1999b) that the two components are virtually phase locked with negligible
change in the phase angle, thereby indicating that the flow in the near wake maintains a fixed plane of
symmetry at all times during the shedding process. Furthermore, the top figure shows that vortex shedding
is characterized by the appearance of interconnected vortex loops similar in shape to those observed in the
experiments (Margavey and Bishop, 1961; Ormieres and Provensal, 1998). The Strouhal number has been
computed from the time variation of the azimuthal component of velocity in the near wake and is found to
be about 0.14. As mentioned earlier, the spectra of flow quantities is monitored in order to check for the
adequacy of the grid resolution. In Figure 7 we have plotted the energy spectra of the azimuthal velocity
component in the wake at four different locations. The spectra have been averaged over four shedding cycles
and the location chosen so as to cover the near as well as the downstream wake region. The spectra show
more than six orders of magnitude decay at all of these locations demonstrating that 32 azimuthal points are
quite sufficient for resolving the azimuthal structure of the wake at this Reynolds number.

Since we are interested here in understanding the momentum and energy transport in the wake of a sphere
immersed in an oscillatory flow field, we have computed the Reynolds normal stresses and kinetic energy
associated with natural vortex shedding forRed = 350. These statistics have been computed in a cylindrical
(%, ϕ, x) coordinate system, where the axis of this coordinate system coincides with the wake centerline and
% is the radial coordinate measured from this axis. In Figure 8 we show the distribution of the three normal
Reynolds stress components (u′2x , u

′2
ρ , u

′2
ϕ ) whereu′ denotes the nondimensional velocity fluctuation. The

fluctuating velocity is normalized byU∞ and the fluctuations have been defined from corresponding average
values, which have been computed by averaging over time as well as the azimuthal directionϕ. Also shown
in Figure 8 is the nondimensionalized fluctuation kinetic energy which is defined ask = 1

2(u′2x + u′2ρ + u′2ϕ ).
The streamwise and radial stresses are distributed in a manner similar to the streamwise and cross-flow

stress distribution in the wake of the cylinder (Mittal and Balachandar, 1995a). Thus, even though the vortex
shedding in the sphere wake is significantly different from that in the wake of a cylinder, the overall effect
of vortex shedding on momentum transport is similar in both wakes. There is, however, a difference in the
relative magnitudes of these two stress components. In cylinder wakes the cross-flow normal stress has the
larger magnitude, whereas in the sphere wake the streamwise stress is larger. At higher Reynolds numbers,
however, the wake becomes more isotropic and all normal stresses are of comparable magnitude (Leder,
1993). Furthermore, the overall stress level in the sphere wake is about an order of magnitude lower than the
cylinder wake at similar Reynolds numbers (Mittal and Balachandar, 1995a), indicating that vortex shedding
in the sphere wake is a significantly weaker phenomenon. This is an important observation since it suggests
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Figure 8. Contour plots of the Reynolds normal stresses that result from natural vortex shedding atRed = 350. The stresses have been
computed in a cylindrical (%, ϕ, x) coordinate system where the axis of this coordinate system coincides with the wake centerline and
% is the radial coordinate measured from this axis. (a) Streamwise normal stressu′2x . (b) Cross-flow normal stressu′2ρ . (c) Azimuthal

normal stressu′2ϕ . (d) Fluctuation kinetic energy12(u′2x + u′2ρ + u′2ϕ).

that vortex shedding from a sphere would be quite sensitive to freestream fluctuations. Finally, we note that
the maximum fluctuation kinetic energy in the wake due to natural vortex shedding is 0.026 and we denote
this quantity byknmax.

3.2. Sphere in Oscillatory Flow

The main objective of this study is to investigate the response of the sphere wake to freestream fluctuation and
to interpret the results from the viewpoint of particle–turbulence interaction. A simple sinusoidal perturbation



406 R. Mittal

is applied to one velocity component at the hemispherical inflow boundary so as to simplify the data analysis.
Numerical experiments with streamwise (ux), cross-flow (uy), and azimuthal (uϕ) velocity perturbations
indicated that, for the Reynolds number range studied here, the wake is most responsive to cross-flow velocity
fluctuations and we have therefore chosen to perturb only this component. The relatively large response of
the sphere wake to this perturbation is connected to the fact that the most unstable (or least stable depending
on the Reynolds number) spatial mode in the sphere wake corresponds tokϕ = 1. Perturbing theux or
uϕ sinusoidally does not produce this spatial mode but perturbinguy does. Thus, by perturbing theuy
component of velocity, the wake is exposed to a mode that it is most unstable to and consequently a large
response is produced. The velocity at the inlet is thus given by

{Ux, Uy, Uz } = {1, Ain sin(2πΩt),0} , (3)

whereAin is the amplitude andΩ is the nondimensional frequency (Ω = Fd/U∞ whereF is the fluctuation
frequency) of the perturbation. Furthermore, given the velocity fluctuation, the pressure gradient at the outer
boundary can be approximated through an inviscid approximation as ˆn ·∇Pn+1 ≈ −n̂ ·∂Un+1/∂t− n̂ · (u ·
∇u)n, wheren̂ is the unit vector normal to the outer boundary. The explicit treatment of the convective term
simplifies the specification of this boundary condition and all oscillatory flow simulations performed in this
study employ this inhomogeneous boundary condition. However, it is worthwhile pointing out that even for
the highest amplitude flow oscillation employed in the current study, simulations performed with the simple
homogeneous Neumann pressure boundary condition give results which are virtually indistinguishable from
those obtained using the above nonhomogeneous condition.

The procedure used in specifying the perturbation at the inlet is as follows: we choose the ambient
fluctuations kinetic energy level (k0) and frequency that we would like the sphere wake to be exposed to.
The corresponding amplitude of the perturbation is then given byA0 = 2

√
k0. However, if this amplitude

were to be imposed at the inlet, the perturbation level would be reduced due to viscous action and the sphere
could experience a significantly attenuated fluctuation. Furthermore, the extent of this amplitude attenuation
would depend on the flow Reynolds number and the fluctuation frequency. Assuming the evolution of this
disturbances is governed by a linear, one-dimensional convection–diffusion equation, we can estimate that
in the time it takes the perturbation to travel from the inlet to the sphere, its amplitude would reduce by a
factor of exp(−4π2Ω2Ro/dRed), whereR0 is the radius of the outer boundary. For the various parameters
considered here, the attenuation factor would have a large variation ranging from about 0.2% to 19%. In
order to limit this variation and make the results more amenable to interpretation, we choose instead to
amplify the inlet amplitude such that it will result in the desired ambient fluctuation level (k0) at a specified
distance (l0/d) upstream of the sphere. The amplification factor is computed from the linear analysis which
gives us the following relation between the ambient fluctuation kinetic energy and the amplitude at the inlet:
Ain = 2

√
k0 exp(4π2Ω2(Ro − l0)/dRed). For all the current simulations, we have chosenl0/d = 5 and

our numerical simulations show that with this procedure, the desired fluctuation kinetic energy level at the
specified upstream distance can be obtained to within about 3%.

Our first objective is to understand the response of the sphere wake to freestream fluctuations of different
frequencies. Furthermore, we would also like to understand the effect of the Reynolds number on the response
of the wake. We therefore choose two Reynolds numbers:Red = 150, which represents the situation where
the wake is stable and axisymmetric, andRed = 350 where the sphere wake exhibits natural vortex shedding.
For each of these Reynolds numbers we have carried out a sequence of simulations where in each simulation
the sphere is exposed to a monochromatic fluctuation of a specified frequency. Each simulation is continued
until a stationary state is obtained and statistics are subsequently obtained by sampling over a time interval
of about six time periods of the velocity fluctuation.

3.2.1. Wake Response atRed = 150

In this first sequence of simulations we impose an ambient fluctuation with levelk0 equal to 0.005 (corre-
sponding to a 10% r.m.s. fluctuation) andΩ is varied from 0.03 to 0.2. In Figure 9 we have plotted contours of
azimuthal vorticityωϕ for Red = 150 andΩ = 0.03, 0.10, and 0.02, respectively. We observe in Figure 9(a)
that the lowest frequency fluctuation primarily has the effect of undulating the separated shear layers in
the wake. However, the shear layers have sufficient time to respond to the low frequency perturbation and
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Figure 9. Contour plots of azimuthal vorticity showing the response of the shear layers to freestream fluctuations of different frequencies
for Red = 150. The freestream fluctuation kinetic energy level isk0 = 0.005. (a)Ω = 0.03, (b)Ω = 0.10, (c)Ω = 0.20.

the perturbation does not produce any significant interaction between the two shear layers. Consequently,
the shear layers maintain their integrity even in the presence of these perturbations. In contrast, the highest
frequency fluctuation (Ω = 0.20) does not produce any significant large-scale motion in the separated shear
layers. Instead, as evident from Figure 9(c), its primary effect is to “jitter” the shear layers and produce
small-scale structures which dissipate quickly as they convect downstream.

The fluctuation with the intermediate frequency ofΩ = 0.10 has by far the most dramatic effect on the
separated shear layers, as is shown in Figure 9(b). Under the effect of this fluctuation, the shear layers exhibit
a strong flapping motion and vorticity cancellation in regions where the shear layers from the opposite sides
of the wake are brought close together results in the breaking up of the shear layer into distinct structures
which subsequently convect downstream. That these convecting structures are identifiable vortices and not
just regions of high vorticity can be seen from Figure 10 where we show a flow visualization of the wake for
theΩ = 0.10 case. The figure shows that the patches of vorticity breaking off from the shear layers are in fact
Λ-shaped vortices which are formed in the near wake and which decay slowly as they convect downstream.
The topology of these vortices is quite different from that observed in natural vortex shedding (Figure 6).
In particular, the connected vortex loops which characterized natural vortex shedding at higher Reynolds
numbers are not present in the forced wake. Thus, even though a perturbation of a suitable frequency induces
the formation of distinct vortex structures in the near wake, this phenomenon has no connection with natural
vortex shedding.
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Figure 10. Visualization of the three-dimensional vortex topology in the forced wake atRed = 150. The fluctuation frequency
corresponds toΩ = 0.10 where the wake shows a significant response. A perspective as well as a side view of the wake is shown and
distinctΛ-shaped vortices can be observed in the near wake.

The perturbation of the shear layer by the freestream fluctuation induces fluctuations in the velocity and
this results in the production of fluctuation kinetic energy in the near wake. In a particulate flow, this energy
is transported from the near wake into the surrounding fluid and can lead to enhancement of turbulence.
Thus, a particle’s ability to enhance turbulence is directly related to the fluctuation kinetic energy produced
in its wake. In Figure 11 we have plotted contours of fluctuation kinetic energy normalized byk0 for the
Red = 150 case. The three plots correspond toΩ = 0.03, 0.1, and 0.2, respectively, and have been obtained
by averaging the flow over about six periods of the fluctuation. This plot shows that, for all perturbation
frequencies, the sphere acts to amplify the freestream fluctuations, and kinetic energy levels significantly
higher than the ambient level of 0.005 are found in the near wake. Furthermore, we find that the maximum
kinetic energy in the wake (kmax) varies significantly with the perturbation frequency and the maximum
kinetic energy in the wake is obtained for theΩ = 0.1 case. For this case we find a maximum energy level
of 0.0275 which is higher than the ambient level by a factor of 5.5. In Figure 12 we have plotted (kmax/k0)
versus the perturbation frequency and this plot indicates a maximum at aboutΩ = 0.1. The high value of
fluctuation kinetic energy in the wake can be directly attributed to the strong response of the wake at this
frequency. At higher and lower frequencies, the response of the wake is quite limited and this results in a
lower amplification of the freestream perturbations.

To understand the response of the wake to the fluctuation amplitude, a separate series of simulations have
been carried with an ambient fluctuation level of 0.00125 (corresponding to a 5% r.m.s. fluctuation) and in
Figure 12 we have also plotted (kmax/k0) versus the perturbation frequency for this case. It is clear from this
plot that the response of the wake at both fluctuation levels is quite similar with the maximum amplification
of freestream fluctuation energy occurring atΩ = 0.1. However, the amplification factor at this frequency
is about 6.8, which is somewhat higher than obtained previously for thek0 = 0.005 case. At higher and
lower frequencies, the amplification factor is quite similar to that obtained for the previous case. Thus, near
the frequency of maximum amplification, the wake does not respond linearly to the fluctuation level but
otherwise we find that the response does not depend significantly on the fluctuation level.

3.2.2. Wake Response atRed = 350

In order to understand the wake response in the flow regime where natural vortex shedding occurs, we
have carried out a separate sequence of simulations atRed = 350. The Strouhal number of natural vortex
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Figure 11. Contour plots showing the variation of mean fluctuation kinetic energy normalized byk0 in the forced wake atRed = 150.
The freestream fluctuation kinetic energy level isk0 = 0.005. (a)Ω = 0.03, (b)Ω = 0.10, (c)Ω = 0.20.

Figure 12. Variation of the maximum fluctuation kinetic energy normalized byk0 with the fluctuation Strouhal numberΩ for the forced
wake atRed = 150.
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Figure 13. Contour plots of azimuthal vorticity showing the response of the shear layers to freestream fluctuations of different frequencies
for Red = 350. The freestream fluctuation kinetic energy level isk0 = 0.005. (a)Ω = 0.05, (b)Ω = 0.10, (c)Ω = 0.20.

shedding at this Reynolds number is about 0.14 and here we have carried out simulations within the range
0.05≤ Ω ≤ 0.2. Two different freestream fluctuation levels withk0 = 0.005 and 0.00125 have been used
and these correspond to r.m.s fluctuations of 10% and 5%, respectively.

In Figure 13 we have plotted contours of azimuthal vorticityωϕ for Ω = 0.05, 0.10, and 0.02 fork0 = 0.005.
Comparison of these plots with Figure 9 indicates that the response of the wake is in general similar to that
found at the lower Reynolds numbers. Low frequency perturbations tend to produce waviness in the shear
layers, whereas high frequency perturbations produce relatively smaller-scale distortions. The intermediate
frequency of 0.10 produces the most significant response and Figure 13b shows the streamwise oriented
vortices formed in the near wake at this frequency. This observation is also supported by a three-dimensional
flow visualization of the vortex topology for this case which is shown in Figure 14. This figure shows
the formation of compact streamwise-orientedΛ-shaped vortices which separate from the shear layers and
convect downstream. For the most part, the topology of the structures observed here is qualitatively similar
to that observed for the lower Reynolds number case. However, we find that in addition to the largeΛ-shaped
vortices, another pair of weak streamwise vortices are also formed periodically in the wake. A comparison of
this figure with Figure 6 shows that the forced wake does not exhibit the connected vortex-loop-type topology
indicating that natural vortex shedding is for the most part suppressed in this unsteady environment.
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Figure 14. Visualization of the three-dimensional vortex topology in the forced wake atRed = 350 fork0 = 0.005. The fluctuation
frequency corresponds toΩ = 0.10 where the wake shows the largest response. A perspective as well as a side view of the wake is
shown andΛ-shaped vortices similar to those present in Figure 10 can be observed. The arrows indicate the additional pair of streamwise
vortices that are observed in this forced wake.

Statistics have also been accumulated for these simulations and Figure 15 shows the distribution of the
normalized fluctuation kinetic energy in the wake for three different forcing frequencies. As for the low
Reynolds number case we find that the large response of the wake atΩ = 0.10 results in a high level of
fluctuation kinetic energy. In Figure 16 we have plotted (kmax/k0) versus the perturbation frequency for this
Reynolds number. In order to locate the maximum of this curve more precisely, an additional simulation has
been carried out atΩ = 0.125. The spline fit through these points indicates that the maximum kinetic energy
is produced atΩ = 0.106, where the ambient fluctuation kinetic energy is amplified by a factor of about
14.7. At higher and lower frequencies too there is significant amplification with the lowest amplification
factor of about 10 forΩ = 0.20. The amplification at all frequencies is significantly higher than that obtained
at the lower Reynolds number and this is mainly due to the fact that, at higher Reynolds numbers, the
vorticity in the shear layers is of a higher magnitude and when these shear layers move under the influence
of the imposed perturbations, they induce larger velocity perturbations. In Figure 16 the solid horizontal line
indicates the magnitude of the maximum kinetic energy associated with natural vortex shedding normalized
by k0 = 0.005, and this clearly shows that all of the frequencies imposed here produce a fluctuation level
which is higher than that produced by natural vortex shedding. It should be reemphasized that the highest
amplification is found not at the natural vortex shedding frequency of about 0.14 but at a lower frequency of
0.106. This further supports the assertion that with this amplitude of perturbation, natural vortex shedding
does not play a significant role in the amplification process.

In contrast to the forced wake at the lower Reynolds number, we expect the wake at this higher Reynolds
number to behave in a more complicated manner as the amplitude of the perturbation is reduced. This is
because in the limit of a very small perturbation we expect natural vortex shedding to reappear and affect
the momentum and energy transport in the wake. In order to understand the wake response in this regime,
another sequence of simulations has therefore been carried out withk0 = 0.00125, which corresponds to
a 5% r.m.s. fluctuation. In Figure 16 we have also plotted the amplification factor for this sequence and a
number of interesting observations can be made regarding this curve. The kinetic energy of the ambient
fluctuations is amplified quite dramatically; up to a factor of about 38.6 forΩ = 0.15. The normalized
maximum kinetic energy obtained for natural vortex shedding is also indicated by the dashed horizontal line
and we observe that all of the imposed perturbations produce a maximum kinetic energy which is higher
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Figure 15. Contour plots showing the variation of mean fluctuation kinetic energy normalized byk0 in the forced wake atRed = 150.
The freestream fluctuation kinetic energy level isk0 = 0.005. (a)Ω = 0.05, (b)Ω = 0.10, (c)Ω = 0.20.

Figure 16. Variation of the maximum fluctuation kinetic energy normalized byk0 with the fluctuation Strouhal numberΩ for the forced
wake atRed = 350. The solid and dashed horizontal lines indicate (knmax/k0) for k0 = 0.005 and 0.00125, respectively.
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Figure 17. Visualization of the three-dimensional vortex topology in the forced wake atRed = 350 fork0 = 0.00125. The fluctuation
frequency corresponds toΩ = 0.15 where the wake shows the strongest response. A perspective as well as a side view of the wake is
shown. The wake topology is similar to that of a naturally shedding wake indicating that natural vortex shedding is not disrupted at this
lower fluctuation level.

than that produced due to natural vortex shedding. In fact, forΩ = 0.15, the maximum kinetic energy in the
wake is greater than that produced by natural vortex shedding by a factor of about 2.

The spline put through the data points in Figure 16 also indicates that the largest amplification occurs
at a frequency of about 0.141, which is higher than the frequency at which maximum amplification is
obtained fork0 = 0.005. This is in contrast to the behavior observed forRed = 150, where the frequency for
maximum amplification does not change with the fluctuation level. The fact that this frequency of maximum
amplification matches with the natural vortex shedding frequency suggests that, at this lower fluctuation
level, natural vortex shedding has a dominant presence in this forced wake. In order to confirm this we
have plotted flow visualizations for this case in Figure 17 and we find that the vortex topology in this case
is significantly different from that observed fork0 = 0.005. The wake clearly exhibits the connected loop
structure similar to that observed in the naturally shedding wake (Figure 6) indicating that the fluctuation level
of k0 = 0.00125 is not high enough to suppress natural vortex shedding completely. However, the maximum
kinetic energy in the forced wake is significantly higher than that found in the naturally shedding wake and
this suggests that the dynamics in the forced wake is not completely determined by natural vortex shedding.
It seems that the forcing and natural vortex shedding act together to produce a large-scale fluctuation in the
near wake resulting in a high magnitude of fluctuation kinetic energy.

Wu and Faeth (1995) found that low-level freestream turbulence (4% turbulence intensity) does not have a
significant effect on the natural vortex shedding process in the wake of a sphere. Our simulations also indicate
that natural vortex shedding is not suppressed even in the presence of a 5% fluctuation in the transverse
velocity. In order to investigate further the effect of the perturbation amplitude on natural vortex shedding,
we have performed a sequence of simulations atRed = 350 withΩ = 0.20 where the perturbation amplitude
has been systematically varied from a small to a relatively large magnitude. A forcing frequency different
from the natural shedding frequency has been chosen for these simulations in the hope that it will allow us
to differentiate between phenomena associated with natural vortex shedding and the imposed fluctuation.
Simulations have been carried out withk0 = 0.0002, 0.00125, 0.0028, and 0.005 which correspond to 2%,
5%, 7.5%, and 10% r.m.s. perturbations in the transverse velocity.

In Figure 18 we have plotted the (kmax/k
n
max) versusk0 and a spline has been fit through the data points.

The plot shows that up to aboutk0 = 0.001 (4.5% fluctuation level), the maximum kinetic energy in the
wake is within about 5% ofknmax. As the flucutation level is increased further, there is a steep increase in
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Figure 18. Relative increase in maximum kinetic energy in the forced wake (kmax) over the maximum kinetic energy observed in the
naturally shedding wake (knmax) versus the freestream fluctuation kinetic energy level.

the maximum kinetic energy and we find that atk0 = 0.00125, the maximum kinetic energy is roughly 10%
higher thanknmax. The steep increase in the maximum kinetic energy indicates that freestream fluctuation
is beginning to affect the natural vortex shedding process. However, since the maximum kinetic energy
is not substantially different from that obtained from natural vortex shedding, it is also apparent that the
natural vortex shedding is affected only slightly by the freestream fluctuations. Thus for fluctuations with
the level of aboutk0 = 0.00125, the wake dynamics is still determined for the most part by natural vortex
shedding. Beyondk0 = 0.00125, the maximum kinetic energy continues its steady rise with the fluctuation
level and atk0 = 0.0028,kmax is about 50% higher thanknmax. This indicates that at this fluctuation level
the natural vortex shedding is substantially affected by the freestream fluctuation and the momentum and
energy exchange in the wake is a combined effect of natural vortex shedding and the wake response to the
freestream fluctuations. Finally, atk0 = 0.005, the maximum kinetic energy is about 94% higher than the
maximum kinetic energy associated with natural vortex shedding. The significantly higher maximum kinetic
energy along with previous flow visualizations shows that at at this level of freestream fluctuations natural
vortex shedding is disrupted completely by the freestream fluctuations and the wake dynamics is determined
almost exclusively by the forced response of the wake.

3.2.3. Reynolds Number Dependence of Wake Response

Figures 12 and 16 clearly show that the maximum fluctuation kinetic energy in the wake can increase
significantly with the particle Reynolds number. This is in line with the observations of Hetsroni (1989) that
higher particle Reynolds numbers are correlated with turbulence enhancement. In this context, it is of interest
to investigate systematically the effect that the particle Reynolds number has on turbulence enhancement. In
order to isolate the effect of the Reynolds number on the wake response, it is desirable to fix the perturbation
frequency. However, given that the frequency of maximum kinetic energy amplification is itself Reynolds
number dependent, it is not clear what particular value of frequency should be chosen. Our approach here is
to use a perturbation with a narrow frequency band which covers the maximum amplification frequency for
the Reynolds number range of interest in the current study. In particular, the inlet perturbation we employ
is of the form

Uy(t) =
3∑

m=1

Amin sin{2πΩm(t− Tm)} (4)

and we chooseΩ1 = 0.007,Ω2 = 0.11, andΩ3 = 0.15. Furthermore, in order to minimize the skewness in
the perturbation signal we choose a time lagTm = (m−1)/3Ω1 andAmin is chosen such that each frequency
contributes equally to the net kinetic energy (k0) at the reference location (l0). Figure 19 shows the temporal
variation of the cross-flow velocity perturbation that results from this procedure. We have fixed the total
freestream fluctuation kinetic energy level and carried out a sequence of six simulations over a range of
Reynolds numbers from 100 to 350. Two such sequences have been simulated; the first withk0 = 0.00125
and the second withk0 = 0.005.
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Figure 19. Temporal variation of the cross-flow velocity perturbation used in studying the effect of Reynolds number on the amplification
of kinetic energy in the sphere wake. This fluctuation is generated by linearly combining fluctuations withΩ = 0.07, 0.11, and 0.15.

Figure 20. Variation of the normalized maximum kinetic energy (kmax/k0) with the flow Reynolds number.

For each of these simulations, the accumulation of statistics follows a procedure similar to that used in
the previous section. Figure 20 shows a plot of (kmax/k0) versus the Reynolds number. For thek0 = 0.00125
case we find that the plot has a relatively complex variation with Reynolds number. In particular there are
two Reynolds number ranges where there is a rapid increase ofkmax with Reynolds number. The first is in the
vicinity of Red = 200 and the second occurs at aroundRed = 300. Our understanding of a sphere immersed
in a uniform steady flow suggests that the first increase is connected with the bifurcation from axisymmetric
to the nonaxisymmetric double-thread wake regime which occurs at aroundRed = 210. Similarly, the
second increase inkmax is connected with the wake becoming susceptible to natural vortex shedding at
aroundRed = 300. As pointed out earlier, thekϕ = 1 mode is destabilized at each of these bifurcations and
the growth of this mode is further encouraged by the freestream perturbations. Thus, as the Reynolds number
is increased and the wake bifurcates to increasingly complex and unstable regimes, low-level freestream
fluctuations tend to produce larger perturbations in the attached shear layers and consequently lead to a
substantial increase in the fluctuation kinetic energy.

The behavior at the higher freestream fluctuation level ofk0 = 0.005 is however markedly different.
We find that the maximum kinetic energy in the wake increases almost linearly with the Reynolds number
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for this case, and the rate of increase ofkmax is clearly insensitive to the state of the natural wake at the
given Reynolds number. This is in line with our previous results which indicate that high-level freestream
fluctuations completely overwhelm the natural behavior of the wake. This is also further corroborated by
our previous finding that maximum amplification of incident energy at this fluctuation level occurs close to
Ω = 0.1 and this value does not vary significantly with the Reynolds number. Therefore the wake response
to this high-level freestream fluctuation is primarily determined by the resonance of the shear layers and this
response remains qualitatively the same over the whole range of Reynolds numbers studied here.

4. Discussion

The various findings of the current study can now be summarized and interpreted in the context of particle–
turbulence interaction. Even at low Reynolds numbers where the wake is not susceptible to natural vortex
shedding, freestream fluctuations can induce flapping and breakup of the separated shear layers and this
can lead to the formation of compact vortices in the near wake. The perturbation in the shear layers and
the formation of the compact vortices induces large velocity perturbations in the near wake, and fluctuation
kinetic energy levels significantly higher than the incident fluctuation can be produced. At higher Reynolds
numbers a similar scenario is observed and there is an even higher amplification of the incident kinetic
energy.

Forcing the wake at different frequencies and amplitudes shows that the sphere wake acts primarily like
an oscillator and returns large amounts of energy to the flow at resonance. At low Reynolds numbers, where
the wake is not susceptible to natural vortex shedding, this oscillator-type behavior is observed for small
as well as large fluctuation levels. In contrast, at high Reynolds numbers, where the wake is susceptible to
natural vortex shedding, the simple oscillator-type behavior is only observed for large freestream fluctuation
levels (& 7% r.m.s.). At these high fluctuation levels, natural vortex shedding is completely disrupted
and the wake response to freestream fluctuations is qualitatively similar to that obtained at low Reynolds
numbers. However, at low fluctuation levels, natural vortex shedding is not completely suppressed and the
wake response is more complicated. In the regime where the wake acts like a simple oscillator, it is found
that the wake resonates at a nondimensional frequency of about 0.1 and, in the Reynolds number range
studied here, this value does not vary significantly with the Reynolds number. At higher Reynolds numbers
and low fluctuation levels where natural vortex shedding is present, the frequency of maximum kinetic
energy amplification is closer to the natural shedding frequency. This behavior of the forced wake is shown
schematically in Figure 21.

The current simulations show that the amplification of kinetic energy attains a maximum at the resonant
frequency and then decreases as the perturbation frequency is increased. The Strouhal number corresponding
to the resonance frequency is in the range between 0.1 and 0.14 which matches well with the frequency
of natural vortex shedding at low Reynolds numbers (Figure 2). The fact that the resonance frequency is
comparable with the natural vortex shedding frequency at low Reynolds numbers is not a coincidence. As
shown by Roshko (1955) for cylinder wakes, the vortex shedding frequency scales with a velocity and
length scale associated with the wake and we expect the same time scale to be relevant in the case of the
forced wake. Thus the resonance frequency is expected to be comparable with the frequency observed in the
naturally shedding wake. Therefore the lowest frequency that the sphere wake is expected to be responsive
to is about 0.1. Furthermore, this also suggests that at higher Reynolds numbers, where the high mode of
shedding is active, the wake will also resonate at high frequencies associated with this shedding mode.
Thus, depending on the particle Reynolds number, the nondimensional resonance frequency is expected to
vary from 0.1 to about 1.0 and significant kinetic energy could be produced in the wake over this range of
freestream frequencies. Our forced wake simulations are currently limited to lower Reynolds numbers due
to resolution requirements and we have therefore not been able to analyze the response of the forced wake
in the range of Reynolds numbers where the high mode is present.

Our observations now allow us to hypothesize an explanation for the findings of Gore and Crowe (1989).
As shown in Figure 1, Gore and Crowe have suggested that particles enhance turbulence when the particle-to-
eddy size ratio is greater than about 0.1. Using Taylor’s frozen-field hypothesis, the eddy sizele can be written
in terms of an eddy frequencyfe asle = U∞/fe and the condition for amplification of ambient turbulence
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Figure 21. Schematic showing the various regimes observed in the wake of a sphere immersed in a sinusoidally oscillating freestream.

is then equivalent toΩe & 0.1 whereΩe is the nondimensional eddy frequency given byΩe = fed/U∞. As
argued in the previous paragraph, this is precisely the frequency range where we expect a resonant response
from the wake. A possible explanation for the findings of Gore and Crowe therefore is that turbulence is
enhanced when the eddy frequency lies in a range of resonance of the sphere wake, i.e., whenΩe & 0.1.
In this range the freestream turbulence is very effective in destabilizing the wake, and this results in the
development of compact vortices and significant amplification of the turbulence kinetic energy of the carrier
fluid.

The current simulations also suggest that the phenomenon of enhancement of turbulence by particles is
not governed by a single parameter. We have found that the degree to which turbulence can be enhanced by
a single particle depends on the particle Reynolds number, the particle-to-eddy size ratio and the intensity
of the freestream fluctuation. Obviously in a particulate flow with many particles, the degree to which
turbulence is enhanced will also depend on the particle volume-fraction. This dependance of turbulence
enhancement on multiple parameters is clearly inline with Figure 1 which shows a wide variation in the
degree to which turbulence is enhanced for a given particle-to-eddy size ratio.

5. Conclusions

Based on our simulations the following conclusions can be made:

– Natural vortex shedding from particles seems capable of significantly enhancing the turbulence in the
surrounding fluid but this mechanism is only active when the particle Reynolds number is greater than
about 300 and the freestream turbulence level is low. High-level freestream fluctuations tend to suppress
natural vortex shedding and therefore it is unlikely that natural vortex shedding plays a significant role
in turbulence enhancement in highly turbulent flows.

– In the presence of freestream fluctuations, the sphere wake behaves like an oscillator and returns large
amounts of energy to the surrounding fluid at resonance. This mechanism is not connected with natural
vortex shedding and can therefore be activated even when the particle Reynolds number is significantly
lower than 300. If natural vortex shedding is present and the freestream fluctuation level is low, this
mechanism can also amplify the effect of vortex shedding. Furthermore, this mechanism might be solely
responsible for turbulence enhancement in the high particle Reynolds number, high turbulence level
regime where the natural vortex is completely disrupted.
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– In the Reynolds number range from 100 to 350 which has been studied here, the Strouhal number at
which the wake resonates varies between 0.1 and 0.14 and this is comparable with the natural vortex
shedding Strouhal number. At higher particle Reynolds numbers it is expected that the individual shear
layers will also become susceptible to resonance at higher frequencies and therefore amplification of
turbulent kinetic energy should be observed at Strouhal numbers significantly greater than 0.1.

– The behavior of the forced wake observed here also provides a possible explanation for the observations
of Gore and Crowe that turbulence is enhanced when the ratio of particle-to-eddy size is roughly greater
than 0.1. This size ratio when reinterpreted as the Strouhal number of the energy containing eddies of
turbulence implies that turbulence is enhanced when the Strouhal number corresponding to the passage of
energy containing turbulent eddies is greater than 0.1. Since our simulations indicate that this is precisely
the resonant range of the wake, the behavior observed by Gore and Crowe may therefore be attributed to
the resonance between the turbulent fluctuations and the particle wake.

Our final objective is to obtain a better understanding of the mechanisms that are responsible for turbulence
enhancement in particulate flows and to use this for developing models for predicting the effect of particles
on turbulent flows. Considerable simplifications have been made in our numerical study in modeling the
interaction of particles with turbulence and these have been necessitated by the need to cover a large,
multidimensional parameter space. Despite these simplifications we believe that some key mechanisms
have been identified and future work will be directed toward studying these mechanisms further in a more
realistic setting.
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