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We present and validate a numerical technique for computing dendritic growth of crystals
Jfrom pure melts. The solidification process is computed in the diffusion-driven limit.
The governing equations are solved on a fixed Cartesian mesh and a mixed Eulerian-
Lagrangian framework is used to treat the immersed phase boundary as a sharp solid—fluid
interface. A conservative finite-volume discretization is employed which allows the boundary
conditions to be applied exactly at the moving surface. The results from our calculations are
compared with two-dimensional microscopic solvability theory. It is shown that the method
predicts dendrite tip characteristics in good agreement with the theory. The sharp interface
treatment allows discontinuous material property variation at the solid-liquid interface.
Calculations with such discontinuities are also shown to produce results in agreement with
solvability and with other sharp interface simulations.

1. INTRODUCTION

In this article, a method for computing the evolution of dendritic phase
boundaries on fixed Cartesian grids is presented and validated. The phase front is
treated as a sharp boundary that runs through the mesh, and a conservative finite-
volume method is applied for solution of the field equations. The numerical solutions
are validated against the widely accepted microscopic solvability theory [1, 2].

In previous work [3] we described a finite-difference technique for simulation of
diffusion-controlled growth of unstable phase boundaries. For the case of dendritic
solidification of pure materials from the melt, we demonstrated that a sharp interface
approach can be developed that yields globally second-order accurate solutions to
the field equations. The interface position was computed with first-order accuracy.
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In subsequent work [4, 5], we devised a finite-volume approach for solving the
incompressible Navier-Stokes equations to compute incompressible flows around
fixed and moving immersed solid bodies. The switch from finite-difference to finite-
volume method was prompted by the fact that the former failed to produce adequate
satisfaction of the zero-divergence constraint on the velocity field at points adjoining
the immersed boundaries. This was because of the lack of explicit flux conservation
in the finite-difference method at the irregular stencils that arise when a solid
boundary cuts through the Cartesian mesh. In contrast, the finite-volume technique
enforced explicit flux conservation across the common faces of the control volumes,
as described later in this article. Thus, stable divergence-free velocity calculations
were facilitated.

This article advances the work presented by Udaykumar et al. [3] in several
aspects. As in the case of the Navier-Stokes solutions presented by Udaykumar et al.
[5], fluxes (of heat in the present case) are explicitly conserved across the control-
volume faces. Using a compact linear-quadratic interpolant [4] to evaluate the fluxes
at the control-volume faces that are cut by the immersed interface, a second-order-
accurate flux evaluation procedure is devised. The technique is applied to study
dendritic growth in undercooled melts. The present work places the finite-volume
scheme on sound footing by directly comparing the results of the computations with
two-dimensional microscopic solvability theory. The method is shown to predict the
correct physical behavior in the dendritic growth of pure materials. This validation
effort augments the demonstration of grid size and orientation independence and
convergence studies for the sharp interface method, presented by Udaykumar et al. [3].

2. SHARP VERSUS DIFFUSE INTERFACE METHODS

In recent years there has been increased activity in the area of simulation of
solidification microstructures, particularly dendritic growth. Various techniques,
including phase fields [6-8], level sets [9, 10], finite elements [11, 12], and finite dif-
ference front tracking [3, 13], have been employed to simulate this pattern-forming
phenomenon. The phase-field method is currently the most popular approach and
was the first approach used [14, 15] to determine whether the quantitative measures,
such as tip radius, velocity, and the selection parameter of the numerically grown
dendrites, could be validated against microscopic solvability theory, which is gen-
erally accepted as describing the physics of dendritic crystal growth. The phase-field
method falls under the class of Eulerian (i.c., fixed-grid) methods called “‘diffuse
interface’” methods [16]. In such methods, as shown in Figure la, the interface is not
a sharp phase boundary but is given a certain thickness or spread on the compu-
tational mesh. Typically, the interface thickness occupies a few mesh cells. Thus,
both delta (singular sources residing on the interfaces, such as latent heat and
capillarity) and Heaviside (such as jump discontinuities in material properties)
functions are replaced by smoothed numerical approximations (Figure 15) in diffuse
interface methods. This is in contrast to the class of “‘sharp interface” methods [3, 9,
17], where these functions are retained as discontinuities (Figure 1¢). Comparison of
a sharp interface method with solvability in two dimensions was performed by
Dantzig and co-workers [10, 18, 19]. They used a level-set technique for tracking the
front and a finite-element scheme for solution of the diffusion equation. Here we use
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Figure 1. (@) Illustration of the difference between sharp and diffuse interface representation on a fixed
mesh. (b) Smoothed forms of delta and Heaviside forms seen by diffuse interface methods. (¢) Delta and
Heaviside functions are maintained as discontinuities in sharp interface methods.

a finite-volume method and explicit front tracking to compute the evolution of sharp
dendritic fronts. In combination with the Navier-Stokes solver for moving bound-
aries, developed by Udaykumar et al. [5], the present method will enable computa-
tion of fluid flow effects on dendrites as demonstrated in preliminary investigations
by Udaykumar et al. [20].

3. SOLVABILITY THEORY

Microscopic solvability is the currently accepted theory for the growth of
dendritic structures in solidification from the melt. Extensive reviews on the subject
are available (e.g., Kessler et al. [2]). For solidification from pure melts, the basic
features of the theory are as follows.

The Mullins-Sekerka instability [1] of a planar solidification front occurs in the
case when the melt is undercooled, i.e., the temperature of the melt T, is depressed
below the melting temperature of the planar front T,,. Linear stability analysis of
phase fronts under such conditions predicts a continuum of solutions in the form of
paraboloidal needle crystals, which were obtained by Ivantsov [21] as

A = V1 Pe exp(Pe) erfc(v/Pe) (1)

where A is the dimensionless undercooling [A = (T, — T)/(L/C,), L is the latent
heat and C, is the specific heat at constant pressure], Pe is the tip Peclet number
given by

_h
Pe = e (2)

where p is the radius of the paraboloidal dendrite tip, V; is the steady-state tip
velocity, and « is the thermal diffusivity as shown in Figure 2. However, in nature,
one observes unique crystal patterns that are selected by the growth conditions and
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Figure 2. Illustration of important tip characteristics for a dendritic crystal. The tip is a paraboloid of
revolution and propagates at a selected steady velocity and constant tip radius.

material properties. The selection of a pattern from the continuum of unstable
wavelengths becomes possible by introduction of surface tension, which provides a
smoothing or restabilization mechanism and picks out a spectrum of solutions.
The influence of the surface tension appears through the modulation of the
interfacial temperature for solidification fronts with curvature by means of the
Gibbs-Thomson condition (without including interfacial kinetics effects):

Y(0) T ”

T =Ty~
L

(3)
In the above, «x is the interfacial curvature and the surface tension y(8) is a function
of the crystalline anisotropy (8 being the angle made by the normal to the interface
with the x axis). The strength and directional dependency of the surface tension are
determined by the structure of the solid formed. For a typical fourfold symmetric
crystal (such as the popular transparent organic model material succinonitrile [22]),
this function could assume the form [18]

v(0) = v4(1 — 15e cos 40) 4)

A unique operating point of the dendritic tip is then selected from the set of
allowed solutions by crystalline anisotropy through the solvability mechanism [2] by
stipulating that a material-dependent selection parameter ¢* be related to the tip
radius and velocity as follows:

_ 2od,
B P2V

*

(5)
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where d(, is a Capillary length defined as
A YO 1 ,721Cp ( )

The selection parameter o* is a function of the crystalline anisotropy & and is
typically of the form

of = 0087/4 (7)

The unique geometric features that are displayed by growing dendrites when a
steady tip propagation state has been reached are the tip radius (p) and velocity
(V), as shown in Figure 2. Egs. (1), (2), and (5) above provide the necessary rela-
tions for obtaining these two unknown selected parameters in terms of the control
parameters, namely, the undercooling A, capillarity parameter y,, and anisotropy
strength «.

4. GOVERNING EQUATIONS

To test the numerics, we grow a dendritic front for specified control para-
meters, namely, the undercooling (A), capillary length (d,), and anisotropy strength
(e). The predicted selection parameter (¢*) and selected tip radius (p) and velocity
(V) are then compared with the results of solvability theory.

The following nondimensionalization is adopted: length X = x/dj, time
© = toy/d3, velocity V* = Vdy/oy, and temperature T* = (T — T,,)/L/C,. The heat
conduction equation is solved in the solid and liquid phases separately, in non-
dimensional form:

or*
ot
where o, is the thermal diffusivity in the ith phase, where i = 1 in the solid phase and

i =2 in the liquid phase. The interface temperature equation, Eq. (3), reads in
nondimensional form:

= o, V2T* (8)

T: = —d(0)x* 9)

1
where

d(0) = dy(1 — 15ecos40) (10)

For phase change of pure materials the normal velocity at a point on the front
is provided by the rate of transport of latent heat away from the solid-liquid
interface (Stefan condition). In nondimensional form, this equation is

- () )]

where subscripts 1 and 2 apply to solid and liquid, respectively. Note that the
temperature boundary condition at the far field for a crystal growing in the under-
cooled melt then becomes, in nondimensional form,

T*(r — 00,1) = A (12)




6 H. S. UDAYKUMAR ET AL.

5. THE NUMERICAL METHOD
5.1. Discrete Form of the Governing Equations

The present method performs temperature field computations on a fixed
Cartesian mesh, while the solid-liquid front evolves through the mesh. The interface
is tracked using markers connected by piecewise quadratic curves parametrized by
the arclength [3]. In Ye et al. [4] we provided details regarding the interaction of the
interfaces with the underlying fixed Cartesian mesh. These include obtaining loca-
tions where the interface cuts the mesh, identifying phases in which the cell centers
lie, and procedures for obtaining a consistent mosaic of control volumes in the
cells crossed by the immersed interface. This results in the formation of control
volumes near the interface that are, in general, trapezoidal in shape (see Figure 3).
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Figure 3. Illustration of stencils for evaluation of cell face fluxes. (a) Interfacial cell nomenclature
showing for numbering the faces of the (possibly) five-sided control volume. (b) Stencil points for linear-
quadratic interpolation to obtain the flux Fi_; ;. (¢) Stencil points to calculate flux Fi., ;. (d) Stencil
points to calculate flux Fiy.
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The finite-volume discretization is then performed over the regular Cartesian grid
cells in the bulk of the computational domain and a lower-dimensional set of irre-
gularly shaped cells that adjoin the interface.

The energy equation, Eq. (8), is written in semidiscrete form as (after dropping
the asterisk on the nondimensional quantities)

n+1 n X
/udvzﬁf(vr’“ VT AdS (13)
v ot 2
The above Crank-Nicolson scheme provides nominal second-order temporal
accuracy.
In discrete form Eq. (13) is written, for a control volume in the Cartesian mesh
indexed (i, j), as

AV
ot

(Tir]_z+l — T =

)% : <6T”“ a7
T2

V+W)f“f (14

In the above, the subscript f for the summation runs over the faces of the control
volume (see Figure 3a).

In Eq. (14), the summation runs over the sides of the irregularly shaped (four-
or five-sided) control volumes. The finite-volume discretization requires evaluation
of the diffusive fluxes at the faces of each control volume, viz.,

Fy=VT-n (15)

For a uniform Cartesian mesh, the fluxes on the face centers can be computed to
second-order accuracy with a linear profile for the temperature field between neigh-
boring cell centers. This is not the case for a trapezoidal boundary cell, since the
centers of some of the faces of such a cell may not lie halfway between neighboring cell
centers. This is seen from Figures 35 and 3¢, where the points at which fluxes are eval-
uated are indicated by the filled arrows. A linear approximation would not provide
a second-order-accurate estimate of the gradients. Furthermore, some of the neigh-
boring cell centers do not even lie on the same side (i.e., phase/material) of the
immersed boundary and therefore cannot be used in the differencing procedure. Thus,
not only do we need an accurate procedure for computing these face-center quantities,
we also require that the procedure be capable of systematically handling reshaped
boundary cells with a wide range of shapes. This is done using a compact two-
dimensional polynomial interpolating function, described in [4], which allows us to
obtain a second-order-accurate approximation of the fluxes and gradients on the faces
of the trapezoidal boundary cells from available neighboring cell-center values. The
current interpolation scheme coupled with the finite-volume formulation guarantees
that the accuracy and conservation property of the underlying algorithm is retained
even in the presence of arbitrary-shaped immersed boundaries. This has been
demonstrated in [4] for stationary immersed boundaries and in [5, 20] for moving solid
boundaries embedded in flows. We now employ the method described in [4] to obtain
the discretization of Eq. (13) in control volumes that lie adjacent to the moving
boundary.

First, consider the fluxes at the face (i —1/2, ) of the cell (i, j) shown in Figure 3a.
To conserve heat fluxes between adjoining cells, we split the flux at this face into two
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parts as shown in the figure. Thus, Fi_;) ; = F?_1/2,_/ + F?—I/Zﬁj' Approximation of
Ff ,,to second-order accuracy is quite straightforward and is done in the same way
as for the face of a nonboundary cell. For instance, if F{ 2 corresponds to a diffu-
sive flux at the cell face (i —1/2, ), one obtains the gradients for the diffusive flux from

a
(a_T) _ Tl Tzfl (16)
Ox i1, Xi— Xie

For a uniform mesh, this yields second-order-accurate evaluation for the flux at that
cell face. For cell (i,j) in Figure 3, evaluation of F "1, OF Fiip j to second-order
accuracy is somewhat more complicated. Expressmns hke Eq. (15) cannot be used,

since in many instances some of the neighboring nodes lie in the opposite phase at the
immersed boundary. For instance, for the situation shown in Figure 2a, the node
(i,j — 1) is inside the immersed boundary and cannot be used in the evaluation of
Fi’i 12 Even if neighboring nodes are available, as they are for the east face, F ) ;is
to be evaluated not on the line joining the neighboring cell centers (i,/) and (i + 1,/),
but at the center of that face as shown in Figure 3¢. A linear-quadratic interpolant is
used to evaluate this flux as detailed in [4]. For instance, in order to approximate
Fb J2,;» We approximate the temperature field 71 (x,y) in the shaded trapezoidal
region shown in Figure 2b in terms of a function that is linear in x and quadratic in y:

T(x,y) = Xy’ + 23" + c3xy + cay + sx + ¢ (17)

where c¢;—c¢ are six unknown coefficients. Once the interpolating function is
obtained, the desired gradient of 7 at the cell face can be calculated from

%=61y2+03y+05 (18)

In Ye et al. (1999), we demonstrated numerically that the linear-quadratic
interpolating function in Eq. (17) does indeed result in second-order-accurate eva-
luation of values and derivatives for fluxes such as F b "1 . It can be seen in Figure 35
that the points from which the values are drawn to evaluate the coefficients ¢1—cg in
Eq. (17) correspond to four nodal points (1-4) and two boundary points (5 and 6).
These two boundary points are where the interfacial conditions are supplied in the
discretization of the governing equations. The effect of the moving phase boundary is
felt, in part, through the values imposed at these boundary points. Thus, the six
unknown coefficients in Eq. (17) can be expressed in terms of the values of T at these
six points in the form

6
= buT, k=1...,6 (19)

where by are the elements of the inverse of the Vandermonde matrix [4]:

b oy oxon o x|

XeVe Vi XeYo Ve Xg |
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To evaluate T - and its derivative at the required point (x,,y,) on the face
(i—1/2,)) of the control volume, one uses Eqs. (17) and (18) to write

Uayy Z T (20)
where
oy = buxoyy + by + byxoyo + bayo + bsixo + be (21)
Also,
5 T> b 6
(22)
(ax i—1/2,j /z::
where

B, = buyi + byyo + bayo + bs (23)

Note that o and B are purely geometry-dependent interpolation coefficients that
depend on the mesh, and the location and orientation of the immersed boundary.
Once the coordinates of the six points in Figure 36 are identified, the coefficients ay
and f3; are obtained directly from Eqgs. (21) and (22), respectively. As such, o; and f;
are nothing but the weight coefficients applying to the nodal values in the discrete
form of the governing equation. A similar interpolation procedure is also used
for approximating Fi, ;. In general, there are also boundary cells that have their
north or south faces cut by the immersed boundary. The approach described above
applies to the evaluation of the fluxes on such faces, the only difference being that the
interpolating function is then linear in y and quadratic in x. Using this procedure, the
discrete form with strict flux conservation and second-order-accurate flux evaluations
can be obtained for transport equations involving both advection and diffusion[4].
Now we turn to the calculation of the flux on the cell face 5 which lies on the
immersed boundary as shown in Figure 3a. The value of the transported quantity at
the interface, Tj,, is usually available from a specified boundary condition at the
interface and hence no interpolation is required for the value of the variable itself.
Here we describe the approximation procedure for the normal derivative, given on

the interface segment by
oT oT oT
— | == N — , 24
<6n )int <ax)intn " (ay )intn} ( )

where n, and n, are the components of the unit vector normal to face 5. Therefore
computation of the normal flux requires estimation of 07/0x and 07'/0y at the center
of that face. For the cell (i,j) in Figure 3, 07/0y is computed to second-order
accuracy by expressing the variation along the vertical line in terms of a quadratic
in y as follows:

T=a)’+ay+a (25)

As in Eq. (21), the coefficients in the quadratic can be expressed in terms of the
values of ¢ at the three points indicated in Figure 3d. Note that the boundary point
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incorporates the appropriate interfacial condition expressing the effect of the moving
boundary. Then the y derivative at the center of face 5 is evaluated as

oT 3
5 ) =2avmta=) BT (26)
YV / int =1

where again the B; are interpolation coefficients which depend solely on the geometry
of the boundary cell.

To obtain (07/0x);,, an approach consistent with the computation of the
fluxes at the faces of the control volume is devised to estimate the value of this
derivative to desired accuracy. Consider the trapezoid shown in Figure 3d. Expres-
sing the variable in this trapezoidal cell in terms of an interpolating function which is
linear in x and quadratic in y allows us to obtain a second-order-accurate approx-
imation to (07/0x);,, at the center of the cell face 5. The procedure for this follows
along lines similar to that shown for (37/0x)" | /2, and we get the following form for
the x derivative on the interface:

d 9
(&) =>bm 7)
- int =4

The index j in the summation runs over the points 4-9 in Figure 2d. Finally,
using Egs. (26) and (27) in Eq. (24), we write

a 9
(a—z> = Z B/ T; (28)
nt =1

for the normal gradient, where B, is again geometry dependent. Thus we obtain a
nine-point stencil for the gradient at the interface and the points in this stencil are
shown in Figure 3d. As can be seen from Figure 3d, of these nine points, three points
lie on the immersed boundary. The values of the temperature at such points are
available from the prescribed boundary condition at the moving boundary, Eq. (9).

Note that the procedure for discretization above enables the formulation of
fluxes using the general forms:

Gradients (for diffusive fluxes) at the noninterfacial sides of the control volume
6
Fr= (2 BT,

Gradients (for diffusive fluxes) at the interfacial sides of the control volume
9
Fine = (Ej:l BjTj)int

In the above, subscript f stands for the face of the control volume (faces 1-4, Figure
3a), and subscript “int” for the interfacial side (side 5, Figure 3a). Substitution of
these expressions in the Eq. (14) results in a general discrete form:

T'.’.+1 _Tn 4 1 6 6
(T)SVU' = Oftz 5 (Z B/T;Hl) + (Z B/T/n> dsy
=1 s \=

I=1 S

nt

9
+ o (Z B1T1> dSint (29)
=1



FINITE-VOLUME SCHEME FOR DENDRITIC GROWTH SIMULATIONS 11

which can be written as

Imax

> a1t = ST, T (30)

int
=1

where the explicit terms, boundary and interface contributions, and the accom-
panying interpolation coefficients are absorbed in the source term S(.). The sum-
mation runs over all the /,,x computational points that are included in the stencils
for the cell-face flux evaluations. The current computational point ij is of course also
included in the /.4 stencil points. In cells away from the interface, as usual, /. = 5,
while for the interfacial cells, 5 < [.x < 9, and depends on the interface orientation
and shape of the irregular cell. Equation (30) is solved using the standard line-SOR
procedure, with alternate sweeps in the i and j directions and a standard Thomas
algorithm for the solution of the resulting tridiagonal matrix. The use of a Cartesian
grid allows for the use of these fast solution procedures.

From the above discussion of the discretization strategy for interfacial cells, it
is clear that the discretization can be constructed based on the geometry of each
cell and depends on the (x, y) locations of the stencil-points chosen to represent the
local linear-quadratic interpolant in the interfacial cells. In terms of implementa-
tion of the stencil-point choice and calculation of the weights o, B, a systematic
procedure can be developed in a fairly straightforward way once the geometry of
the cell is known. These procedures can also be extended to three dimensions.
With all of these features, the current solver can, in principle, handle arbitrarily
complex moving geometries. Furthermore, as demonstrated in [4], multiple
immersed boundaries can be handled just as easily as a single boundary, because
the control-volume reconfiguration is performed locally in the interfacial cells and
does not affect the rest of the domain. Finally, since the inside of the immersed
boundary is treated in the same manner as the outside, it is a straightforward
matter to entertain arbitrarily large jumps in transport properties (without
smoothing them) across the phase boundary or even to solve a different set of
equations inside the immersed boundary. In this article we will use this feature to
compute the diffusion of heat with discontinuities in transport coefficients across
the solid-liquid interface.

5.2. Computing the Interface Velocity

The interface velocity is obtained as described in [3]. The procedure can be
summarized with the aid of Figure 3d. The temperature gradient in each phase is
obtained by the normal probe technique, where a normal from the interface marker
is extended into each phase. The temperature values at two nodes on the normal,
placed at distances equal to the local mesh spacing dx, are interpolated from the
background mesh. The gradient is then obtained as

aT_ 4Tnl - TnZ - 3Tint
on 20x

(31)

where subscripts nl and n2 imply evaluations of temperature at the two nodes on
the normal probe and subscript “int” implies the value on the interface. Having
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calculated the temperature gradients in each phase using Eq. (31), the interface
velocities are computed at the markers using Eq. (11). These are then advected to
new positions in order to evolve the interface in time.

Once the interface has moved to its new position, the interface markers are
redistributed at uniform arclength spacing along the interface, maintaining a spacing
ds = O(dx), the local grid spacing. Points are added or deleted on the interface as
necessary to maintain adequate interface resolution. The normal and curvature at
the interfacial markers are computed as described in [3]. The curvature k and
orientation 0 [= tan~!(ny/nx)] are then used in applying the boundary condition, via
Eq. (9), in solving the governing equations.

5.3. Overall Solution Procedure

For curvature-driven growth problems, stability of the interface update
requires an implicit coupled procedure for obtaining the field solution [23, 24] and
the interface position simultaneously at time level 7/+!. In the absence of an implicit,
coupled treatment of the field solution and interface evolution, the calculations can
become very stiff. The stability restriction on an explicit scheme can be very severe
[6t = O(dx?)], as demonstrated by Hou et al. [23].

An implicit procedure similar to that employed in [3] is used in the present
work. The overall solution procedure with boundary motion is as follows:

0. Advance to next time step ¢ = ¢ + 6¢. Iteration counter k = 0.

Augment iteration counter. k = k + 1.

. Determine the intersection of the immersed boundary with the Cartesian

mesh.

Using this information, reshape the boundary cells.

4. For each reshaped boundary cell, compute and store the coefficients
appearing in discrete form, Eq. (29).

5. Advance the discretized equations in time.

Advance the interface position in time.

7. Check whether the temperature field and interface have converged. Con-
vergence is declared if max [Ty — T ~"|(er and max | X} — X} ~"[(e/, where k
is the iteration number and ¢ is a convergence tolerance set to 107> in the
calculations so that the solution obtained is independent of the convergence
criterion.

8. If not converged, go to 1 for next iteration. If converged, go to step 0 for
next time step.

N —

[98)

o

Typically, less that five iterations are required for convergence, since the previous
time step solution provides an excellent guess to the solution at the current step. Note
that with this implicit iterative approach stable computations of interface evolution
can be performed with time step sizes that are controlled by a CFL-type criterion of
the form &7 = A8x/max(Vinterface ), Where A is set to 0.1 in the calculations performed.

5.4. Computational Setup

The numerical method described above is now used in computations of den-
dritic growth and is shown to provide physically correct solutions for dendritic
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growth of crystals. It will be shown that the effects of all the control parameters,
namely undercooling (A), anisotropy (g), and property jumps (o,/oy) across the
solid-liquid front are correctly captured by the algorithm. The results are compared
quantitatively with solvability theory as well as with other sharp interface compu-
tations.

To start the computations, a circular seed crystal is placed at the origin of the
computational domain of dimension H x H. In calculations below, we adopt
H = 800. The radius of the seed is 15. These dimensions are taken in order to
compare with the results of Dantzig and co workers [10, 18, 19]. Due to the sym-
metry of the problem, computations are performed in the first quadrant only. Thus,
the x and y axes are symmetry axes. A fine mesh is placed in an inner region, as
shown in Figure 4, while the mesh is coarsened linearly from the edge of the fine-
mesh region to the end of the domain. The appropriate fine-mesh spacing for each
case was determined from grid-refinement studies to establish that the solutions are
grid independent for the chosen mesh size. We have shown in earlier work [3] that
the sharp interface approach gives solutions for dendritic growth that are indepen-
dent of the mesh spacing and mesh orientation. In the following we compare the
results of solutions that were deemed grid independent by performing a series of
calculations on progressively refined grids until the steady-state results on two
successive grid sizes were found to agree adequately with each other and with the
solvability results.

The computations are performed starting from an initial condition supplied to
be T=0 in the solid seed and T = A, the nondimensional undercooling value,
elsewhere in the domain. Since this initial temperature field is discontinuous at the
interface, the interface velocity in the initial stage of the calculations will be very

~A
A specified
SN yed
symmetry A specified
Fine Mesh
Coarse Mesh
seed
y

X A

symmetry

Figure 4. Schematic of the computational setup employed for the dendritic growth simulations.
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large. To avoid problems with stability due to the large value of velocity, the seed is
held in place (i.e., interface velocity is set to zero) for the first hundred time steps of
the calculation. This allows a thermal boundary layer of the extent of a few mesh
spacings to form around the seed. Thereafter the seed is allowed to grow with the
velocity computed from Eq. (11). Although these initial conditions are somewhat
arbitrary, the evolution of the dendrite to the desired theoretical tip shape appears to
proceed regardless of the initial condition, providing a strong vindication of the tip
selection mechanism. Computations are carried out until the tip velocity, radius, and
selection parameter have each hit steady-state values.

The time required to achieve steady-state depends on the parameters assigned
for each case, and a typical trend is shown in Figure 5 for the case with A = 0.65,
dy = 0.5, and € = 0.05. The tip velocity V,, tip radius p, and selection parameter c*
are shown in the figure with appropriate multipliers to fit all the curves on the same
plot. The selection parameter appears to be established very quickly in the growth
process. The velocity and tip curvature then adjust in time until they approach steady-
state values. This was found to be an interesting common aspect in the computations
of dendritic growth for the range of parameters explored in this study. It appears that
the pattern selection mechanism that determines c* operates in the entire growth
process, even in the earlier stages of the growth, while the radius and velocity of the tip
are “driven” toward appropriate values to yield the established o*.

14

12 -

Tip
values

0 1 1 L L 1 1 I I
4000 4500 5000 5500 8000 8500 7000 7500 8000 8500

time

Figure 5. Progression of the tip values to steady state as the dendritic crystal grows. The tip velocity,
radius, and selection parameter with indicated multipliers are shown in the figure, plotted against time.
The undercooling A = 0.65, capillarity parameter dy = 0.5, and anisotropy strength € = 0.05.
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6. COMPARISON OF NUMERICAL SOLUTIONS
WITH SOLVABILITY THEORY

In this section we compare the results of our computations with the solvability
theory results quoted in [8, 10, 18, 19]. The growth and material parameters are
varied and the dendritic tip details such as radius, velocity, and selection parameter
are each compared with theoretical and computational results presented in the above
articles. Note that while Tong et al. [8] and Provatas et al. [19] have used the phase-
field approach where the interface is diffuse, Kim et al. [10] have used a sharp

interface approach based on level-set tracking in order to accurately capture dis-
continuities in material properties.

6.1. Effect of Undercooling

We first study the effect of growing the dendritic crystal from the seed in the
arrangement shown in Figure 4. Two values of undercooling, namely, 0.55 and 0.65,
are studied by maintaining the values of capillarity parameter dy = 0.5 and aniso-
tropy strength € = 0.05. Figure 6a shows the variation of the computed tip velocity
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osf ] il
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Figure 6. (a) Effect of undercooling. The tip velocity for two different undercoolings is compared with
results of Kim et al. 2001 and with microscopic solvability theory. (b) Tip selection parameter versus

anisotropy. (¢) Tip radius as a function of crystalline anisotropy. (d) Tip velocity as a function of crys-
talline anisotropy.
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with time for the dendrites grown at the above two different undercoolings. For these
calculations, the grid spacing in the fine-grid region was 6x = 0.4. The fine mesh
occupied a region in the computational domain of 200 x 200 units from the origin.
Therefore the mesh size in the fine region was 500 x 500 mesh cells. The stretching in
the coarse region was such that 100 mesh points were used in the coarse region using
a linear stretching of the mesh with stretch factor of 1.2. The curves corresponding to
each case are indicated in Figure 6a along with the results from [10] and the two-
dimensional solvability results. Although the initial conditions in our case are
different from that in [10], the match in the computed steady-state tip velocity
with solvability theory is comparable with that obtained by Kim et al. [10].
Thus, in the present calculations, the dendrite tip velocity is very different from
that of [10] in the initial transient. However, in time, the value of the velocity
approaches the theoretically predicted one. This behavior is seen for both values of
undercooling tested.

6.2. Effect of Anisotropy

Crystalline anisotropy plays a crucial role in selecting the dendritic tip char-
acteristics as indicated by the selection parameter, Eq. (7). Figures 6b—d present the
computed variation of steady-state tip values at an undercooling of A =0.55
plotted against anisotropy parameter €. We computed dendritic growth from the
seed for this undercooling for three different values of anisotropy, i.e.,
€ =0.01,0.03, and 0.05. These values were chosen to correspond to results from
phase-field calculations and results from two-dimensional solvability theory pre-
sented in [8]. The current numerical method is seen to adequately compute the tip
selection parameter ¢* predicted by solvability theory. This is shown in Figure 6b.
In Figures 6¢ and 6d we show plots of dendrite tip radius and velocity plotted
against the anisotropy. As seen in these figures, the computed selection parameter is
in excellent agreement with the theoretically predicted value for the range of ani-
sotropies computed. There are some discrepancies in the velocity and radius values,
particularly at the lower anisotropy. This is because the sensitivity of the calcula-
tions is extremely high at low anisotropies and it is likely that grid-induced ani-
sotropy may be causing the slight deviation of the tip geometry from the theoretical
values. Despite this, the selection parameter is accurately computed. These results
indicate again that the selection parameter is a robust value that appears to be
established to a high degree of accuracy and very early in the dendrite growth
process. In Figures 7a and 7h we show the evolution of the dendrite tip shape in
time for the case of € = 0.01 and 0.05 for an undercooling value of A = 0.55. As
expected, the tip shape for the higher anisotropy case is seen to be much sharper
than for the € = 0.01 case.

In Figures 7¢ and 7d we show the isotherms in the solid and liquid phases for
the steady-state dendrites obtained in the cases corresponding to Figures 7a and 7b.
As can be clearly observed from the contours of temperature, the discontinuity in the
temperature gradients at the solid—liquid interface is clearly captured by the present
sharp interface method. Thus, the singular, moving source of latent heat residing on
the phase boundary is correctly captured as a delta function, without smearing over
a finite region of the mesh.
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(@ (b)

Figure 7. Evolution of interface shape and isotherms for undercooling A = 0.55, capillarity parameter
dy = 0.5. (a) Interface shape for low anisotropy, € = 0.01. (b) Interface shape for high anisotropy,
€ = 0.05. (¢) Isotherms corresponding to the steady-state shape in (). (d) Isotherms corresponding to the
steady-state shape in (b).

6.3. Effect of Property Jumps

In order to clearly demonstrate the value of the sharp interface approach, we
present in Figure 8, the computed results for the selection parameter for the case with
parameters A = 0.65, dy = 0.5 and & = 0.05. The thermal diffusivity ratio og/oy
between the solid and liquid is varied and the selection parameter is computed and
plotted against this ratio. The results are compared with the computational results of
[10] and with the prediction of linearized solvability theory [25], which indicates that,
as a function of the thermal diffusivity ratio, the tip radius and velocity are related
as follows:

1 Olg
PV~ 3 (1 + ow) (p Vi)ay jo=t (32)

Our computed values for the product p?V; [related to the inverse of the selection
parameter ¢*, see Eq. (5)] are shown in Figure 8a, plotted against the ratio of dif-
fusivities, oy/oy. The results are in close agreement with those in [10] and also the
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Figure 8. Effect of discontinuous material property on dendritic growth. (a) Plot of p?>V, = 2/c* against
the ratio of diffusivities o, /ay. (b) Interface shape at steady-state tip condition and isotherms in the two
phases for the large diffusivity jump case o, /oy = 0.01. (¢) Interface shape and isotherms at steady-state tip
condition for o,/o; = 0.5.

predicted variation is fairly close in slope to the theoretically predicted value
according to Eq. (32). In Figures 85 and 8¢, we show the isotherms in the solid and
liquid at steady state for the cases where the ratio o /o; = 0.01 and 0.5, respectively.
The subtle changes in the temperature field in the solid and the resulting changes in
the shape of the growing dendrite are clearly seen in the figure. These subtle varia-
tions in temperature are responsible for the variation in the selection parameter for
discontinuous material properties, as shown in Figure 8z and given by Eq. (32).
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In the case of very low thermal diffusivity in the solid, as in Figure 8b, the isotherms
in the solid are nearly normal to the solid—liquid interface, while for the higher value
of solid diffusivity the isotherms are nearly parallel to the interface. Note that the
ability of the current methodology to treat discontinuities in both the values (of
diffusivities) and gradients (of temperature) at the boundaries has been demonstrated
in Figures 86 and 8¢ respectively. This has proven useful in computing the solidifi-
cation of materials with impurities (solutes) in ongoing work on freezing of aqueous
solutions. In such problems, there is a vast disparity in the species diffusivities across
the interface (solid-to-liquid values in the ratio of 10~4~107°). In order to accurately
capture solute microsegregation, the discontinuity in the material properties has to
be respected. The sharp interface approach has been demonstrated in the above test
case to be capable of producing physically correct solutions in the presence of such
discontinuities.

7. SUMMARY

We have developed a numerical method for the computation of dendritic
crystal growth where the solid—liquid interface is treated as a sharp front. Freeing the
mesh from conforming to the complex evolving boundaries while maintaining a
sharp solid-liquid interface allows for the accurate solution of phase change. The
sharp interface nature and the second-order spatial and temporal discretization
coupled with a conservative-finite volume scheme allows us to obtain solutions for
dendritic crystal growth in good agreement with instability theory. We have
demonstrated in the results presented in this article that the effects of undercooling,
anisotropy and material property variations are each computed correctly by the
method. The uniquely selected features of the dendrite tip, namely, tip radius and tip
velocity, and the numerically obtained selection parameter are found to be in
agreement with two-dimensional solvability theory. We have also shown the
attractiveness of the method in situations where the diffusivity varies discontinuously
across the front. Here again, good agreement is shown with theory as well as with
other sharp interface calculations. The ability of the method to treat material
property jumps as discontinuous is important in the simulation of solidification in
alloys and solutions, where the species transport equation comes into play. Solute
segregation from the solid into the melt/solution is a critical part of such processes.
The large jump in species diffusivity from solid to liquid phase is best handled by
treating each phase separately, a capability that is provided by the present sharp
interface technique. Ongoing work involves solution of solidification phenomena in
the presence of impurities and study of the effect of convection on the micro-
structure.
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