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It has been known for some time that two-dimensional numerical simulations of flow over
nominally two-dimensional bluff bodies at Reynolds numbers for which the flow is intrinsically
three dimensional, lead to inaccurate prediction of the lift and drag forces. In particular, for flow past
a normal flat plate (Internarional Symposium on Nonsteady Fluid Dynamics, edited by 1. A. Miller
and D. P. Telionis, 1990, pp. 455-464) and circular cylinders [J. Wind Eng. Indus. Aerodyn. 35, 275
(1990)], it has been noted that the drag coefficient computed from two-dimensional simulations is
significantly higher than what is obtained from experiments. Furthermore, it has been found that
three-dimensional simulations of flows lead to accurate prediction of drag [J. Wind Eng. Indus.
Aerodyn. 35, 275 (1990)]. The underlying cause for this discrepancy is that the surface pressure
distribution obtained from two-dimensional simulations does not match up with that obtained from
experiments and three-dimensional simulations and a number of reasons have been put forward to
explain this discrepancy. However, the details of the physical mechanisms that ultimately lead to the
inaccurate prediction of surface pressure and consequently the lift and drag, are still not clear. In the
present study, resulis of two-dimensional and three-dimensional simulations of flow past elliptic and
circular cylinders have been systematically compared in an effort to pinpoint the exact cause for the
inaccurate prediction of the lift and drag by two-dimensional simulations. The overprediction of
mean drag force in two-dimensional simulations is directly traced to higher Reynolds stresses in the
wake. It is also found that the discrepancy in the drag between two-dimensional and
three-dimensional simulations is more pronounced for bluffer cylinders. Finally, the current study
also provides a detailed view of how the fluctuation, which are associated with the Karman vortex
shedding in the wake, affect the mean pressure distribution and the aerodynamic forces on the

body. © 1995 American Institute of Physics.

I. INTRODUCTION

Starting from a steady wake, the flow over bluff bodies
undergoes a sequence of transitions as the Reynolds number
is increased. For example, in the case of a circular cylinder
the wake transitions from a steady to an unsteady state at a
Reynolds number, Re, (based on the diameter, D) of about
49 and the well-known Karman vortex street is observed,
The second bifurcation occurs at around Re= 180, at which
there is a transition from a two-dimensional to a three-
dimensional wake. According to Williamson,' the three-
dimensionality at these low Reynolds numbers manifests it-
self in the form of vortex loops and pairs of streamwise
vortices, which have a characteristic spanwise wavelength of
about 3D. Next in the Reynolds number range of 230-260, a
gradual transition occurs where the vortex loops give way to
fine-scale streamwise vortices with a spanwise spacing of
about D. A further transition occurs at around Re=10°, the
so-called critical Reynolds number, where the boundary
layer becomes turbulent before separation.

The variation of base suction pressure (BSP) coefficient
(suction pressure on the wake side of the cylinder) for a
circular cylinder, as given by Williamson and Roshko® and
Williamson® is shown in Fig. 1. The drag over the cylinder is
directly related to the base suction pressure, and thus insight
into the variation of drag with Reynolds number can be
gained by studying the corresponding variation in BSF. It can
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be seen from this plot that BSP undergoes sharp variations at
all of the above-mentioned transition points, and a thorough
account of the flow behavior after each of these transitions
has been given by Roshko.! In the steady regime (Re<49),
the decrease in BSP with increasing Re is due to the increase
in size of the steady recirculation bubble. In the unsteady
regime (49<Re<180) the increase in BSP is due to the in-
crease in stresses in the near-wake region® and the shrinking
of the vortex formation region. At Re= |80, there is a drop in
BSP that is thought to be associated with a decrease in the
stresses in the near-wake due to three-dimensionality. The
BSP rises further until about Re=260, where it exhibits a
sharp local maximum, and it has been conjectured that this is
due to the saturation of the primary instability growth.* With
increasing Re, there is increasing disorder in the three-
dimensional structures leading to a further decrease in the
stresses and a corresponding decrease in BSP. When the Rey-
nolds number is increased beyond 1500, there appears an
instability in the separating shear layer, which leads to an
increase in the stresses and BSP. The BSP continues to in-
crease until the critical Reynolds number at which there is a
steep drop in BSP associated with turbulent separation and
reduction in the width of the wake.

Thus, above a Reynolds number of 180, three-dimen-
sionality plays a significant role in determining the structure
of the wake and a two-dimensional (2-D) simulation of such
a flow would fail to capture the effect of three-dimensional
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FIG. 1. Plot of base suction pressure for flow past a circular cylinder com-
piled from data from Refs. 2, 26, and 27. The solid line extends the behavior
of the 2-D unsieady base pressure coefficient past Re= 180, Resulis from the
curreni 2-D and 3-D simulation of Case Il have also been plotted.

structures on the flow field. In fact, 2-D simulations are
known to overpredict the drag coefficient for Reynolds num-
bers beyond which the actual flow is observed to be three
dimensional.>® On the other hand, corresponding 3-D simu-
lations predict the drag coefficient accurately.® The present
simulations show that in addition to the drag, there are also
differences in the lift variation obtained from 2-D and 3-D
simulations, and both the mean as well as the peak-to-valley
fluctuation levels of these global quantities are smaller in the
3-D simulations. Furthermore, it is found that these effects of
three-dimensionality on lift and drag depend on geometry
effects such as thickness ratio and angle of attack.

The details of the mechanisms that are responsible for
the decrease in BSP resulting from the two-dimensional to
three-dimensional flow (ransition observed in experiments
(at Re=180), are not completely understood. Similar mecha-
nisms are believed to be responsible for the differences in the
drag coefficient obtained from 2-D and 3-D simulations.
Over the years, several possible explanations have been put
forth as follows.

(i) One possible reasen for the difference could be the
end effects from the termination of the body at the walls of
the wind tunnel or at the endplates.’ Also, in experiments it
has been observed that end effects can lead to oblique
shedding,’® a situation where the shedding is out of phase in
the spanwise direction, and this could possibly result in the
discrepancy between 2-D and 3-D simulations.

(ii) It has also been suggested by Chua et al.® that even
in the absence of nonparallel shedding, imperfect spanwise
pressure correlation could result from small-scale three-
dimensional effects, and this could directly lead to a drop in
the peak-to-valley level of the lift and drag coefficients. If
the shedding is out of phase in the spanwise direction, the
sectional forces will peak at different times, thereby reducing
the peak values of the integrated forces.

(iii) It has been argued previously that in the wake
bubble, the pressure and shear stresses are roughly in
equilibrium,” therefore, differences in the shear stresses im-
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ply differences in the wake pressure distribution. In experi-
ments and 3-D simulations, the presence of spanwise fluc-
tuations and the streamwise component of vorticity leads to
substantial differences in the Reynolds and total stress com-
ponents in the wake. This, in turn, affects the pressure distri-
bution and hence the drag on the body. In support of this
hypothesis, Williamson and Roshko? report a reduction in the
measured ““in-plane” shear stress with increasing three-
dimensionality and an accompanying decrease in base suc-
tion over a Reynolds number range of 260-1500.

(iv) Another relevant observation made by Chua et al’?
in their 2-D simulations over a normal flat plate is that the
computed vortices form much closer to the plate than in the
experiments. This has been put forward as a possible cause
for higher suction in the two-dimensional flow. A shorter
vortex formation length is thought to be caused by the higher
Reynolds stresses in 2-D simulations.

(v) Tamura et al.® have performed simultaneous 2-D and
3-D simulations of flow past circular cylinders for Reynolds
number varying from 20 to 10° and they conclude that the
presence of secondary vortices in 2-D simulations has a
“strong influence™ on the aerodynamics and leads to higher
suction in the wake. They also claim that these secondary
vortices are absent in 3-D simulations, since spanwise ve-
locities are allowed. Furthermore, they observe that the 3-D
simulations (for Re=10"-10°) predict the drag coefficients
and the drag crisis very well in contrast to the 2-D simula-
tions.

Thus, the above clearly point to a need for further inves-
tigation into this issue in order to precisely elucidate the
physical mechanisms that are responsible for a lack of agree-
ment between the results of 2-D and 3-D simulations. An
accurate prediction of lift and drag is of paramount impor-
tance, since these two are often the most sought after quan-
tities by aero- and hydrodynamacists. Three-dimensional
simulations of flow over complex bodies have become pos-
sible only in the recent years, but remain very expensive and
are thus limited to moderate Reynolds numbers. On the other
hand, 2-D simulations are guite feasible, even for complex
geometries and relatively high Reynolds numbers. Thus, it is
not uncommon to use 2-D simulations to predict the aerody-
namic characteristics of a wing or the wind loads on a sky-
scraper, etc. It would therefore be useful to know the limita-
tions of 2-D simulations in predicting gross aerodynamic
quantities. Furthermore, an understanding of the basic
mechanisms that result in the discrepancy between two-
dimensional and three-dimensional results could eventually
lead to the incorporation of additional physics, which would
allow 2-D simulations to predict the aerodynamic forces
more accurately.

In the present study, we investigate in detail the effect of
three-dimensionality on lift and drag, Flow is studied for the
three configurations that are shown in Fig. 2. A direct nu-
merical simulation methodology has been developed in Ref.
10 to solve the flow over elliptic and circular cylinders,
which allows us to study the effects of the angle of attack as
well as the thickness ratio. In Fig. 2, Re*=U_ L% v, where
L* is the projected width of the cylinder, U, is the free-
stream velocity, and » is the kinematic viscosity of the
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FIG, 2, Geometry and parameters for the three cases that have been studied.

fluid. Furthermore, .7 is the thickness ratio of the ellipse that
is equal to Ly/Ly, where Ly and Ly are the semiminor and
semimajor axes of the elliptic cylinder, respectively. Finally,
a is the angle of attack of the cylinder. The schematic in Fig.
3 describes the coordinate system.

For the configurations shown in Fig. 2, 2-D as well as
3-D simulations are carried out and a detailed comparison is
made of the flow obtained from the two simulations, It is
found that even in the absence of end effects and oblique
shedding, there is a substantial difference in the forces com-
puted from 2-D and 3-D simulations. Time-averaged quanti-
lies are computed and used to identify those features of the
flow that are instrumental in producing the difference be-
tween the acrodynamic forces computed from 2-D and 3-D
simulations. The effect of the Reynolds stresses on the pres-
sure distribution is computed, and it is concluded that the
differences in the in-plane (x-y plane) Reynolds stresses are
the primary cause for the drop in the average level of drag in
3-D simulations. Furthermore, it is also found that at the
same effective Reynolds number, the differences between the
2-D and 3-D simulations, are more significant for bluffer
cylinders. Large differences are found in the peak-to-valley
amplitude level of lift obtained from 2-D and 3-D simula-
tions for all the three cases, and the underlying cause for this
15 also investigated. Also, in addition to studying the mecha-
nisms that lead to the discrepancy between 2-D and 3-D
simulations, insight into the role of unsteadiness in determin-
ing the pressure in the wake and on the body is also pro-
vided, and this we hope, will assist in the development of
better wake models.

pmdn/2

FIG. 3. Schematic showing the coordinate system that has been employed.
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Il. SIMULATION METHODOLOGY

The governing equations for the flow are the full three-
dimensional, incompressible Navier-Stokes equations, and a
Fouﬁcr-dichyshcv spectral collocation methodology is used
to simulaté the flow in a body fitted elliptic cylindrical grid.
The azimuthal direction (7) is intrinsically periodic and a
Fourier expansion is used in that direction. Also, the flow is
considered to be periodic along the spanwise direction with
period Ly, and therefore a Fourier expansion is also em-
ployed along Z. Here spanwise periodicity is used as a model
for flow ‘over a cylinder with an infinite spanwise extent.
Flow visualization studies have shown that for Reynolds
numbers in the range 180<Re<<1000, the circular cylinder
wake is dominated by structures that have a well-defined
periodic structure in the spanwise direction.™'! Furthermore,
similar streamwise structures have also been observed in
plane wakes,"? in the wake of a normal flat plate' and in
wakes of elliptic cylinders,"*'* indicating a similarity in the
topological structure of all wakes. Thus, imposition of peri-
odicity in the spanwise direction coupled with an appropri-
ately chosen spanwise length should ensure faithful repro-
duction of the important physics of the flow field for all the
cylinders chosen in the present study. The spanwise length
L, for the present simulations is chosen to be equal 10 2Ly,
which should allow us 10 capture at least one pair of stream-
wise structures for all the cylinders studied in the present
investigation. Visualization of vortical structures shows that
in the present simulation, there are two pairs of counter-
rotating streamwise vortices in the circular cylinder
wake.'*"* Furthermore, for the elliptic cylinder at 45° and 0°
angle of attack, one and three pairs of streamwise vortical
structures are observed, respectively.'®

The wall-normal direction (£) is nonperiodic, and there-
fore a Chebyshev expansion is used for discretization, The
infinite flow domain is truncated to a finite but large compu-
tational domain and nonreflecting boundary conditions are
applied at the outflow boundary, Furthermore, a new mixed
boundary condition is applied at the inflow boundary, which
allows the incoming flow to adjust 1o the displacement effect
of the bady. A two-step, time-split method is employed to
advance the solution in time through the advection-diffusion
and pressure-correction steps. A homogencous Neumann
pressure boundary condition is used on the body in conjunc-
tion with a higher-order intermediate velocity boundary con-
dition. These boundary conditions satisfy no-penetration ex-
actly and no-slip to O(Ar”) accuracy on the cylinder surface,
where Al is the time-step size,

Details of the numerical method are given in Mittal and
Balachandar,'™'® where it has also been demonstrated that
the outflow boundary condition is capable of convecting
large disturbances out of the computational domain without
spurious reflections. Quantities like lift, drag, and Strouhal
number of vortex shedding are also shown to be independent
of the size of the computational domain, thus establishing
that the boundary conditions at the outer boundary have no
effect on the flow dynamics. Furthermore, it has also been
shown that the intermediate velocity and pressure boundary
conditions on the body, which are used in conjunction with
two-step time-split method, accurately predict all flow quan-
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tities on the body, including pressure and vorticity.

For all of the simulations, the initial condition is as-
sumed to be the corresponding potential flow, and the two-
dimensional viscous flow is subsequently obtained by impos-
ing no-slip boundary conditions on the body. At nonzero
angles of auack, the shedding process is initiated naturally
by the asymmetry of the geometry, but al a zero angle of
attack, shedding is initiated deliberately by providing a small
*conveyor-belt” -type of slip velocity on the body, which
varies sinusoidally for a short period of time.'" This pertur-
bation has the desirable property that it neither produces any
divergence nor any net circulation. Once the shedding pro-
cess is well established and all the initial transients have
exited the computational domain, three-dimensionality is ini-
tiated by allowing a small slip velocity on the body for a
short duration, which is random in the spanwise direction as
well as in time. Thereafter, the three-dimensional flow is al-
lowed to develop and saturate on its own,

lil. RESULTS AND DISCUSSION

In this section, results obtained for the three cases shown
in Fig. 2 will be presented. For Case 1, the 2-D and 3-D
simulations have been performed on 81 X100 (£X#) and a
81X 100%28 (£xpxz) grid, respectively. For the other two
cases, computations have been performed on a 81X160
(£X ) grid for 2-D simulations and on a 81 X160X40 (£X#
Xz) grid for 3-D simulations. In all of the simulations, the
outer boundary is placed at 30Ly from the body and the
nondimensional time step size (Ar) is 1.5X (3

A. Comparison of 2-D and 3-D simulation resuits

Figures (4a), (4b), and (4c) show the variation of lift and
drag coefficients with time for Cases I, II and III, respec-
tively. The coefficients of lift and drag are defined as C, =L/
tpUL2LyL, Cp=DIl4pU%2LyL,, respectively, for 3-D
simulations, where L and D are the spanwise integrated lift
and drag forces, respectively, and p is the density of the fluid.
Corresponding definitions for 2-D simulations do not have
the spanwise length in the denominator. In all of these fig-
ures, we show the variation of the lift and drag coefficients as
the flow transitions from a saturated two-dimensional to a
fully three-dimensional flow, Table 1 lists the mean and peak-
to-valley amplitude levels of the force coefficients obtained
for each of these cases from the 2-D and 3-D simulations.
The mean and peak-to-valley values have been obtained for
one representative shedding cycle in the 2-D and 3-D simu-
lations.

For Case I, the three-dimensional perturbation is intro-
duced at r=68, and over the next 30 time units, the three-
dimensionality grows to sufficient amplitude so as to alter
the lift and drag on the body. Beyond =90, a drastic reduc-
tion in the average as well as the peak-to-valley level of lift
and drag can be observed. From Table I we note that the the
mean lift and drag levels computed from 2-D simulations are
larger than those computed from 3-D simulation by about
11% and 39%, respectively. Furthermore, the peak-to-valley
level of lift is also about 261% larger in the 2-D simulation
than for the corresponding 3-D simulation.
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FIG. 4. (a) Variaton of lift and drag coefficients with time for Case I.
Three-dimensional perurbation is given at r=68. The period over which the
averaging is done for the 3-D simulation is shown in the figure. (b) Vanation
of lift and drag coefficients with time for Case 11, Three-dimensional per-
turbation is given at 1=105. (c) Variation of lift and drag coefficients with
time for Case TIL. Three-dimensional perwrbation is given at r=67.5,

For the case of the circular cylinder (Case I1), the three-
dimensional perturbation is introduced at r=105, and the
three-dimensional flow saturates at about r=180. From Table
I it is noted that the mean drag coefficient is 1.24 for the 3-D
simulations. Experiments on circular cylinders estimate the
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TABLE I, Comparison between mean and peak-to-valley levels of the aero-
dynamic force coefficients obtained from 2-D and 3-D simulations of the
three cases,

Mean drag Mean lift Peak-to-valley lift
coefficient coefficient coefficient
Case
No. 2-D 3-D 2-D 3-D 2-D 3-D
| 252 1.81 0.97 0.86 391 1.08
I 1.44 1.24 0.00 0.00 242 1.28
1 0.78 0.77 0.00 0.00 1.21 0.62

drag coefficients at this Reynolds number to be in the range
1.15-1.2,'""'® therefore the 3-D simulation predicts the drag
more accurately than the 2-D simulation, which predicts a
16% larger drag. Furthermore, the peak-to-valley level of lift
in the 2-D simulation is about 88% larger than for the corre-
sponding 3-D simulations,

For Case [ll, the three-dimensional perturbation is intro-
duced at r=67.5 and the three-dimensionality saturates at
around r=115. From Table I we note that there is only a
small (—1%) difference in the average level of drag, how-
ever, there is a significant (~94%) overestimation of the
peak-to-valley level of lift in the 2-D simulation.

Thus, it is observed that the geometry of the cylinder as
seen by the incoming flow, has a very noticeable effect on
the overall discrepancy in the acrodynamic forces obtained
from 2-D and 3-D simulations. In particular, it is noted that
the discrepancy in the mean drag level is larger for bluffer
bodies. However, the peak-to-valley level of lift is grossly
overpredicted by 2-D simulations for all the three configura-
tions.

In order to obtain a better idea of the difference in the
overall flow fields obtained from 2-D and 3-D simulations,
the pressure and spanwise vorticity (w,) fields have been
averaged over one shedding cycle, and the results are shown
in the following figures. In the 2-D simulations, the average
of a variable *'f™ is defined as

- 1 (T
jiem=7 || semaa, 0

where T is the time period of shedding. For 3-D simulations,
the average is defined as

= P LofL 7

S&m=z L J:: Lﬂ& n.z.0)dt dz, (2)
which includes an average along the spanwise direction as
well. Furthermore, in both :he_sc simulations, the perturbation
f' can be defined as f'=f—f.

1. Case |

This case is of an elliptic cylinder at a large angle of
attack and it shows dramatic differences in the aerodynamic
forces obtained from 2-D and 3-D simulations. For this case
it can be observed in Fig. 4(a) that the shedding cycle in the
three-dimensional flow is not strictly periodic, and the time
average is over the cycle indicated in the figure. Figures 5(a)
and 5(b) show the average spanwise vorticity fields (@,) ob-
tained from the 2-D and 3-D simulations, respectively. The
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one striking difference between the two fields is the location
of the center of the rolled up vortices. In the 2-D flow, the
counterclockwise vortex rolls up approximately 0.55 units
away from the cylinder surface, whereas in the 3-D flow, this
vortex rolls up at a distance of about 1.2 units, This is, in
general, in agreement with Chua ef al,,” who observe that the
vortices computed from 2-D simulations roll up closer to the
flat plate than what is observed in experiments.

Contours of the average pressure coefficient (C ) for the
2-D and 3-D simulations are shown in Figs. 6(a) and 6(b),
respectively. It can observed that the center of low pressure
in the wake for the 2-D simulation lies at a distance of about
0.54 units from the cylinder surface, whereas for the 3-D
simulation it lies about 1.5 units away. The low-pressure re-
gion in the wake for the 2-D simulation is also found to be
much more intense (CJ.‘;mLﬂ = —2.08) than for the 3-D

simulation (C S 1.26). It will be shown in a later

section that this low-pressure region is primarily due to Rey-
nolds stresses in the wake region, and higher Reynolds
stresses in the 2-D simulation are what lead to a lower pres-
sure in the wake. We also observe that the center of low
pressure in the 2-D simulation just like the rolled up vortices,
has been drawn closer to the body than in the 3-D simula-
tion, and this too is connected to a higher level of Reynolds
stresses in the 2-D simulation acting close to the body.

The distributions of Cp and the mean skin-friction coef-
ficient, C¢, on the surface of the cylinder for the 2-D and
3-D simulations, have been plotted in Fig. 7. It is apparent
from the distribution of Cy that the contribution of viscous
shear stress toward lift and drag is small compared to that of
pressure. In fact, shear stress contributes, at most, about 10%
to the total drag for both the 2-D and 3-D simulations. Thus,
for the purpose of investigating lift and drag, it is reasonable
to limit the amalysis to the pressure effect. There are, how-
ever, some interesting observations that can be made regard-
ing the skin friction coefficient. First, Cz=0 indicates the
presence of stagnation or separation points, and allows us to
identify the separation region. For this case, it can be seen
that the wake lies roughly in the region 0<5<0.87. Second,
the skin-friction coefficient is directly proportional to the sur-
face spanwise vorticity and conclusions regarding vorticity
production on the body can also be drawn from the skin
friction coefficient,

It can be observed that in contrast to the 2-D simulation,
the pressure shows little variation in the wake region for the
3-D simulation. Thus, uniformity in pressure seems to be a
universal feature of three-dimensional bluff body wakes,
since similar behavior has been observed in the wake of cir-
cular cylinders by Tamura ef al.,? in the wake of normal flat
plates by Fage and Johansen'® and Najjar," and in the other
two cases to be reported here as well. Furthermore, the larg-
est difference in the surface pressure distributions is found to
be in the vicinity of the two separation points (located
roughly at »=0 and 0.84).

It can also be observed that there are noticeable differ-
ences in the surface pressure as well as the surface spanwise
vorticity computed from 2-D and 3-D simulations even up-
stream of the separated wake region. In particular, the pres-
sure at the front stagnation point (located roughly at
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n=1.25m) is lower for the 3-D simulation. The surface span-
wise vorticity too is slightly lower in magnitude everywhere
for the 3-D simulation. This is at first puzzling, since even in
the 3-D simulation, the unseparated boundary layer region
upstream of the wake is nearly two dimensional and no sig-
nificant differences are therefore expected in this upstream
region between the 2-D and 3-D simulations. This reduction
in the surface vorticity in the upstream attached portion of
the boundary layer and associated decrease in the vorticity
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production leads to the formation of weaker shear layers and
the delayed roll-up of the Karman vortices in 3-D simula-
tions.

This apparent discrepancy can be explained by consider-
ing a well-established two-dimensional flow, where three-
dimensionality has just been “turned on" (i.e., the flow is
given a small three-dimensional perturbation), Initially, the
vorticity production and pressure distribution on the body are
those corresponding to the two-dimensional flow, However,
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as time passes, the wake starts to establish three-dimen-
sionality through stretching and bending of vortex filaments,
and the vorticity distribution in the wake changes. It can be
shown that the vorticity field uniquely determines the veloc-
ity field around the cylinder,” and therefore changes in the
vorticity distribution in the wake affect the entire velocity
field, The vorticity production at the body also adjusts to the

changing velocity field, so as 1o satisfy no slip at the body,
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thus leading to a slightly different vorticity distribution, even
in the unseparated region upstream of the wake. Conse-
quently, the tangential pressure gradient, which is related to
the tangential vorticity source strength™ also gets altered,
leading to a different pressure distribution in the unseparated
boundary layer region. To sum up the above discussion we
quote Lighthill:® “the vorticity which is produced at the
surface, and carried away from it by diffusion and convec-
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FIG. 7. Surface distribution of mean pressure, C;, and skin-friction coef-
ficient, Cj . for Case L. Resulis of both 2-D and 3-D simulations have been
plotied for comparison.

tion, determines the entire flow, whose development in turn
controls the production of vorticity."”

It is clear that extrinsic three-dimensional phenomena
resulting from end effects are ruled out as a possible cause of
lift and drag reduction in the 3-D simulation, since these
extrinsic three-dimensional mechanisms are absent here, ow-
ing to the assumption of periodicity in the spanwise direc-
tion. To investigate if imperfect spanwise correlation in the
shedding process is responsible for the drop in the mean and
peak-to-valley levels of lift and drag forces in 3-D simula-
tions, we have plotted in Fig. 8 the spanwise variation of
sectional lift and drag coefficients at five stages in the shed-
ding cycle. It can be seen from the lift variation that the
shedding is nearly two dimensional and is quite well corre-
lated across the span, and the small spanwise variation can-
not account for the larger reduction in the peak-to-valley
level of lift. Therefore, the drop in the average and peak-to-
valley levels of both lift and drag can only be attributed to
other intrinsic three-dimensional effects.
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FIG. 8. Spanwise variation of sectional lift and drag coefficients duning a
shedding cyele for Case |. Solid lines comespond to lift coefficient and
dashed to drag coefficient. Both show relatively small variations in the span-
wise direction, indicating that the shedding is well correlated across the
span.
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2. Case Il

The circular cylinder is a canonical geometry for bluff
body wakes and there is a vast amount of experimental and
numerical data for flow over circular cylinders. The Rey-
nolds number range of 50-500 has been of particular interest
in recent years, and a number of studies have ian!igﬂted the
wake structure and dynamics of the flow in this range,***?!
Thus, comparisons of the current resulis of 2-D and 3-D
simulations with the results from some of these studies will
give us an idea about the relative fidelity of the simulations.

Figures 9(a) and 9(b) show mean spanwise vorticity con-
tours for the 2-D and 3-D simulations, respectively. It can be
observed that for the 3-D simulation, the vortices extend far-
ther downstream than for the 2-D simulation. This is similar
to the observations made for the previous case. Since the
vortices in the 2-D simulation do not have a well-defined
center, it is not straightforward to compare the strength of the
vortices, however, the level of vorticity is found to be gen-
erally higher in the 2-D simulation. Figures 10(a) and 10(b)
show the corresponding C 5 distribution for the 2-I) and 3-D
simulations, respectively, and it can be observed that the cen-
ter of the low-pressure region in the wake for the 2-D simu-
lation is closer than for the 3-D simulation by about 0.4
units. It is also noted that the pressure at the center of the
low-pressure region for the 2-D simulation is lower
(C o ™ —1.84) than for the 3-D simulation (Cp,. =
—1.46).

Figure 11 shows the mean pressure coefficient on the
cylinder surface for the 2-D and 3-D simulations. One can
observe that there is a noticeable difference in the pressure in
the wake, and this is the primary cause for the reduction in
drag. Note that the base suction pressure coefficient (at 7=0)
obtained from the 3-D simulation is 0.92, which is in excel-
lent agreement with the experimental value shown in Fig. |.
The 2-D simulation, however, predicts a base suction pres-
sure coefficient of 1.24, which overestimates the experimen-
tal value by as much as 38%. The solid line drawn in Fig. |
extends the log-linear behavior of the base pressure coeffi-
cient obtained from experimental measurements in the un-
steady two-dimensional regime (49<Re<180), into the
three-dimensional regime. It is interesting to note that the
prediction of the base-pressure coefficient from the current
2-D simulation lies close to this line, indicating a continuous
increase in the base suction pressure and drag with the Rey-
nolds number if the flow were 1o remain two dimensional
beyond Re=180. An interesting related question is whether
the increase in base suction pressure with a Reynolds number
will saturate, and if so, then at what Reynolds number. Al-
though the single data point obtained from the present simu-
lation does not provide a conclusive answer, it at least shows
that the trend of increase in base suction pressure with Rey-
nolds number stays the same at least until Re*=525,

In Figs. 12(a) and 12(b) we have shown the streamlines
corresponding to the mean flow obtained from the 2-D and
3-D simulations, respectively. A comparison of these figures
shows that there are significant differences in the two flow
fields. In the 2-D simulation, two pairs of large secondary
vortices can be observed, and the streamline pattern matches
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well with the one obtained by Tamura ef al.® at Re*=500
[shown in Fig, 10(c) of their paper]. Streamlines correspond-
ing to the mean flow for the 3-D simulation in Fig. 12(b)
only show one pair of smaller secondary vortices. Also no-
ticcable 1s the difference in the length of the recirculating
bubble for the two simulations, For the 2-D simulation, the

hyperbolic fixed point that denotes the downstream end of

the recirculation bubble lies at about x=2, whereas for the
3-D simulation it lies at x=2.65,

Phys. Fluids, Vol. 7, No. B, August 1895

3. Case Il

The geometric parameters for this case have been chosen
so that direct companison of the results with the previous
cases can shed some light on the effect of angle of attack and
thickness ratio on the lift and drag for two-dimensional and
three-dimensional flows.

Figures 13(a) and 13(b) show &, for the 2-D and 3-D
simulations, respectively, and it can be observed that there is
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little qualitative difference in the two vorticity fields. The
center of the vortices are at nearly the same distance from the
body for both flows, although the strength of the vortex is
slightly higher for the 2-D simulation. It is also found that
the pressure in the wake region is lower for the 2-D simula-
tion, and the Cj; distribution for both the 2-D and the 3-D
simulations shown in Fig. 14 suggests that the overall wake
structure is similar to what is observed for the previous case.
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All of the above differences in the vorticity and pressure
fields are not as substantial as what were observed in the case
with angle of attack or the circular cylinder, and the overall
differences in the surface pressure distribution shown in Fig.
11 are also small. This suggests that the effect of three-
dimensionality on the drag at a given Reynolds number de-
pends very much on the shape of the body. A bluffer body
has a wider and more energetic wake and the flow in the
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FIG. 11. Surface distnbution of mean pressure coefficient, Cp , for Cases 11
and III. Results of bath 2-D and 3-D simulations have been plotted for
comparison,

wake region has a much stronger influence on the surface
pressure distribution. The elliptic cylinder at zero angle of
attack is more streamlined compared to the cylinder at 45°
angle of attack and a circular cylinder, thereby leading us to
the conclusion that 2-D simulations of streamlined bodies,
like for instance airfoils at low angles of attack, would lead
to relatively accurate prediction of mean drag and lifi forces.

B. Effect of the mean flow and Reynolds stresses on
the mean drag and lift

As pointed out earlier, extrinsic three-dimensional ef-
fects are ruled out as a possible cause for the discrepancy
between drag and lift forces computed from 2-D and 3-D
simulations. Additional support for this conclusion can be
found by noting that the current 3-D simulation of flow over
a circular cylinder, which does not allow for any exirinsic
three-dimensional effects, predicts the mean drag and the
base suction pressure coefficient accurately. Thus, the dis-
crepancy in the aerodynamic forces computed from 2-D and
3-D simulations is solely due to intrinsic three-dimensional
effects. In this section we will explore the various intrinsic
three-dimensional mechanisms that are conjectured to be the
cause for the overprediction of drag in 2-D simulations, with
the objective of clearly showing as to which of these mecha-
nisms are mainly responsible for the overprediction.

The importance of time- and spanwise-averaged mean
flow field on the mean surface pressure distribution on a
circular cylinder has been addressed by Tamura ef al.® They
have argued that the differences in the mean flow obtained
from the 2-D and 3-D simulations are primarily responsible
for the differences in the base pressure distribution and in the
lift and drag forces. In particular, the strong secondary eddies
observed in the mean flow pattern of the 2-D simulations
have been conjectured to be the primary cause of increased
drag forces. In addition to this, rapid roll-up of the Karman
vortices close to the cylinder is also thought to be the cause
of a lower pressure in the wake for 2-D simulations.'

On the other hand, Sychev’ suggested that inside the
wake, pressure is roughly in equilibrium with the shear

Phys. Fluids, Val. 7, No. B, August 1895

stresses. On this basis, Roshko® has argued that for suffi-
ciently high Reynolds numbers, base suction pressure is de-
termined mainly by the velocity perturbations away from the
mean through the action of Reynolds stresses in the wake.
Furthermore, he has used this information in conjunction
with a simple control volume analysis of the mean wake and
obtained a relation between the base pressure, the mean shear
stress in the separated region, and the length and width of the
wake.

These viewpoints are not necessarily contradictory. From
an equation for the mean flow it can be clearly seen that
differences in the mean flow between the 2-D and 3-D simu-
lations are indeed the result of differences in their Reynolds
stresses. On the other hand, in Roshko's® analysis, the direct
influence of the mean flow enters through the length and
width of the wake. Therefore the Reynolds stresses affect the
mean pressure distribution both directly and also indirectly
through the mean flow. The present simulations provide us
with an opportunity to isolate the action of these two effects
on the mean pressure distribution and investigate the relevant
physical mechanisms in greater detail. The relative impor-
tance of mean flow andl Reynolds stresses in determining the
mean pressure distribiition is of interest since it is not clear
whether an accurate prediction of mean flow alone could
guarantee accurate prediction of the mean lift and drag
forces.

We begin by considering the pressure Poisson equation,
given by

Vip=—-V-(u-Vu), in Q, (3)

ivp=E. %vzu-{u-\?u)), on of}, (4)

where () refers to the computational volume, #) denotes the
boundary of the computational domain (which includes the
body surface as well as the outer boundary), and £ is the unit
vector normal to the boundary of the computational domain.
At Reynolds numbers considered in this study, the'effect of
the boundary condition on the pressure is small, and for the
most part, the pressure is determined by the source term of
the pressure Poisson equation,

The influence of the mean flow and the Reynolds
stresses on the mean pressure distribution can now be evalu-
ated by decomposing the source term into a contribution
from the mean flow and a contribution from the Reynolds
stresses. Correspondingly, the rﬁcan_prc.gsurc can be decom-
posed into two components, i.e., P=P,+ P, ., which are
given by

#P, &P, [&d " @i ﬁ+a’13*) i
ax* 3 ay* | ox? ax ay oyt )" O78%
(5)
which is solved with the following boundary condition:
i = ]
gvp,,,:g.(ﬁvzﬁ—:ﬁ.ﬁ)], on Q) (6)

and
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FIG. 12. (1) Mean streamline pattemn for the 2-D simulation of Case 11, which shows the presence of two secondary vortices (n addiuon to the primary voriex.
The secondary vortices has been labeled so that correlation can be made with the surface pressure distribution. (b) Mean streamline pattem for the 3-D
simulation of Case 11, which shows the presence of one secondiry vortex. in addition 1o the primary vortex. The location of this secondary voriex has also been

marked.
PP, f?zﬁ,, (z?zu'z au' v
—+ =~ +
Ax ay* ax* ax dy
a:uf: )
t T}'}“ ' n .n., (7)

for which the boundary condition is given by
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EVP,=—&(u-Vu'), on afd, (8)
In the above equations P,, is the contribution to mean pres-
sure from the mean flow and P,, is the direct contribution of
the Reynolds stresses (o the mean pressure. Here « and v are
the Cartesian velocity components along the x (streamwise)
and y (cross-flow) directions, respectively, where the stream-
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wise direction denotes the direction of the free-stream (see
Fig. 3). Note that each of the the above pressure Poisson
equations are formulated so as to individually satisfy the
compatibility condition, however, we find that since the outer
boundary is sufficiently far away from the body, the bound-
ary condition at the outer boundary has a negligible effect on
the above pressure computations.

It can be seen from the above equations that the span-
wise velocity perturbations and the associated Reynolds

Phys. Flulds, Vol. 7, No. 8, August 1985

stress components do not affect the mean pressure directly.
However, the importance of these stress components cannot
be understated, since it is these stress components that alter
the in-plane stress components, which, in turn, modify the
mean flow and the mean pressure distribution. It should be
noted that the above decomposition is analogous to the de-
composition of pressure into “fast” and “slow™ components
in a trbulent flow.

In what follows, we will present the contribution to the
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mean pressure from the mean flow and in-plane Reynolds
stresses for the three different cases considered in this study.
Figures 15(a) and 15(b) show contours of Reynolds shear
stress, u'v’, for the 2-D and 3-D simulations of Case I,
respectively. It is observed that the maximum magnitude of
the Reynolds shear stress in the 2-D simulation is about 0.23,
which is roughly twice the corresponding value in the 3-D
simulation. Thus, the Reynolds shear stress produced in the

1854 Phys. Fluids, Vol. 7, No. 8, August 1895

2-D simulation is significantly larger than that of the 3-D
simulation, This is in line with the observations of William-
son and Roshko,” who reports a reduction in the measured
Reynolds shear stress with increasing three-dimensionality in
the circular cylinder wake over a Reynolds number range of
260 1o 1500, In 2-D simulations, all the energy extracted
from the mean flow field is expended in sustaining the in-
plane velocity fluctuations., However, in 3-D simulations,
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part of the energy extracted from the mean flow is used up in
maintaining spanwise velocity fluctuations, thereby leading
to a reduction in the intensity of the in-plane velocity fluc-
tuations and consequently the in-plane Reynolds stress com-
ponents. It is also important to note that in addition to a
higher magnitude, the region of intense Reynolds shear stress
also lies closer to the cylinder in the 2-D simulations,

Phys. Fluids, Vol. 7, No. 8, August 1895

As evident from Eq. (7), in addition to the in-plane Rey-
nolds shear stress, the in-plane Reynolds normal stresses also
affect the mean pressure in the wake. Figures 16(a) and 16(b)
show the streamwise (') and cross-flow (v'?) Reynolds
normal stress distributions, respectively, which have been
obtained from the 3-D simulation. It can be seen that the
magnitudes of both these stresses are larger than the Rey-
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F1G. 16, (a) Contours of streamwise Reynolds normal stress, w'%, obtained from 3-D simulation of Case I, (b} Contours of cross-flow Reynolds normal stress,

¢ obtained from 3-D simulation of Case 1.

nolds shear stress, and thus the normal stresses also have a
significant effect on the pressure in the wake.

Figures 17(a) and [7(b) show the Reynolds shear stress
distribution for the circular cylinder (Case 1) obtained from
2-D and 3-D simulations, respectively. As in Case I, it is
found that the Reynolds shear stress in the 2-D simulation is
significantly higher than in the 3-D simulation. In both these
figures (and in subsequent figures as well) the separating
streamlines for the mean flow have been plotted so that the

1856 Phys. Fluids, Vol. 7, No. 8, August 1895

correspondence between the Reynolds stresses and the mean
flow can be clearly seen. Roshko® has proposed a wake
model for bluff bodies in the absence of vortex shedding,
such as those with a long splitter plate in the wake, which
assumes that the maximum Reynolds shear stress occurs in
the shear layers at the top and bottom boundaries of the mean
recirculating bubble. The model is successful in predicting
the base pressure in the absence of shedding with a simple
balance of shear stresses and pressure in the mean wake
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bubble. It has also been pointed out that this model is invalid
for wakes where shedding is present, since experimental
results’ show that the Reynolds shear stresses attain large
values not on the mean separating streamlines but inside the
separation bubble. From Fig. 17 we find that indeed the Rey-
nolds shear stress is not maximum on the separating stream-
line, in fact, the Reynolds shear stress is small everywhere on
the separating streamline, and the separating streamline
seems to coincides well with the zero Reynolds shear stress
contour (contour labeled “B") in Fig. 17(b).

Phys. Fluids, Vol. 7, No. 8, August 1895

The Reynolds normal stresses shown in Figs. 18(a) and
I8(b) for the 3-D simulation are also found to be signifi-
cantly higher in magnitude than the corresponding shear
stress. While both the normal stresses are symmetric about
7=0, the streamwise Reynolds normal stress, u_'f reach a
local minimum and the cross-flow Reynolds normal stress,
FE. reaches a local maximum along the line of symmetry. It
is also worth pointing out that the Reynolds shear and nor-

mal stress distributions agree qualitatively with the results
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of Henderson™ for a circular cylinder, although some differ-
ences in the location of the stress extremas can be observed.
The stress distribution obtained here is also in qualitative
agreement with the observations of Cantwell and Coles™ for
a# flow over a circular cylinder at a large Reynolds number of
140 000,

In Figs. 19(a) and 19(b), contouts of the pressure coef-
ficient corresponding to P, and P, for the 3-D simulation of
Case IT have been plotied along with the separating stream-
lines. For P, we observe that the lowest pressure is attained
on the top and bottom portions of the cylinder surface. How-

1858 Phys. Fluids, Vol 7, No. 8, August 1995

ever, P, exhibits a region of high suction in the wake re-
gion, which is located close to the hyperbolic fixed point that
defines the downstream end of the recirculating bubble. It
can be observed that the Reynolds stress contribution to pres-
sure increases 1o P, downstream of this region of high suc-
tion, On the eylinder surface, it takes small negative values
in the wake region, but is close to P, in the upstream section
of the cylinder. On the other hand, mean flow contribution to
the mean pressure shows strong variations in the vicinity of
the eylinder.

The surface variation of P,, and f’,, coefficients for this
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case of a circular cylinder is shown in Fig. 20(a), where the
results for the 2-D simulation have also been plotied. The
largest contribution to mean pressure is from the mean flow,
and differences between two-dimensional and three-dimen-
sional surface pressure distributions are limited to the wake
region. While the mean front stagnation pressure remains the
same for both the 2-D and 3-D simulations. P, for the 2-D
simulation reaches larger suction values near the top and
bottom separation points and recovers to a slightly lower
suction value in the base. The net difference in drag due to
P, between 2-D and 3-D simulations is only mild. On the
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other hand, the stronger Reynolds stresses being closer to the
cylinder in the 2-D simulation cause strong suction values of
P,,, resulting in increased drag. It should be pointed out that
it is actually the gradients of the Reynolds stresses that di-
rectly effect the pressure distribution [see Eq. (7)], however,
since the Reynolds stresses are constrained to be zero on the
cylinder surface, a higher level of Reynolds stresses in the
wake, in general, leads to higher gradients of the Reynolds
stresses. Thus, it is reasonable to associate higher suction
pressure directly with a higher level of Reynolds stresses in
the wake.
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FIG. 20. (a) Surface distribution of coefficients of P, and P,, for Case 11
obiained from 2-D and 3-D simulations. (b) Surface distribution of coeffi-
cients of P, and P,, for Case I obtained from 2-D and 3-D simulations. The
angular extent of the secondary vortices marked in Fig. 12 15 shown in the
ligure.

Table I lists the contribution of the two pressure com-
ponents {f-’m and P,,) to the pressure drag for all the three
cases considered in this study. A number of observations can
be made from this table.

(1) It has been noted before that the overprediction of the
total drag by 2-D simulations is larger for bluffer bodies. It is
interesting to note from the above table (and Table I) that the
pressure drag and skin-friction drag show the same trend. In
fact, we find that both the pressure drag and skin-friction
drag are overpredicted by about the same percentage as the

total drag (39%, 16%, and 1% for the three cases, respec-
tively).

(2) In 2-D simulations the contribution of the Reynolds
stress components to the mean pressure drag is relatively
small at about 35%, 31%, and 139%, respectively, for the
three cases, and furthermore, this contribution is even
smaller for the corresponding 3-D simulations (10%, 17%,
and 12%, respectively). In Fig. 20(a) the surface distributions
of P,, and P, coefficients for the circular cylinder are plot-
ted for both the 2-D and 3-D simulations together for com-
parison, and the corresponding plot for Case I is shown in
Fig. 20(b). From these figures it can be seen that, especially
for the 3-D simulations, the effect of the Reynolds stresses
on the surface pressure is confined to the wake region, and
even there, this effect is small compared to that of the mean
flow. This implies that the direct effect of the Reynolds
stresses on the mean pressure is small, and consequently, a
major portion of the pressure drag is determined by the mean
velocity field.

(3) Despite the significant differences in the surface dis-
tribution of P, obtained from 2-D and 3-D simulations (see
Fig. 20), it is noted from Table I1 that the drag due to this
component of pressure changes by only a small amount (less
than 3%), ingeing from a 2-D to a 3-D simulation for all the
cases studied here. As seen in Fig. 20, the differences in P,
obtained from 2-D and 3-D simulations are significant only
near the top and bottom separation points, however, the con-
tribution to drag from the surface pressure in these regions is
small due to the local orientation of the cylinder surface.
Thus, for the geometries considered in this study, the differ-
ences observed in the mean flow between the 2-D and 3-D
simulations have little impact on the overall drag coefficient.
On the other hand, for extremely bluff bodies, like, for in-
stance, a normal flat plate, the local orientation of the surface
is everywhere in the streamwise direction, and therefore we
expect that differences in P,, will make a more significant
contribution to the overall difference in the drag.

(4) The increased drag in 2-D simulations is primarily
due to the differences in the Reynolds stress portion of the
pressure drag (see Table 1I), It can be seen in Fig. 20 that
large Reynolds stresses in 2-D simulations lead to an in-
crease in the base suction pressure. It is interesting to note
that the local minimum in the surface pressure distribution
for the 2-D simulation of Case [ located at around »=0.25w
shown in Fig. 7, can be attributed directly to the minimum in
P,, at the same location [Fig. 20(b)]. No such minimum is
observed in the 3-D simulations, and thus this minimum can

TABLE Il. Various components of pressure drag for the three cases considered in this study,

2-D 3D
Case Pressure Mean How Re stress Pressure Mean flow Re stress
No. drag coefficient  contribution  contribution  drag coefficiemt  contribution  contribution
| 226 1.48 0.78 |.62 1.46 016
i 1.27 0.87 0.40 1.09 0,90 0.19
1 0.58 0.50 0.08 0.57 0.50 007
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be considered a spurious feature since it would not be ob-
served in a “real’ laboratory flow.

Since P,, is the pressure due to the mean flow field, any
effect of the secondary vortices observed in the case of the
circular cylinder should be apparent in the surface distribu-
tion of P,, shown in Fig. 20(a). The secondary vortices have
been labeled in Figs. 12(a) and 12(b), and the corresponding
location of these vortices are marked in Fig. 20(a). A closer
look at the distribution of P, in these regions reveals that the
presence of the secondary vortices does not have any notice-
able effect on the surface pressure distribution. Therefore, it
seems that the presence of the secondary vortices does not
have any direct bearing on the overprediction of drag in 2-D
simulations.

The roll-up of the vortices closer to the cylinder in 2-D
simulations results in the region of high Reynolds stresses
being closer to the cylinder. This enhances the effect of the
Reynolds stresses on the surface pressure, and leads 10 a
higher base suction pressure in 2-D simulations, Thus, the
effect of a smaller wake length in the 2-D simulations on the
surface pressure, and hence the drag, is felt primarily through
the Reynolds stresses, and only to a lesser extent through the
mean flow, However, as mentioned earlier, for a bluffer body
like a normal flat plate, the mean flow will play a more
significant role in the overprediction of drag and the effect of
a smaller wake length might be felt directly from the mean
flow field.

Thus, 2-D simulations have a tendency to overemphasize
the effect of in-plane Reynolds stresses on the surface pres-
sure distribution, and this seems (o be the main cause for
overprediction of drag in 2-D simulations for all the cases
studied here. It should be reiterated here that the differences
between the mean flow obtained from 2-D and 3-D simula-
tions are themselves due to the differences in the Reynolds
stresses, Therefore, the differences in P, between the two
simulations can be regarded as an indirect effect of the dif-
ferences in the Reynolds stresses. However, in simulations
where extrinsic three-dimensional effects (like end effects,
spanwise variation of inflow, spanwise varying shape of the
body, etc.) are present, differences between the mean flow
obtained from 2-D and 3-D simulations cannot be attributed
totally to the change in the Reynolds stresses, and this adds
an extra level of complexity to the analysis.

For a 3-D simulation of Case I, it is found that the co-
efficient of lift due to P, and P, are 0.84 and 0.04, respec-
tively. Thus, the mean pressure due to the Reynolds stresses
contributes only about 5% to the total lift for the 3-D simu-
lations, and this implies that the lift is determined for the
most part by the mean flow, and we believe that the relatively
small difference in lift between the 2-D and 3-D simulations
(L1% overprediction in lift as compared to 39% in drag) is
connected to the difference in the vorticity production in the
unseparated boundary layer region upstream of the wake
(Fig. 7).

C. Peak-to-valley amplitude of fluctuating lift and
drag

It is observed that there is gross overprediction of the
peak-to-valley amplitude levels of lift in 2-D simulations for
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all the three cases. This phenomenon has not received much
attention in previous studies, although a study of flow over
square cylinders by Sakamoto ef al.** did find that 2-D simu-
lations overpredict the frequency of the lift and drag fluctua-
tions. Correct prediction of the level of fluctuation of the
aerodynamic forces is important, since structures are usually
designed with the maximum load in mind, and thus one
needs to be able to predict the peak aerodynamic loads on the
structure. Furthermore, the amplitude of the aerodynamic
loads is important in the study of resonant fluid-structure
interaction.

To gain insight into this phenomena, we have resorted to
a triple decomposition of the flow variables.”* For a vari-
able f, the decomposition is given by

fEpz,0)=fE, )+ fPE, e ™ Dt cc.
+ (€ m.z0), (9)

where the mean, f, has been defined previously [see Egs. (1)
and (2)], and c.c. is the complex conjugate of the second
term on the right-hand side. The second and third terms on
the right-hand side of Eq. (9) make up the phase-averaged
part of the variable, and thus the total phase-averaged part of
the perturbation can be determined at any phase of the shed-
ding cycle by evaluating the sum of these two terms, Fur-
thermore, in the above decomposition, f” corresponds to the
fluctuation about the phase average. The mean- and the
phase-averaged quantities will be referred to as the coherent
portion of the variable, and the fluctuation f” will be referred
to as the incoherent portion of the variable. The amplitude of
the phase-averaged part 17, is, in general, complex and is
defined as follows:

11 L, [T
ﬂif-ﬂh;z‘ ju fuf{-f,n.z.l)e"fz"””dr dz. (10)
z

The above definition is for 3-D simulations and a corre-
sponding definition for 2-D simulations does not require an
average aleng the span. It should be pointed out that the last
three terms on the right-hand side of Eq. (9) are together
equal to the perturbation (f') away from the mean, Here the
phase average, [, is defined to correspond to & pure sinu-
soidal component without any higher harmonics, and thus
differs from the phase average defined by Cantwell and
Coles.”? At the moderate Reynolds number considered in this
study, most of the energy is in the fundamental mode and the
first harmonic, and only a small part of it is in the higher
harmonics.

From the above definition, the pressure field can be de-
composed into a mean pressure, P, phase-averaged pressure,
P¥, and an incoherent pressure fluctuation, P". A pressure
Poisson equation can be obtained for each of these compo-
nents. In particular, for the purpose of investigating the large-
scale fluctuation of lift on the cylinder, we seek a pressure
Poisson equation for the phase-averaged portion of pressure.
It is seen that PP receives contribution from both the coher-
ent and the incoherent components of the velocity field, and

R. Mittal and S. Balachandar 1861




L
=
»
-

L .
as= -

e

- W e e NE Y RO ODOMTMOAT X
o
-
o

(a) X

———

-1

-2

700
630
560
490
420

210

-210

-
LT

- M@ a0 NEe @ PO 00MNMPPIT T X
o

(b)
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thus the phase-averaged pressure amplitude can be further
decomposed into coherent and incoherent contributions as
PP = P? + P? , where these two components are given by

ap¥ + *p¥ (az[aufﬂ] PLiav®+ou®)
= +
axt o ay* ax* dx dy
r?z[ﬁv‘”]
+ Tvi—') . “ I.'l
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JEP? &EP? P{u}? u'v'}¥
. gt e =
ax ay dx dx dy
az{urz}qz
+ T 2 (12)

where the above equations are solved with compatible
boundary conditions. Note that the phase-averaged portions
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FIG. 22. Surface distribution of the coefficients of the coherent and inco-
herent components of the phase-averaged pressure obtained for Case Il at 4
phase corresponding 1o the maximum lift. Results of both 2-D and 3-D
simulations have been plotted for comparison.

of the Reynolds normal and shear stresses, {u'}”, {u'v'}¥,
and {v'*}¥. are, in general, nonzero due to their nonlinear
nature. We present results for Case II in the subsequent dis-
cussion and it is found that the other cases exhibit similar
overall behavior.

In Figs. 21(a) and 21(b) we have plotted contours of the
coefficient of the phase-averaged part of pressure at the
phase corresponding to maximum lift for the 2-D and 3-D
simulations, respectively. In both these figures, it can be seen
that the distributions are almost exactly antisymmetric, with
a low-pressure region in the top half of the wake and a simi-
lar high-pressure region in the bottom half of the wake. This
induces a low pressure on the top surface and a high pressure
on the bottom surface of the cylinder, thereby producing a
net positive lift. It should be noted that the above phase-
averaged pressure field will produce very little net drag, due
to the fact that the pressure field is almost antisymmetric
about the n=0 symmetry line. Corresponding plots at the
point of minimum lift are mirror images of Figs. 21(a) and
21(b) about the symmetry line.

In Fig. 22 the surface variation of the coherent and in-
coherent contributions of the phase-averaged pressure coef-
ficient have been plotted for the 2-D and 3-D simulations at
a phase corresponding to maximum lift. First, we observe
that the contribution of the incoherent component is small
and the phase-averaged pressure is determined mainly by the
coherent component. As noted earlier, this is to be expected
al the moderate Reynolds number considered in the present
study. At higher Reynolds numbers, higher harmonics will be
energized and will make a more significant contribution. In
fact, the experiments of Cantwell and Coles™ at a much
higher Reynolds number of 140 000 show that the incoherent
contributions to Reynolds stresses is higher than the contri-
bution from the coherent phase-averaged motion, and there-
fore their effect on surface pressure variation may not be
negligible at higher Reynolds numbers. Figure 22 also shows
that the phase-averaged surface pressure is significantly
higher in magnitude in the 2-D simulation, thus leading to a
larger peak-to-valley lift fluctuation in the 2-D simulation.

The higher magnitude of phase-averaged surface pres-
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sure for the 2-D simulation shown in Fig. 22 can be traced
back to the phase-averaged pressure distribution shown in
Fig. 21. A comparison of the pressure coefficient distribution
in Figs. 21(a) and 21(b) shows that even though the magni-
tude at the center of the intense phase-averaged pressure in
the near wake is roughly the same for the two simulations,
the center is itself located closer to the cylinder for the 2-D
simulation. Physically, this implies that during the shedding
cycle, the vortices approach closer to the base of the cylinder
in the 2-D simulations and thereby lead to a larger amplitude
of fluctuations in the lift force.

The antisymmetric nature of the phase-averaged pressure
and its strong effect on lift, but not on drag, is in stark con-
trast to the distribution of mean pressure [Figs. 10(a) and
10(b)], which is symmetric about the »=0 and contributes
mainly to the drag and nothing to the lift force. It is noted
that the lift fluctuates at the fundamental shedding frequency,
whereas the drag oscillates primarily at the first harmonic.
This explains the observation that the phase-averaged pres-
sure (which only contains the contribution from the funda-
mental frequency) is antisymmetric and does not make any
contribution to the drag fluctuation. To study the fluctuations
in drag, one needs to consider the pressure component that is
phase averaged with respect to the first harmonic, which is
computed as follows:

11 L [T
PiE =7 j JP \mzne 4T dy de,
il n) 7L Jo Jo (&,mz.t)e tdz
(13)

Figure 23(a) shows this pressure coefficient for the 3-D
simulation of the circular cylinder at a phase corresponding
to the maximum drag. It can be readily observed that the
pressure distribution is symmetric about the =0 symmetry
line, and thus this component will mainly affect the fluctua-
tion in drag and will have very little effect on the fluctuation
of lift, Furthermore, it is also observed that at this phase, a
low-pressure region is situated at the base. The surface dis-
tribution of this pressure component at the phase correspond-
ing to maximum drag is shown in Fig. 23(b), and it is ob-
served that there is a narrow region of low pressure located
in the base, whereas the rest of the cylinder experiences a
slight high pressure. The peak in the drag is found to be
mainly due to the low-pressure region at the base. The situ-
ation is reversed at the phase corresponding to the minimum
drag, and the surface pressure distribution at this phase
shown in Fig. 23(b) reveals a high-pressure region in the
base of the cylinder.

IV. CONCLUSIONS

It is found that even in the absence of extrinsic three-
dimensional effects, the lift and drag forces on elliptic and
circular cylinders computed from 2-D simulations differ
from those computed from 3-D simulations. Furthermore, the
drag and base pressure coefficients computed from the cur-
rent 3-D simulations matches well with experimental results,
indicating that it is primarily intrinsic three-dimensional ef-
fects that lead to the discrepancy between experimentally
measured lift and drag forces and those computed from 2-D
simulations. An important finding of the present study is that
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the difference between the drag computed from 2-D and 3-D
simulations is very much dependent on the cylinder geom-
etry, and is found to be more significant for bluffer bodies.
The direct effect of the mean flow field on the mean
pressure is separated from that of the Reynolds stresses, and
it is found that higher in-plane Reynolds stresses are the
main cause for the overprediction of drag in 2-D simulations,
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Comparison of mean flow fields obtained from 2-D and 3-D
simulations reveals that on average, the Karman vortices roll
up closer to the cylinder for 2-D simulations. However, this
does not have any significant effect on the mean drag. The
length of the wake does, however, have an indirect bearing
on the surface pressure in that for the 2-D simulations, which
exhibit a shorter wake. the region of intense Reynolds
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stresses in the wake lies closer to the cylinder, thereby in-
creasing the effect of the Reynolds stresses on the surface
pressure,

Large secondary vortices are observed in the mean flow
pattern obtained from the 2-D simulation of flow past the
circular cylinder. In contrast, the secondary vortices formed
in 3-D simulations are smaller and fewer in number, How-
ever, the presence of these vortices does not have any notice-
able effect on the surface pressure distribution for either 2-D
or 3-D simulations, and thus, in contrast to Tamura er al..®
we conclude that these vortices are not the cause for the
discrepancy between the drag computed from 2-D and 3-D
simulations.

The shedding is found 1o be well correlated across the
span, and thus the drop in the peak-to-valley level of lift
cannot be attributed to the loss of spanwise correlation. The
drop in the peak-to-valley level of lift is found to be prima-
rily due to the excursion of the Karman vortices about their
mean position in the wake. It is found that these vortices
approach closer to the cylinder surface during the shedding
cycle in 2-D simulations, thereby inducing a larger-pressure
fluctuation on the surface, which results in a larger amplitude
of lift fluctuation.

Finally, the detailed comparison of 2-D and 3-D simula-
tions presented in this study not only illustrates the limita-
tions of two-dimensional approximations in predicting lift
and drag forces over nominally two-dimensional bodies, but
goes beyond that by providing a detailed view of the effect
of unsteadiness and three-dimensionality on the surface pres-
sure distribution and the aerodynamic forces for bluff body
wake Mows, The flow fields obtained in the present 2-D
simulations can be considered as true representatives of natu-
ral two-dimensional flows occurring at lower Reynolds num-
bers (for example, at 49<<Re<180 in the case of a circular
cylinder). Support for this assertion comes from the fact that
the base suction pressure and drag obtained from the 2-D
simulation of the circular cylinder at Re*=525 falls close to
the extrapolation of the experimental results obtained in the
two-dimensional range of 49<Re</180. Thus, a comparison
of results obtained from 2-D and 3-D simulations performed
at identical Reynolds number eliminates the complicating
Reynolds number effect, and highlights only the differences
arising from three-dimensionality.
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