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Pulsatile flow in a planar channel with a one-sided semicircular constriction has
been simulated using direct numerical simulation and large-eddy simulation. This
configuration is intended as a simple model for studying blood flow in a constricted
artery. Simulations have been carried out over a range of Reynolds numbers (based on
channel height and peak bulk velocity) from 750 to 2000 and a fixed non-dimensional
pulsation frequency of 0.024. The results indicate that despite the simplicity of the
chosen geometry, the simulated flow exhibits a number of features that have been
observed in previous experiments carried out in more realistic configurations. It is
found that over the entire Reynolds number range studied here, the flow downstream
of the constriction is dominated by the complex dynamics associated with two
shear-layers, one of which separates from the lip of the constriction and other from
the opposite wall. Computed statistics indicate that for Reynolds numbers higher
than about 1000, the flow transitions to turbulence downstream of the region where
the separated shear layers first reattach to the channel walls. Large fluctuations
in wall pressure and shear stress have also been associated with this reattachment
phenomenon. Frequency spectra corresponding to velocity and pressure fluctuations
have been analysed in detail and these indicate the presence of a characteristic shear-
layer frequency which increases monotonically with Reynolds number. For Reynolds
numbers greater than 1000, this frequency is found to be associated with the periodic
formation of vortex structures in the shear-layers and the impact of this characteristic
shear-layer frequency on the dynamics of the flow is described in detail.

1. Introduction
Atherosclerosis is a disease of the cardiovascular system which involves hardening

of arteries due to the deposition of plaque. Localized atherosclerotic constrictions in
arteries, known as arterial stenoses, are found predominantly in the internal carotid
artery which supplies blood to the brain, the coronary artery which supplies blood to
the cardiac muscles, and the femoral artery which supplies blood to the lower limbs.
Blockage of more than about 70% (by area) of the artery is considered clinically
significant since it presents significant health risks for the patient (Nichols & O’Rourke
1998). Complete closure of the artery can occur if a blood-clot becomes lodged in
the stenosis and this can lead to a stroke or a heart attack. In addition to this,
moderate as well as severe stenoses can have long-term health consequences. First,
the presence of a constriction results in head losses which can reduce the blood
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supply through the artery and also impose additional load on the heart. Typically,
it is found that these pressure losses are significant only when the internal diameter
is reduced beyond about 50% of the nominal value (Young 1979). Secondly, the
fluctuations in the blood flow downstream of the stenosis can damage and weaken
the internal wall (intima) of the artery. It is accepted that both the wall pressure
and shear stress play a role in this. In particular, it has been suggested (Roach 1963;
Lighthill 1975) that post-stenotic dilatation (widening of the artery downstream of
the stenosis) is due to increased distensibility of the arterial wall induced by high-
frequency pressure fluctuations. Furthermore, it has been noted that highly variable
wall shear stress in the distal artery can result in a predilection towards atherosclerosis.
The variability in wall shear can prevent endothelial cells, which are cells that line
the intima, from aligning in the direction of the flow, thereby making the intima
more permeable to the entry of harmful blood constituents (Nerem 1992; Giddens,
Zarins & Glagov 1993; Zarins & Glagov 1994). Other studies have correlated sites of
predilection for atherosclerosis with regions of low shear stress (Friedman et al. 1981;
Ku et al. 1985). Still others have suggested that high shear stress might lead to platelet
activation which could accelerate atherosclerosis (Stein, Walburn & Sabbah 1982).
The pathological effects on the distal artery are more pronounced for subcritical
stenoses (Bomberger, Zarins & Glagov 1981) whereas severe stenoses have actually
been found to afford some protection to the distal artery from the formation of
atherosclerotic lesions (Creech 1957). In summary, the preceding discussion clearly
shows that even though there is some debate in the medical community regarding the
relative importance of these various haemodynamic factors, there is little doubt that
the fluid dynamics of post-stenotic blood flow plays a crucial role in the progression of
atherosclerosis.

Fluid dynamics of post-stenotic flow also plays a key role in the diagnosis of arterial
disease. For over two hundred years, it has been known that a stenosed artery produces
distinct sounds known as ‘arterial murmurs’ or bruits which can be heard externally
(McKusick 1958). Detection of these sounds has gained popularity in the medical
community as an inexpensive non-invasive means of screening patients with suspected
carotid artery stenoses (Nichols & O’Rourke 1998; Ask et al. 1995). The general
understanding is that the sounds are produced by the ‘disturbed’ flow downstream
of the stenosis, but until the 1960s little work was done to explore the origin of
these sounds. In 1959, Bruns, in a seminal paper, systematically examined possible
mechanisms for the generation of these sounds based on the state-of-knowledge at
that time. In doing so, he eliminated turbulence, compressibility and cavitation as
possible causal mechanisms. Furthermore, by theorizing that the flow downstream of
a constriction would be similar to the flow past an obstacle (or a wake flow) and
given that vortex shedding in a wake produces the so-called ‘Aeolian tones’ (Etkin,
Korbacher & Keefe 1957) he postulated that arterial murmurs were most probably
caused by the periodic shedding of vortices downstream of the constriction. Going a
step further, he predicted that with the advent of better techniques for analysing the
frequency spectra of these murmurs in the future, it would become possible to extract
an accurate picture of the physical conditions that produce this flow.

As predicted by Bruns, a technique called phonoangiography was indeed developed
in 1970 (Lees & Dewey 1970) which was designed to predict the severity of the
stenotic occlusion in the peripheral arteries through analysis of the sound spectra
of the arterial murmurs. The fluid-dynamical basis of this technique was as follows.
Sound spectra measured in vivo in human subjects with stenosed peripheral arteries
were compared with the wall pressure spectra of a fully developed turbulent pipe
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flow. Noticing the apparent similarity between the two, it was concluded that the
flow downstream of the stenosis was similar to fully developed turbulent pipe flow.
Thereafter, using scaling arguments that would be valid for such a flow, it was argued
that the break frequency (fb) in the sound spectrum, i.e. where the spectrum showed
a distinct roll-off would scale as d/U where d was the diameter of the stenotic section
of the artery and U the volumetric peak flow velocity downstream of the stenosis.
Empirical evidence presented in this and subsequent work of Fredberg (1977) and
Pitts & Dewey (1979) indicated that fbd/U = 1 was a reasonable estimate of this
scaling behaviour. Thus, by measuring fb and U it would be possible to extract a
value for d , the diameter of the stenosed section. It is worth pointing out that this
technique ascribed arterial murmurs to turbulence in the post-stenotic flows and did
not invoke shear-layer vortex shedding as a cause for these sounds.

Subsequent tests of this technique in clinical settings produced mixed results
(Duncan et al. 1975). Although there was a positive correlation between the stenotic
severity predicted by phonoangiography and that measured independently though
a radiographic technique, the relative errors in the prediction were quite high.
Furthermore, at the same time, other studies emerged which provided a different view
of the dynamics of the post-stenotic flow and the production of arterial murmurs. Of
special note here is the study of Tobin & Chang (1976) where wall pressure spectra
were obtained at various positions downstream of an axisymmetric stenosis in a pipe
with steady inflow. The Reynolds number of the incoming pipe flow ranged from 500
to 4000 which was in line with the Reynolds numbers found in the larger arteries of
the human cardiovascular system. Three key observations were made in this study.
First, the highest intensity wall pressure fluctuations were produced in the region
where the shear layers that separated from the lip of the stenosis attached to the
wall of the pipe. Thus, sounds associated with wall pressure fluctuations were due
to the shear layer and not the turbulence in the core flow. Secondly, they found that
the wall pressure spectra did exhibit a break (or ‘corner’) frequency beyond which
the spectrum rolled off rapidly. However, the break frequency fb showed a universal
scaling of fbD/uj ≈ 0.58 where uj was the mean jet velocity. Using continuity (i.e.
UD2 = ujd

2), this scaling can be recast as (fbd/U ) ≈ 0.58(D/d) and this shows
the fundamental difference between this scaling and that of Lees & Dewey (1970).
Finally, Tobin & Chang (1976) compared the wall pressure spectrum obtained from
their experiments with the same turbulent pipe flow spectrum used by Lees & Dewey
(1970) and found significant mismatch in the slope of the spectra beyond the corner
frequency.

Jones & Fronek (1987) investigated post-stenotic flows in an axisymmetric geometry
with steady inflow over a range of Reynolds numbers (where Re = UD/ν) from 600
to 1500 and suggested (fbd/uj ) = Re0.72(d/D)0.26 as an improved correlation for the
break frequency in the pressure spectra. Using continuity, the above expression can be
recast as (fbd/U ) = Re0.72(D/d)1.74 which can be compared with the corresponding
scalings of Lees & Dewey (1970) and Tobin & Chang (1976). Clearly, all three
scalings are quite different and this underscores the current lack of consensus and
understanding regarding the dynamics of post-stenotic flows. It should also be pointed
out that phonoangiography never found widespread use in the medical community
owing to its limited predictive capability, and was overcome by duplex scanning
ultrasound (Strandness 1994).

Thus, both from the pathological and diagnostic point of view, there is considerable
interest in gaining a better insight into the dynamics of post-stenotic flows. Indeed,
these two issues have provided the primary impetus for the large number of
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experimental studies that have been carried out in the last thirty years. In addition
to the references mentioned above, worth noting are the studies of Giddens and
coworkers (Giddens, Mabon & Cassanova 1976; Cassanova & Giddens 1978; Ahmed
& Giddens 1983, 1984; Lieber & Giddens 1990), Lu et al. (1980, 1983), Young and
coworkers (Young & Tsai 1979a, b; Young 1979) and Clark (1976a, b, 1977). In
addition, computational modelling is also being used increasingly for the analysis of
these flows (Tutty 1992; Tu et al. 1992; Taylor & Yamaguchi 1994; Tu & Delville
1996). However, most computations to date have focused on laminar flow regime since
computational modelling of such flows in the transitional and turbulent regimes is a
challenging proposition. This is because on the one hand, the Reynolds numbers are
sometimes high enough that direct numerical simulation (DNS) where all the spatial
and temporal scales of turbulence are accurately resolved (Rogallo & Moin 1984)
would be extremely taxing on computing resources and on the other hand, both the
pulsatile nature of the flow and the relatively low Reynolds number result in a flow
that is far from being a fully developed turbulent flow. Consequently, conventional
Reynolds-averaged Navier–Stokes (RANS) turbulence models (Wilcox 1998) which
are designed primarily for simulating well-developed high-Reynolds-number turbulent
flows are not well suited for these arterial flows. Some support for this assertion
come from the recent work of Scotti & Piomelli (2001) which clearly indicates
the limitations of the predictive capability of existing RANS models for pulsatile
flows.

The large-eddy simulation (LES) approach, which lies between DNS and RANS,
is a technique well suited for the computational modelling of turbulent arterial flows.
Unlike DNS where all the spatial and temporal scales are resolved, in LES, only the
energy-containing scales of the turbulence are resolved spatially and temporally and
the smaller (subgrid) scales (SGS) are modelled (Rogallo & Moin 1984; Lesieur &
Métais 1996). The LES approach has a number of benefits over DNS and RANS.
First, since the smallest scales do not need to be resolved, the spatial and temporal
resolution required here can be substantially lower than that for a corresponding
DNS. Secondly, unlike RANS modelling, LES provides time-accurate information
about a wide range of dynamically important scales in the flow. It is therefore
capable of providing better physical insight and has the potential of being a more
accurate predictive tool. However, the computational expense of these simulations
increases rapidly with the Reynolds number and for relatively complex geometries,
this has limited the application of LES to only moderately high-Reynolds-number
turbulent flows (Piomelli 1999). However, the Reynolds numbers of blood flow in the
human cardiovascular system are limited to about O(104) and this is well within the
reach of present day computers.

The suitability of LES for simulating these moderately high-Reynolds-number
cardiovascular flows has been demonstrated in an earlier study (Mittal, Simmons &
Udaykumar 2001a) where pulsatile flow through a simple geometrical model of a
stenosis was simulated at fixed Reynolds and Strouhal numbers using LES and a
wide variety of data including mean velocity profiles, higher-order turbulence statistics,
wall statistics and frequency spectra extracted from these simulations. In the current
study, the same geometrical configuration consisting of a channel with a one-sided
semi-circular constriction is employed as a simple model of a stenosed artery and
the pulsatile flow through this channel simulated over a wide range of Reynolds
numbers using DNS and LES. The focus of the study is on characterization of the
spatio-temporal dynamics of the flow in the region downstream of the constriction
with special emphasis on those fluid dynamical aspects that are known to play an
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Figure 1. Schematic of the channel with semicircular constriction employed in the current
study. Note that x1, x2 and x3 refer to the streamwise, cross-stream and spanwise directions,
respectively.

important role in the progression of atherosclerosis and in the non-invasive detection
of arterial stenoses.

2. Simulation set-up
2.1. Flow configuration

A relatively simple model of a stenosed artery employed first by Tutty (1992) and
subsequently by Mittal et al. (2001a) has been chosen for the current study. The
geometry is shown in figure 1 and it consists of a planar channel with a one-sided
semi-circular constriction on the upper wall centred at x1/H = 10 where H denotes the
channel height. However, unlike Tutty who performed a two-dimensional simulation,
in the current simulations, allowance is made for periodic variation of flow quantities
in the spanwise direction. The diameter of the semicircular constriction is equal to
the channel height and therefore, the constriction reduces the channel area by 50%.
The channel extends 10H and 20H upstream and downstream of the centre of the
constriction, respectively.

The flow rate per unit channel width (Q) is varied in a sinusoidal manner as
Q(t) = (Qmax/2)[1 − cos(2πt/T )] where T is the time period of the pulsation and
Qmax is the maximum flow rate per unit spanwise length of the channel (see figure 2a).
The Strouhal number (Ω) which corresponds to the non-dimensional frequency of
the inlet flow pulsation is defined as Ω = H/T Vmax where Vmax = Qmax/H is the peak
inflow bulk velocity. The peak Reynolds number is defined as Re = VmaxH/ν. Finally,
the Womersley number (α) which is used widely in the description of cardiovascular
flows (Nichols & O’Rourke 1998) is equal to (πReΩ/2)1/2 for this configuration. It
should be pointed out that physiological waveforms are not sinusoidal and there
is considerable variation in the waveform depending on the blood vessel under
consideration (Nichols & O’Rourke 1998). However, the sinusoidal waveform has
been considered a simple prototype of physiological waveforms in a number of past
experimental studies (Young & Tsai 1979a, b; Khalifa & Giddens 1981; Ahmed &
Giddens 1984) and is also adopted here.
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Figure 2. Inflow velocity specification based on the Womersley solution (equation (2.2)).
(a) Temporal variation of inlet volume flux. (b) Velocity profiles for α = 6.1. (c) Velocity
profiles for α = 8.6.

In our previous computational study (Mittal et al. 2001a), a sinusoidally varying
parabolic profile was employed at the inlet. However, the pulsatile flow profile in
a channel is significantly different from a parabolic profile for Womersley numbers
greater than about one (Nichols & O’Rourke 1998). Since the Womersley numbers
of interest here are all much greater than one, in the current study the profile
corresponding to laminar fully developed pulsatile flow in a channel (Uchida 1956;
Loudon & Tordesillas 1998) is employed as the inflow condition. A laminar inflow
condition is appropriate for the Reynolds and Womersely numbers employed in the
current study (Winter & Nerem 1984). This inflow is obtained as a closed-form
solution of the following equation:

ρ
∂u1

∂t
− µ

∂2u1

∂x2
2

= −A − Bei2πt/T , − 1
2
H � x2 � 1

2
H,

where A and B correspond to the steady and oscillatory pressure gradients and these
are chosen so as to give the required minimum and maximum volume fluxes. The
final solution to the above equation in non-dimensional form is:
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and the real part of this solution is used as the inlet velocity condition. In the above
equation, f (α) is a known function of α which appears as a consequence of matching
the volume flux conditions (Simmons 2001) and t∗ = tVmax/H is the non-dimensional
time. Note that the shape of the inlet velocity profile depends only on the Womersley
number and the profile shapes for α = 6.1 and 8.6 are shown in figure 2 for four
different phases in the pulsation. For the current configuration, these correspond to
Re = 1000 and 2000, respectively. Note that the phase, φ, is defined as 2πt/T . At
the exit, a convective boundary condition (Kaltenbach et al. 1999) is applied and this
allows the vortex structures to exit the domain with minimal reflections.

The spanwise domain size (L3) is chosen to be equal to 3H and periodic boundary
conditions applied on the spanwise boundaries. These boundary conditions are
intended to model the spanwise homogeneous flow that would be present in a
channel with an infinite spanwise extent. As such it is imperative to demonstrate that
the computed flow is independent of the choice of the spanwise domain size and this
issue is addressed later in the paper.

The initial condition in the channel corresponds to the inflow velocity profile where
the streamwise velocity is scaled appropriately at every streamwise station so as to
satisfy local mass conservation. Furthermore, a small disturbance which is random
in time and spanwise direction is imposed on all the components of velocity at the
inflow at the beginning of the simulation for ten time steps. Subsequently, the three-
dimensionality is allowed to develop on its own through the inherent instability of the
flow. Eventually, the flow reaches a statistically stationary state and the simulations
are carried beyond this for about eight cycles for all cases. All statistics as well as
other data such as temporal variations and frequency spectra presented in this paper
are over this time period of about eight cycles. The simulations have been carried
out on a 195 MHz SGI Origin-2000 multiprocessor computer. The solver has been
parallelized using OpenMP (Chandra et al. 2000) and up to eight nodes have been
used for these simulations. Each cycle takes about 120 CPU hours on one node and
a typical simulation takes about 1500 CPU hours on one node of this computer.

The flow downstream of an arterial stenosis is characterized by separating
transitioning shear layers that evolve under the influence of a pulsatile inflow and
interact with the arterial walls downstream of the stenosis. The planar geometric
model that has been chosen here is relatively simple and obviously does not
account for the circular cross-section of a typical artery. However, it does include
the important geometrical features of an arterial stenosis mentioned above and
preliminary computations (Mittal et al. 2001a) indicate that the flow in this simple
configuration exhibits many of the key features (as mentioned above) that characterize
post-stenotic flow in a realistic artery. The simplicity of the chosen geometry reduces
the computational expense and allows us to perform a comprehensive computational
study and obtain insight into the physics of this flow. We expect that this will set the
stage for computational studies of a more realistic geometrical configuration in the
future.

2.2. Numerical methodology

The code is based on a hybrid second-order finite-difference/spectral method which
solves the three-dimensional incompressible Navier–Stokes equations in primitive
variables (velocity and pressure) in generalized coordinates on a spanwise periodic
domain. It has been well established that blood flow in the larger vessels can be
modelled quite accurately as a Newtonian fluid (Pedley 1980; Fung 1997) and this
justifies the use of the Navier–Stokes equations. Figure 3 shows a two-dimensional
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Figure 3. Two-dimensional view of the mesh used in case 1. Only every third mesh point in
each direction is shown.

view of a typical curvilinear grid used in the current simulation. A second-order
central difference is used in the streamwise and wall-normal directions whereas
Fourier collocation is used in the spanwise direction. A staggered-mesh is used in the
plane of the generalized coordinates with volume fluxes, i.e. contravariant velocity
vector components weighted with the Jacobian as dependent variables (Orlandi 1989;
Rosenfeld, Kwak & Vinokur 1991; Choi, Moin & Kim 1992). The spanwise velocity
component is collocated at the pressure nodes and phase-shifting dealiasing (Rogallo
1981) is performed in the spanwise direction in order to stabilize the computations
and enhance accuracy. Regarding the choice of the spatial discretization scheme, it has
been demonstrated (Mittal & Moin 1997) that numerical dissipation can overwhelm
the contribution of the SGS model and, therefore, dissipative numerical schemes are
not well suited for LES. The spatial discretization scheme employed in the current
computations has been constructed to ensure conservation of kinetic energy (Ferziger
& Peric 1999) which allows for a stable computation without the need for numerical
dissipation.

The incompressibility constraint is enforced with a time-split (Chorin 1968)
technique which is second-order accurate in time (Choi et al. 1992). A mixed explicit–
implicit scheme is used for the momentum equation where the viscous terms in the
wall normal direction are integrated by means of the Crank–Nicholson method and
all other terms are integrated with a low-storage third-order Runge–Kutta scheme
(Spalart, Moser & Rogers 1991). By taking a Fourier transform in the spanwise
direction, the pressure Poisson equation is reduced to a series of two-dimensional
Helmholtz equations, one for each spanwise wavenumber. Each of these equations
is then solved with a multigrid technique. The average time step (�t) used in these
simulations is about 5 × 10−4T .

The subgrid-scale model used to account for the effect of the unresolved turbulent
motions, is a version of the dynamic model (Germano et al. 1991) suitable for
generalized coordinates. A least-squares contraction (Lilly 1992) is used to compute
the SGS model coefficient which is obtained as a spanwise averaged quantity. The
test filter is applied in the streamwise and spanwise directions using the trapezoidal
rule to approximate the filter, and the test-to-grid filter ratio is �̂/� =

√
6. The

present numerical method and the associated solver have been tested extensively in
several laminar and turbulent flows (Mittal & Moin 1997; Kaltenbach et al. 1999;
Mittal et al. 2001a, b) and further details regarding the method can be found in these
papers.

A priori, there is nothing in the dynamic SGS modelling procedure that would limit
its use in pulsatile flows. In fact, the dynamic model has been used successfully in LES
of a bluff-body wake flow (Mittal & Moin 1997) where the flow in the near wake can
be viewed as ‘pulsatile’ in that it oscillates in time with a dominant frequency and even
reverses direction during this pulsation. The fact that in the current case, the pulsation
is explicitly imposed as opposed to being produced naturally by von Kármán vortex
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shedding (in the case of the wake) is of no consequence to the procedure. As will be
shown in § 3.1, the dynamic modelling procedure produces SGS eddy viscosity which,
in its magnitude and variation, is in line with the observed physics of the flow.

2.3. Data reduction

It is also useful at the outset to define the various averaging operations employed in
the current study. For a generic flow variable g, the mean over M cycles is computed
as

〈g〉(x1, x2) =
1

L3

1

MT

∫ t0+MT

t0

∫ L3

0

g(x1, x2, x3, t) dx3dt,

where t0 corresponds to the beginning time of the averaging process. Deviation from
this average is computed as

g′ = g − 〈g〉.
In addition, for a pulsatile flow it is useful to compute a phase average (Reynolds &
Hussain 1972; Lieber & Giddens 1990). The phase average over M cycles is computed
as

g̃(x1, x2, t) =
1

L3

1

M

M−1∑
n=0

∫ L3

0

g(x1, x2, x3, t + nT ) dx3.

Deviation from this phase average is computed as

g′′ = g − g̃.

The phase average g̃ represents the time-varying coherent (or deterministic) part
of the flow and primarily contains time scales directly associated with the pulsation.
The deviation from the phase average (g′′) represents the non-deterministic motions
and therefore this decomposition provides a means of separating scales that are
associated with the pulsation from those associated with turbulence. In this paper,
these fluctuations are referred to as ‘turbulent’ fluctuations. Finally, the instantaneous
spanwise average of a variable g is defined as

〈g〉3(x1, x2, t) =
1

L3

∫ L3

0

g(x1, x2, x3, t) dx3.

3. Results and discussion
Table 1 gives a summary description of the various simulations that are reported in

the current study. Reynolds numbers range from 750 to 2000 and the Strouhal number
of the pulsation is fixed at 0.024. Thus, the Womersley number in the current study
varies from 5.3 to 8.6 and this range of parameters is consistent with the values typical
for blood flow in the larger arteries of the human cardiovascular system (Pedley 1980;
Fung 1997; Nichols & O’Rourke 1998). All computations for which detailed results
are reported in this section have been performed on a 320 × 64 × 32 (Nξ1

× Nξ2
× Nx3

)
mesh, where ξ1 refers to the family of grid lines that run from the inlet to the exit,
ξ2 corresponds to those that run between the top and bottom walls, and x3 refers to
the spanwise grid lines. Furthermore, as mentioned earlier, the spanwise domain size
has been chosen equal to 3H . The rationale used in adopting these computational
parameters was as follows. First, earlier computations of this flow (Mittal et al. 2001a)
for Re = 2000 were used to guide the initial design of the 320 × 64 × 32 mesh. As
is clear from figure 3, enhanced wall normal resolution is provided to the flow in
the vicinity of the two walls. In addition, the region immediately downstream of the
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Case number Re Solver L3/H Nξ1 Nξ2 Nx3
α S

1 2000 LES 3 320 64 32 8.6 1.80
2 2000 LES 3 320 96 32 8.6 –
3 2000 LES 5 320 64 32 8.6 –
4 1700 LES 3 320 64 32 8.0 1.72
5 1400 DNS 3 320 64 32 7.3 1.63
6 1000 DNS 3 320 64 32 6.1 1.55
7 750 DNS 3 320 64 32 5.3 1.20

Table 1. Various simulations reported in the current study. For all simulations Ω = 0.024
and (h/H ) = 0.5. Furthermore, Nξ1

, Nξ2
and Nx3

denote the number of cells in streamwise,
wall-normal and spanwise directions, respectively. Also shown in the last column are
the observed values of (S) corresponding to the dominant non-dimensional shear-layer
vortex-formation frequency for the various cases. Further discussion regarding this quantity
can be found in § 4.4.

constriction has relatively fine streamwise grid spacing. The key issue in choosing a
mesh for the current simulations is to provide adequate resolution for the thin shear
layer that is expected to separate from the lip of the constriction. The topology of
the structured grid employed here is such that it is not easy to increase the ξ2 grid
spacing selectively in this region. The only way to increase the local resolution is, in
fact, to increase the total number of grid points. Thus, a relatively fine mesh with
64 grid points in the ξ2-direction was chosen and this resulted in over 12 grid points
across the width of the shear layer for the Re = 2000 case.

It is useful to point out that in a previous LES study of flow through a planar
diffuser (Kaltenbach et al. 1999) which employed the same code, a grid with 64
grid points across the channel width was successfully used for simulating flow at a
Reynolds number (based on channel width and bulk flow velocity) of about 9000.
In the current study, the Reynolds number is substantially lower and thus 64 points
should provide more than adequate resolution. However, despite the seeming adequacy
of this resolution, it was thought necessary to check the sensitivity of the computed
results to the resolution in the ξ2-direction. At the outset, however, it should be
pointed out that grid dependence for large-eddy simulations has to be viewed from
a slightly different perspective from DNS or computations of laminar flows. Since
in the current LES methodology, the range of resolved scales is determined by the
grid resolution, it is expected that the computed flow will show some dependence on
the mesh resolution. This dependence will be apparent until the resolution becomes
fine enough that the LES starts to qualify as a DNS, i.e. the grid cutoff extends well
into the dissipation range. Thus, strict grid independence of the computed solution is
not expected in an LES. Instead, it is adequate to demonstrate that the primary flow
features such as mean velocity and fluctuation intensity do not vary significantly with
the grid. This is the viewpoint taken in the current study.

Thus, in order to check the sensitivity of the flow to the ξ2-resolution, the Re = 2000
LES simulation (Case 1) was repeated on a 320 × 96 × 32 mesh (Case 2) which has
50% more mesh points in the ξ2-direction than the previous mesh. Figure 4(a) shows
a comparison of the mean streamwise velocity profiles and it can be observed that the
two sets of velocity profiles are in very good agreement with each other. In addition
to this, we have also compared the fluctuation kinetic energy 〈u′

iu
′
i〉/2 profiles for the

two cases and these also compare favourably for the two simulations. Based on these
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Figure 4. Comparison of flow statistics for cases 1 and 2 (Re = 2000) which have different
wall-normal grid resolutions. Solid line, case 1; symbols, case 2. (a) Mean streamwise velocity
〈u1〉 profiles. In these profile plots, unit velocity corresponds to a distance of 0.2H in the
streamwise direction. (b) Profiles of fluctuation kinetic energy 〈u′

iu
′
i〉/2. In these profile plots,

a distance of H in the streamwise direction corresponds to an energy level of 0.25.

results, the 320 × 64 × 32 mesh was deemed adequate for LES at Re = 2000. The
same mesh was then employed for all the other lower Reynolds-number simulations
with the implicit understanding that a mesh adequate for Re = 2000 would be
more than adequate at lower Reynolds numbers. However, it was found that for
the Re = 1400 simulation, the contribution of the SGS model was quite small and
‘turning off’ the SGS model did not have any noticeable impact on the flow. This
indicated that for the lower Reynolds numbers, the mesh resolution was high enough
for the computation to qualify as a DNS and the SGS model was then turned off
for all the lower Reynolds-number simulations. Since the dynamic SGS model adds
about a 10% overhead to the CPU time in the current simulations, turning off the
model speeds up the solution process.

As mentioned earlier, it is important in such flows to establish that the computed
results do not depend on the spanwise domain size employed in the simulations
(Mittal & Balachandar 1997; Kaltenbach et al. 1999). In our previous computations
(Mittal et al. 2001a) a spanwise domain size of H was employed and this was
subsequently found not to be large enough to eliminate domain size effects. In the
current simulations, a larger spanwise domain size of 3H is chosen in order to remedy
the situation. However, despite the threefold increase in the domain size, it was still
thought prudent to demonstrate conclusively, the adequacy of this domain size. In
order to accomplish this, the Re = 2000 simulation (Case 1) has been repeated with
a domain size of L3 = 5H . However, maintaining the same spanwise grid resolution
as Case 1 on this larger domain would have required about 54 grid points and
this would have resulted in a proportional increase in the computational expense.
In order to avoid this, the spanwise mesh size of 32 mesh was retained and this
resulted in a simultaneous decrease in the spanwise resolution for this simulation.
Thus, comparison of the flow computed for these two cases serves to demonstrate not
only the insensitivity of the flow to the spanwise domain size but also to the spanwise
resolution. Figure 5 shows a comparison of the mean streamwise velocity profiles
for these two simulations and it can be seen that the mean flow downstream of the
constriction does not change significantly with the spanwise domain size. In order to
further demonstrate the adequacy of the spanwise domain size and resolution, we have
also compared the spanwise normal stress 〈u′2

3 〉 for Cases 1 and 3 in figure 5(b). The
magnitude and variation of this quantity is most sensitive to the three-dimensional
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Figure 5. Comparison of flow statistics, for cases 1 and 3 (Re = 2000) which have spanwise
domain sizes of 3H and 5H , respectively. Solid line, case 1; symbols, case 3. (a) Comparison
of mean streamwise velocity 〈u1〉. In these profile plots, unit velocity corresponds to a distance
of 0.2H in the streamwise direction. (b) Comparison of spanwise normal stress 〈u′2

3 〉. In these
profile plots, a distance of H in the streamwise direction corresponds to a stress value of 0.022.
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Figure 6. Mean normalized SGS eddy viscosity 〈νt/νm〉 (a) Re = 1700, (b) 2000.

vortex structures formed in the flow and it is, therefore, a good diagnostic tool for
checking the sensitivity of the computed results to the spanwise domain size and grid
resolution. As can be seen in the figure, despite the significant increase in domain
size and accompanying decrease in the grid resolution, the stress profiles for the two
cases compare well, thereby further confirming the adequacy of the spanwise domain
size and resolution.

Thus, a spanwise domain size of 3H is found to be sufficient for the current
computations and we have therefore chosen to use this domain size for all subsequent
simulations. Also, since 32 grid points in the span was found to be sufficient for
Re = 2000, it was assumed that it would be more than adequate at the lower Reynolds
numbers.

3.1. Role of SGS model

Although the focus of this paper is on the flow physics, it is nevertheless useful
to provide some information on the role that the SGS model plays in the large-
eddy simulations reported in this study. Figure 6 shows contour plots of the mean
SGS eddy viscosity 〈νt〉 normalized by the molecular viscosity νm, for Re = 2000
(Case 1) and Re = 1700 (Case 4). First, for both of these simulations, the region
of significant SGS eddy viscosity is downstream of the constriction where, as will
be shown in subsequent sections, the flow transitions to turbulence. Thus, the dynamic
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Figure 7. Sequence of contour plots of spanwise-averaged spanwise vorticity non-
dimensionalized by Vmax/H plots at four phases in the pulsation for Re = 750. Eight equispaced
contour levels from −7.78 to +7.78 are shown. The phase φ has been set to zero at the beginning
of the pulsation when the flow rate is zero. (a) φ = 0, (b) φ = π/2, (c) φ = π, (d) φ = 3π/4.

SGS model correctly introduces dissipation primarily in regions where there are
significant turbulent fluctuations and almost no dissipation in regions where the flow
is unsteady but laminar. This is one of the features of the dynamic SGS model that
makes it suitable for computing such flows.

For Re = 2000, the peak eddy viscosity is about 0.97 implying that the model
adds up to 97% extra dissipation into the flow. As the Reynolds number is reduced
to 1700 while keeping the same grid, the peak SGS eddy viscosity reduces to about
0.75 which is consistent with expectation of reduced energy in the SGS scales at the
lower Reynolds numbers. For Re = 1400, it was found that the SGS eddy viscosity
reduced significantly and turning off the SGS model did not have any significant
effect on the computed results. This implied that the 320 × 64 × 32 mesh was fine
enough to capture all significant scales of the flow at Re = 1400. Thereafter, in order
to reduce the CPU time, the SGS model was turned off for all simulations with
Reynolds number less than or equal to 1400 and these computations are considered
to be well-resolved direct numerical simulations.

4. Flow physics
With the numerical aspects of the study described and the accuracy and fidelity

of the simulations firmly established, we now focus on the analysis of the simulation
results for the various cases. In the following sections, we will describe the results
of Cases 1 and 4–7. As pointed out earlier, all results presented here are for the
statistically stationary flow regime and statistics have been accumulated over at least
eight flow cycles for all cases.

4.1. Vortex dynamics

Figures 7, 8 and 9 show sequences of spanwise-averaged spanwise vorticity contours
(denoted by 〈ω3〉3) for Re = 750, 1400 and 2000, respectively. Each sequence consists
of four plots which correspond to phase φ = 0, π/2, π and 3π/4, respectively, where
the phases have been arbitrarily set to zero at the beginning of the cycle where the
flow rate is zero. In terms of the flow pulsation, these phases correspond to zero mean
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Figure 8. Sequence of spanwise-averaged spanwise vorticity plots at four phases in the
pulsation for Re = 1400. Contour levels are the same as in previous figure. (a) φ =0, (b) φ = π/2,
(c) φ = π, (d) φ = 3π/4.
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Figure 9. Sequence of spanwise-averaged spanwise vorticity plots at four phases in the
pulsation for Re = 2000. Contour levels are the same as in previous figure. (a) φ =0, (b) φ = π/2,
(c) φ = π, (d) φ = 3π/4.

flow, maximum acceleration, maximum flow and maximum deceleration. The same
contour levels are used in all these plots so as to facilitate direct comparison between
them.

Figure 7, which corresponds to Re =750, the lowest Reynolds-number case
simulated in the current study, shows a sequence of four plots of the spanwise-
averaged spanwise vorticity. Figure 7(a) corresponds to the phase in the cycle where
the mean inlet flow rate is zero and the spanwise vorticity contours show the remnants
of the vortical structures formed downstream of the stenosis in the previous cycle.
Figure 7(b) corresponds to the phase in the pulsation where the flow rate is half
its maximum value and the flow has maximum acceleration. It can be seen from
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the figure that the rapidly increasing velocity results in the creation of a shear layer
at the lip of the constriction. This shear layer separates and begins to roll up into
a counterclockwise rotating vortex which is observed to attach to the upper wall
at about x1/H = 11.5. Furthermore, the increasing velocity in the stenosis region
induces a relatively intense vorticity layer on the bottom wall which is also observed
to separate and lift up from the bottom wall. The separation location coincides
roughly with the location where the upper shear layer attaches to the upper wall and
this is due to the fact that the effective area available for the flow coming through the
constriction begins to increase only when the upper shear layer rolls upwards. This
increase in the effective area creates an adverse pressure gradient which induces the
separation of the vorticity layer on the lower wall.

Figure 7(c) corresponds to the phase of maximum flow rate through the channel
and the vorticity plot indicates a relatively well-ordered laminar flow. Furthermore,
as the lower separated shear layer rolls up into a large vortex at about x1/H = 15,
it reattaches on the lower wall. This leads to an expansion in the effective area for
the flow above this shear layer and the resulting adverse pressure gradient induces
the separation of the upper shear at about x1/H = 16. Further downstream, the
separated upper shear layer attaches for the second time at about x1/H = 17 and this
again induces the separation of the lower shear layer, an event that occurs at about
x1/H = 18. This behaviour of alternate separation and reattachment in the two shear
layers has been well documented by Tutty (1992) who studied the same flow at a
lower Reynolds number using two-dimensional simulations.

Figure 7(d) corresponds to the phase where the flow rate is half its maximum
value and the mean flow has maximum deceleration. The flow still looks well ordered
and laminar up to about x1/H = 14 where the lower vorticity layer rolls up into a
large clockwise vortex with an identifiable vortex core at about x1/H = 15. However,
further downstream, the shear layers break up into a complex array of vortex
structures. The spatio-temporal dynamics of this region will be explored further in
subsequent sections.

Figure 8 shows the corresponding sequence of vorticity plots for Re = 1400 which
is roughly in the middle of the Reynolds-number range studied here. The vortex
dynamics in the first two phases is quite similar to that observed at the lower Reynolds
number. Significant differences begin to emerge in figure 8(c) which corresponds to
the maximum flow rate. In particular, the vortex that rolls up in the lower separated
shear layer begins to disintegrate into a complex system of distinct smaller vortices.
Further downstream, the flow is relatively more well ordered and some remnants
of the alternate separation/reattachment structure are still visible. The upper shear
layer which separated from the lip of the constriction also shows some breakup into
discrete vortices which is visible between x1/H of 12 and 13. The flow in the next
phase shown in figure 8(d) is significantly different from that at the lower Reynolds
number. The vortex formed in the lower shear layer has completely disintegrated into
smaller scale structures and no vortex core is identifiable. The breakup of the upper
shear layer into smaller scale structures is also observed to be in an advanced stage.

The final sequence of plots in figure 9 is for Re = 2000 which is the highest
Reynolds number simulated here. Again it is found that the flow up to the first two
stages is quite similar to that at the lower Reynolds numbers. However, in the next
phase (figure 9c), the flow is completely different from that observed for the previous
two cases. First, the shear layer on the lower wall, which for the lower Reynolds
numbers was observed to lift up to and beyond the channel centreline at around
x1/H =14, is found not to exhibit such behaviour at Re = 2000. Instead, the lower



352 R. Mittal, S. P. Simmons and F. Najjar

shear layer separates at about x1/H = 12 and immediately rolls up into a series of
compact vortices in the vicinity of the lower wall. Furthermore, the upper shear layer
that separated from the lip of the constriction rolls up into distinct Kelvin–Helmholtz
type rollers observed in a canonical shear layer (Brown & Roshko 1974). Downstream
of about x1/H = 13, the vortex structures from the two separated boundary layers
interact to produce a highly complex flow. In the last phase (figure 9d) the deceleration
of the flow is observed to diminish the strength of the vortex structures. In particular,
neither of the two separated boundary layers are observed to roll up into distinct
vortices.

Although to our knowledge, the formation of such vortex structures has not been
observed before in any previous computational studies of such flows (barring the
earlier work of Mittal et al. 2001a), the presence of these structures in post-stenotic
flows is well established. In a seminal study exploring the origin of ‘murmurs’ in the
cardiovascular system, Bruns (1959) effectively eliminated turbulence, compressibility
and cavitation as possible causes and convincingly argued that these sounds were
most probably the result of the periodic formation of compact vortex structures in
the flow downstream of arterial constrictions. Since then, a number of experimental
studies have observed and described the formation of such vortex structures in
the flow downstream of a constriction. Of particular note in this regard are the
studies of Cassanova & Giddens (1978) and Lu et al. (1983). In the former, dye
visualizations and hot-film anemometric measurements of the velocity were made in
the flow downstream of a constriction in a pipe. Both steady and pulsatile flows were
employed and the Reynolds numbers (based on pipe diameter and inlet velocity)
ranged from about 300 to 2500. Flow visualizations clearly indicated the presence
of vortex shedding in the separated shear layers and frequency spectra exhibited a
distinct peak corresponding to this vortex shedding. In the study of Lu et al. (1983),
the flow downstream of an axisymmetric constriction in a pipe was measured using
laser-Doppler anemometry. The inlet flow to the pipe was steady and the Reynolds
number (based on constriction diameter and velocity through the constriction) was
about 50 000. The frequency spectra of the velocity exhibited a distinct peak which
was associated with the periodic formation of vortex structures in the separated shear
layers. In addition to these two studies, the vortex-shedding phenomenon in post-
stenotic flows has also been described in other studies by Giddens and coworkers
(Khalifa & Giddens 1981; Ahmed & Giddens 1983, 1984; Lieber & Giddens 1990).

It should be pointed out that all the flow visualizations shown using spanwise-
averaged data do not give a full appreciation of the three-dimensionality of the
flow. Figure 10 shows a three-dimensional visualization of the instantaneous spanwise
vorticity at a phase corresponding to figure 9(c). From this figure, becomes clear that
the shear layers that develop on the constriction and on the lower wall are almost
perfectly two-dimensional but become highly three-dimensional further downstream.

4.2. Mean flow characteristics

Figure 11 shows the streamlines corresponding to the mean velocity for the Re =
750, 1400 and 2000 cases simulated here and a few trends are readily apparent from
this figure. For all cases, a relatively large recirculation region is found to exist
downstream of the constriction in the time-mean flow. These recirculation zones are
indicative of regions where the flow is reversed over a significant portion of each
cycle. Thus, appearance of these recirculation regions is of pathological significance
since first, these are regions of low shear and secondly, these regions can increase
the residence time of blood constituents which can eventually pass into the arterial
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Figure 10. Isosurfaces of instantaneous spanwise vorticity for Re = 2000 corresponding to
figure 9(c). Two isofurfaces corresponding to vorticity levels of ±7.8 have been plotted.

wall (Friedman et al. 1981). The downstream extent of the recirculation zone has
been determined by examining the mean wall shear and noting the location where
this quantity changes sign. For Re = 750, this region extends over a length of
about 3.5H from the tip of the constriction. This length decreases with increasing
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Figure 11. Streamline plot corresponding to mean velocity (a) Re = 750, (b) Re = 1400,
(c) Re = 2000.
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Figure 12. Mean pressure coefficient 〈Cp〉 on the channel walls. (a) Upper wall. (b) Lower
wall. The two vertical lines in this and subsequent figures indicate the location and extent of
the constriction.

Reynolds number and for Re = 2000, the extent of the recirculation region is about
2.8H . As the Reynolds number increases, the boundary layer separating from the
lip of the constriction rolls up closer to the constriction and this results in the
decrease of the extent of the recirculation region. A smaller recirculation bubble is
also observed to form on the lower wall and this is associated with the separation of
the boundary layer from the bottom wall. This recirculation bubble also moves closer
to the constriction with increasing Reynolds number and this is a direct result of the
corresponding reduction in the size of the recirculation region on the upper wall.

Figure 12 shows the distribution of the mean pressure coefficient 〈Cp〉 on the upper
and lower walls. This is defined as 〈Cp〉 = 2〈p − pin〉/ρV 2

max where p and pin are the
pressure, and inlet static pressures, respectively. The variation of the upper-wall mean
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Figure 13. Mean skin friction coefficient 〈Cf 〉 on the channel walls. (a) Upper wall.
(b) Lower wall.

pressure coefficient can be interpreted directly in the context of the mean streamline
pattern shown in figure 11. At x1/H = 9, the flow first enters the constriction and the
increase in velocity results in a steep drop in the pressure coefficient which reaches the
minimum value at the lip of the stenosis at x1/H = 10. Beyond this point, the flow
enters the expansion and the pressure coefficient exhibits a steep increase. However,
because of this strong adverse pressure gradient, the boundary layer on the upper
wall separates at about x1/H = 10.5. The flow expansion is effectively halted by
the separation of the boundary layer and this produces a plateau in the pressure
coefficient between x1/H = 10.5 and 12.5. As the separated shear layer attaches
to the upper wall, the flow experiences expansion again which results in a sharp
increase in pressure coefficient between x1/H = 12.5 and 14. This adverse pressure
gradient results in the separation of the boundary layer on the lower wall and the
small recirculation bubble located on the lower wall is associated with this separation
process. The presence of this small recirculation bubble in the mean flow reduces the
effective area of the channel and the resulting flow acceleration produces a drop in
the static pressure which is most apparent for Re = 750 at around x1/H = 15. The
pressure coefficient on the lower wall shows similar behavior although the pressure
gradients are not as high as for the upper wall.

As pointed out earlier, mean wall shear plays an important role in arterial disease
and in figure 13 is shown the distribution of mean skin friction coefficients 〈Cf 〉 on
the upper and lower walls. This is defined as 〈Cf 〉 = 2〈τw〉/ρV 2

max where τw is the
wall shear stress. On the upper wall, the largest magnitude of skin friction is found
near the lip of the constriction which is consistent with the high mean velocity at
this streamwise location. Downstream of the constriction, the shear stress becomes
negative and this is associated with the presence of the large mean recirculation
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Figure 14. Contour plot of turbulent kinetic energy 〈u′′
1u

′′
1〉/2 for various cases.

(a) Re = 750. (b) Re = 1400. (c) Re = 2000.

region on the upper wall. As the high-speed flow coming through the constriction
attaches to the upper wall, it results in an increase in the skin friction and the local
maxima in 〈Cf 〉 at about x1/H = 14 is due to this phenomenon. Downstream of
this region, the flow begins to revert back to a nominal pulsatile flow in a channel
and the skin friction values are fairly uniform and similar to those on the wall
upstream of the constriction. The curve corresponding to Re = 750 clearly shows
some undulations which are indications of the alternate separation/reattachment
process that was described earlier in the paper. A similar behavior is also observed
on the lower wall although, as for the wall pressure, streamwise gradients in the skin
friction are also significantly lower than those observed on the upper wall.

4.3. Fluctuation characteristics

Figure 14 shows contour plots of the turbulent kinetic energy per unit mass which
is defined as 〈u′′

i u
′′
i 〉/2 non-dimensionalized by V 2

max for the Re = 750, 1400 and
2000 cases. First, for all cases, it is observed that there are two distinct regions of
increased turbulence activity and these are associated with the two shear layers that
separate from the upper and lower walls. Secondly, as expected, the intensity of
the turbulent fluctuations increases with Reynolds number. On the other hand, the
streamwise extent of the region of intense turbulent fluctuations is found to reduce
with increasing Reynolds number. This is because as the Reynolds number increases,
both the separated shear layers become more unstable and roll up into vortices at
an increasingly earlier stage. Since the turbulent fluctuations are associated with the
breakup of these vortices, earlier vortex roll-up is accompanied with an upstream
advancement of the regions of high turbulence activity. It is also worth pointing out
that for Re = 1700 and 2000, there is a close correlation between regions of high
turbulent fluctuations and those of high SGS eddy viscosity (as shown in figure 6).
This re-emphasizes the favourable quality of the dynamic SGS model of adding
dissipation not in an ad hoc manner, but only in regions where there is significant
activity in the small scales.

Figure 15 shows profiles of the turbulent kinetic energy at a number of streamwise
locations for Re = 750, 1400 and 2000. The key feature of this plot is that even
though the turbulent kinetic energy is significantly lower for Re = 750 in the regions
where the shear layer form, at x1/H = 19 which is 9H downstream of the constriction,
the magnitude and shape of the turbulent kinetic energy variation is similar for all
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Figure 15. Profiles of the turbulent kinetic energy at various streamwise locations for
Re = 750, 1400 and 2000.

the cases. This implies that increased turbulence intensity is accompanied by an
increase in dissipation at higher Reynolds number. This tends to diminish the
intensity of the turbulent fluctuations so much that beyond about ten channel
heights downstream of the constriction, flows at all Reynolds numbers exhibit
similar turbulent fluctuation characteristics. This observation indicates that for a
given stenotic severity, variability in the Reynolds number (which may for instance
be due to a difference in the arterial diameter or blood pressure) produces a turbulent
flow which is different only in the near vicinity of the stenosis. Further downstream,
the turbulent flow develops a more universal character which is independent of the
Reynolds number.

There is strong evidence to suggest that post-stenotic dilatation is due to arterial
damage caused by pressure fluctuations associated with the complex unsteady flow
created in this region (Lighthill 1975). Furthermore, wall pressure fluctuations are
a key ingredient in acoustical techniques for detecting arterial stenosis such as
phonoangiography (Ask et al. 1995). In this technique, sound caused by wall pressure
fluctuations that are transmitted through the arterial wall and the surrounding tissue,
is detected using an externally placed transducer. Subsequently, the intensity and
frequency content of the sound is analysed in order to estimate the severity of the
stenosis. Correlating the pressure fluctuation intensity with the vortex dynamics and
understanding the effect of various flow parameters on the pressure fluctuations is
therefore of relevance to this and other non-invasive acoustical detection techniques.

In figure 16 we have plotted the distribution of the coefficient corresponding to

the root-mean-square pressure fluctuation, which is defined as C ′′
p = 2〈p′′2〉1/2

/ρV 2
max ,

on the upper and lower walls, respectively, for Re = 750, 1400 and 2000. Note that
p′′ is the fluctuation away from the phase average and represents fluctuation with
frequencies much higher than the pulsation frequency. Focusing first on the upper
wall, we find that the dominant peak in wall pressure fluctuation occurs in the range
13 < x1/H < 14 for all the cases. A mechanism for the production of these large
wall pressure fluctuations is evident from figures 7–9 which indicate that the region
13 < x1/H < 14 is precisely where the upper shear layer reattaches to the upper
wall. Interaction with the wall combined with the inherent instability of the shear
layer leads to the formation of smaller vortex structures which cause the wall pressure
fluctuations. This observation is in line with the experiments of Tobin & Chang (1976)
who also associated the peak in the intensity of wall pressure fluctuation with the
reattachment of the shear layer. Apart from this similarity, the variation of the pressure
fluctuation for Re = 2000 is quite different from the two lower-Reynolds-number
cases. The peak pressure fluctuation for both Re = 750 and 1400 is sharp whereas that
for Re = 2000 is more broad. This is consistent with the fact that at lower Reynolds
numbers, the shear layer is expected to exhibit less cycle-to-cycle and spanwise
variations in the location where it reattached to the wall. As the Reynolds number
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Figure 16. Root-mean-square pressure fluctuation C ′′
p = 2〈p′′2〉1/2/ρV 2

max on the channel
walls. (a) Upper wall. (b) Lower wall.

increases to 2000, the shear layer becomes more chaotic and exhibits a larger cycle-
to-cycle and spanwise variation in the reattachment location and this results in a
broader peak in the wall pressure fluctuations. Another significant difference between
Re = 2000 and the other two cases is that the wall pressure fluctuation shows only
one clear maxima for Re = 2000 whereas for both the lower-Reynolds-number cases
it shows another region of increased wall pressure fluctuations around x1/H = 17.
Again, from figures 7(c) and 8(c) we find that this is the region where the upper shear
layer undergoes its second reattachment to the upper wall. For Re = 2000, owing to
increased disorder in the flow, the alternate separation/reattachment scenario is not
observed and the flow does not exhibit a clear secondary peak.

Figure 16(b) shows the wall pressure fluctuation on the lower wall and this shows
a number of characteristics that are different from those observed at the upper wall.
First, the peak fluctuation for Re = 2000 occurs at around x1/H = 13 whereas for
the two lower Reynolds numbers, the peak is located at around x1/H = 15. Again,
the increased wall pressure fluctuations can be correlated with the vortex dynamics.
As is clear from figures 7(c) and 8(c), for Re = 750 and 1400, the lower shear layer
rolls up into a large vortex at around x1/H = 15. This vortex then disintegrates into
smaller scale structures in the vicinity of the wall and velocity fluctuations associated
with these vortex structures produce the wall pressure fluctuation in this region. For
Re = 2000, the vortex dynamics is quite different. The lower shear layer rolls up
into a small but intense vortex at around x1/H = 12.5 (figure 9c) and immediately
collapses into smaller scale structures. Consequently, the peak wall fluctuation for
Re = 2000 occurs at around x1/H = 13. Finally, as with the upper wall, the two
lower-Reynolds-number cases show a secondary peak in the wall pressure fluctuation
in the region 19 < x1/H < 20 whereas Re = 2000 shows no such peak. As before,
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Figure 17. Root-mean-square skin friction coefficient C ′
f = 2〈τ ′2

w 〉1/2/ρV 2
max on the channel

walls. (a) Upper wall. (b) Lower wall.

as can be seen from figures 7 and 8, the lower shear layer undergoes its second
separation–reattachment process in this region thereby causing an increase in the wall
pressure fluctuation. Figure 9 for Re = 2000 does not indicate any such activity.

In addition to the wall pressure fluctuations, fluctuations in the wall shear stress
may play an important role in the initiations and progression of arterial disease.
Thus, accurate prediction of this quantity along with an understanding of the
mechanisms/events that produce high levels of wall shear stress fluctuations is useful.
Figure 17 shows the variation of coefficient of fluctuating wall stress defined as
C ′

f = 2〈τ ′
w

2〉1/2/ρV 2
max on the upper and lower walls, respectively, for Re = 750, 1400

and 2000. Note that τ ′
w is the fluctuation away from the mean and includes the

cycle-to-cycle fluctuations in this quantity. Thus, upstream of the stenosis where
the fluctuation is primarily due to the cyclical oscillation in the inflow velocity, the
variation of this quantity provides a direct, baseline measure of the wall shear stress
fluctuation that would be present in an unconstricted channel. For all cases, a large
peak in the fluctuating wall shear is found on the upper wall just upstream of the lip
of the constriction which is primarily due to the cyclical variation in the flow velocity.
Downstream of the constriction, the wall shear exhibits a more complex variation,
but clear trends emerge with increasing Reynolds number. First, all cases show two
or more peaks in the wall stress fluctuation downstream of the constriction. The first
peak, which is also the dominant peak in the post-constriction region for all cases,
occurs at about x1/H = 13.5 for Re = 750 and shifts upstream monotonically with
Reynolds number to about x1/H = 12.8 for Re = 2000. This peak is clearly associated
with the location where the upper shear layer attaches to the upper wall and the
upstream shift of the peak with increasing Reynolds number is due to the shortening
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of the shear layer and earlier roll-up. Also visible for Re = 750 are a series of smaller
peaks further downstream at about x1/H = 18, 22.8, 26.2 and 28.5 which are a
clear signature of the alternate separation/reattachment process described earlier in
the paper. Smaller peaks are also visible at higher Reynolds numbers; however, as
Reynolds number increases, these peaks diminish in strength. In fact for Re = 2000,
no clear peak downstream of the dominant peak at x1/H = 12.8 is clearly visible.
Instead, there is a region of slightly increased wall shear fluctuation up to about
x1/H = 18 beyond which the fluctuation level returns to a level comparable to that
of the flow upstream of the constriction.

Figure 17(b) shows the corresponding shear stress fluctuation level on the lower
wall. In general, the peak shear stress fluctuation level on the lower wall which occurs
at about x1/H = 10 is half the value at the upper wall. As with the upper wall, a
second peak in shear stress fluctuation is present downstream of the constriction for
all cases. The peak is located at about x1/H = 16 for Re = 750 and shifts steadily
upstream with increasing Reynolds number such that at Re = 2000, it is located at
about x1/H = 14. This peak is also associated with the location where the shear layer
that separates from the lower wall, rolls up into a vortex. As the Reynolds number
is increased, the vortex roll-up occurs further upstream and, consequently, this peak
also shifts upstream. Furthermore, as with the upper wall, additional smaller peaks
are present further downstream at the lower Reynolds numbers and these are also a
consequence of the alternate separation/reattachment of the lower shear layer.

From a pathological view point, the variation in the shear stress fluctuation level
observed here may have several important implications. First, the higher shear stress
fluctuation level on the upper wall might indicate that for a non-symmetric stenosis,
greater instance of pathological behaviour in the endothelial cells may occur on the
side of the wall on which the stenosis is the thickest. Furthermore, at lower Reynolds
numbers, this behaviour may occur at a number of localized regions downstream of
the stenosis whereas at higher Reynolds numbers, the damage will occur primarily in
one localized region.

4.4. Spectral analysis

In this section, we focus on analysing the temporal variations and frequency spectra
of the velocity and pressure in the region downstream of the constriction. As in many
previous investigations, this analysis is primarily aimed at addressing two issues, the
first being the spectral dynamics in pulsatile post-stenotic flows and the second, the
origin and interpretation of sounds associated with the unsteady post-stenotic blood
flow. The spectral dynamics of the Re = 2000 case is described in detail and this is
then used as a baseline to compare the changes in the observed spectral signature of
the flow as the Reynolds number is reduced to 750. At any given (x1, x2) location,
the frequency spectrum is computed at all the grid points along the homogeneous
spanwise direction and then averaged over the span.

Figure 18 shows the temporal variations of the streamwise velocity (u1) at
the channel centreline at seven different streamwise locations downstream of the
constriction and figure 19 shows the corresponding velocity fluctuation u′′

1 at these
locations. In these two plots, φ denotes the phase in the pulsation and this has been
arbitrarily set to zero at the beginning of one cycle where Q(t) = 0. Furthermore,
figure 20 shows the frequency spectrum corresponding to the variation of u′′

1. It
should be noted that the temporal variations shown in figures 18 and 19 are at a
fixed spanwise station whereas the frequency spectra is obtained by averaging the
individual spectra at a particular (x1, x2) location across the span. The frequency
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Figure 18. Temporal variation of u1 at various location downstream of the constriction along
x2/H = 0.5 and x3/H = 0 for Re = 2000. (a) x1/H = 10.46, (b) 10.63, (c) 10.85, (d) 12.05,
(e) 14.53, (f ) 15.73, (g) 17.43.



362 R. Mittal, S. P. Simmons and F. Najjar

(a)

u��1

0.4

0

0 1 2 3
(b)

0 1 2 3
(c)

0 1 2 3

(d )

0 1 2 3

(e)

0 1 2 3

(g)

0 1 2 3

( f )

0 1 2 3
φ/2π

–0.2

u��1

0.4

0

u��1

1

0

–1

0.2

–0.2

0.2

u��1

1

0

–1

u��1

1

0

–1

u��1

1

0

–1

u��1

1

0

–1

Figure 19. Temporal variation of u′′
1 at various location downstream of the constriction along

x2/H = 0.5 and x3/H = 0 corresponding to previous figure. (a) x1/H = 10.46, (b) 10.63,
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Figure 20. Frequency spectra corresponding to the temporal variation of u′′
1 shown in

figure 19. Each curve is marked with a letter which denotes the location of the point vis-à-vis
figure 19. Note that dotted, dashed and dash-dot straight lines correspond to S−7, S−5/3 and
S−10/3 variations, respectively. (i) Spectra at locations corresponding to (a), (b), (c) and (d).
(ii) Spectra at location (d) replotted to facilitate detailed comparison with empirical scalings.
Dotted line in this plot corresponds to the location near the bottom wall at x1/H = 12.05.
(iii) Spectra at location (e) and (f ). (iv) Spectra at location (g).

in these plots has also been non-dimensionalized by Vmax/H and denoted by the
symbol S.

Figures 18(a), 19(a) and 20(a) correspond to location x1/H = 10.46 which lies
upstream of the region where the vortex roll-up occurs (see figure 9). At this location,
the velocity variation is mostly sinusoidal. The u′′

1 plot at this location indicates that
the variation is highly repeatable from cycle to cycle except for a relatively small
fluctuation at the beginning of the pulsation. The corresponding frequency spectra in
figure 20 show no distinct peaks, indicating that the flow at this location is laminar
and almost strictly cyclical.

Figures 18(b) and 19(b) show the temporal variation of u1 and u′′
1, respectively, at

x1/H = 10.63. The variation of u1 looks similar to that at the previous location,
however, the plot of u′′

1 reveals some key differences. Figure 19(b) shows that
there are significant cycle-to-cycle variations in the velocity at this location and
these fluctuations are almost uniformly spread over the entire cycle. Although visual
inspection of the velocity variation does not indicate any periodicity in the velocity
fluctuation (at least at this one particular spanwise station) the frequency spectrum
shows the presence of a distinct peak with a frequency corresponding to S = 1.8.
Careful examination of the vorticity field (shown in figure 9) indicates that the
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observed high frequency is associated with the formation of Kelvin–Helmholtz type
rollers in the shear layer that separates from the lip of the constriction.

As pointed out before, a number of previous experimental studies have observed
and characterized the periodic formation of vortex structures in such flows. In
particular, Cassanova & Giddens (1978) investigated the vortex-shedding phenomena
downstream of an axisymmetric constriction in a circular pipe with sinusoidally
varying pulsatile inflow. In their study, the area constriction ratio d2/D2 (where D is
the unoccluded pipe diameter and d is the diameter of the occluded section) was equal
to 0.5 and 0.25, the Reynolds number (based on D and maximum inlet velocity) was
2540 and the Womersley frequency parameter (D

√
2π/T ν/2 where T was the time-

period of the pulse) was equal to 15. Thus, the Reynolds numbers, constriction ratio
and pulsatile waveform are comparable to this particular simulation and therefore,
despite the other differences, it is worthwhile making a comparison between the two.

Based on the discussion in the paper of Cassanova & Giddens (1978), the shedding
frequency (f ) non-dimensionalized by uj/d , where uj is the peak section-averaged
flow velocity through the constriction, is in the range of 0.5–1 for the d2/D2 = 0.5
stenosis. Lu et al. (1983) who investigated the flow downstream of an axisymmetric
constriction in a pipe with steady inflow at a Reynolds number (based on pipe
diameter and maximum inlet velocity) of about 17 000 also found a non-dimensional
vortex-shedding frequency (f uj/d) ranging from about 0.5 in the near vicinity of
the constriction to about 0.1 further downstream. A similar non-dimensionalization
(i.e. with h and peak section-averaged velocity through the constriction which is
equal to (HVmax/h)) of the vortex-shedding frequency yields a value of 0.45 for the
current simulation which is in reasonable agreement with the experimental results of
both these studies. This indicates that the vortex shedding observed in the current
simulation is a robust phenomena that is characteristic of these flows notwithstanding
the differences in the geometry and other features of the flow configuration.

Figures 18(c) and 19(c) show the temporal variation further downstream of the
constriction at x1/H = 10.85. This location is downstream of the position of initial
roll-up of vortices and lies in the region where the vortices grow in size and start
interacting with the vortex structures in the recirculation region. The variation of
u′′

1 is similar to that observed at the previous location although the magnitude is
considerably larger. This is a clear indication of the rapid growth of the vortex
structures as they convect downstream in this region. The corresponding frequency
spectra in figure 20(c) does not indicate a distinct peak at the vortex-shedding
frequency of S = 1.8, but does show a rapid roll-off in the energy beyond this
frequency. The absence of a distinct peak in the frequency spectrum is an indication
of the growing complexity of the vortex structures as they convect downstream in
this region.

Figures 18(d) and 19(d) show the temporal variation at x1/H = 12.05. In the
context of the vorticity plot shown in figure 9(c), this location can be identified with
the downstream end of the shear layer that separates from the lip of the stenosis.
In this region, the vortex structures have grown to a size that is comparable to that
of the constriction and begin interacting with the upper channel wall. The temporal
variation shows a marked change from the previous locations. In particular, each
cycle exhibits a duration of high-intensity complex fluctuation followed by a period
of low-level activity. The period of intense fluctuations begins at about φ/2π = 0.35
and ends at about φ/2π = 0.8. The rest of the cycle is a period of relatively reduced
fluctuation intensity. Thus, a significant portion of the high-intensity fluctuations
occurs during the deceleration phase of the cycle and this is consistent with the
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previous experimental observations (Khalifa & Giddens 1981; Lieber & Giddens
1990; Cassanova & Giddens 1978). The corresponding frequency spectra plotted in
figure 20(i) when compared with the spectra at the previous locations indicates a
fuller spectrum characteristic of a transitional flow.

In order to facilitate further analysis, the spectrum at this location has been
plotted in figure 20(ii). In these and subsequent plots, we have also included lines
corresponding to S−5/3, S−10/3 and S−7. The S−5/3 variation is associated with the well-
known inertial subrange (Tennekes & Lumley 1972). A noticeable inertial subrange
in the spectra indicates a well-developed turbulent flow. The S−7 variation on the
other hand characterizes the dissipation range (Hinze 1975) where energy decay is
dominated by viscous forces. The inclusion of the S−10/3 line is motivated by previous
investigations of post-stenotic flow by Kim & Corcoran (1974) and Lu et al. (1980)
who found evidence of such a range in the velocity spectra of post-stenotic flows.
In particular, Lu et al. (1980) who obtained in vivo measurements of post-stenotic
flows found that the velocity spectra rolled off from a −5/3 to a −10/3 slope at
a distinct frequency which was associated with the arterial murmur. In the current
study also, we investigate the presence of these spectral ranges in order to compare
the current results with these previous studies. Careful examination reveals that the
spectra at x1/H = 12.05 do show a change in slope at about S = 1.8. Comparison
with the various frequency scalings indicates that between S = 1.8 and 3.0, the
spectrum follows a −10/3 variation and then gradually rolls off to a −7 slope at
higher frequencies. Below S = 1.8, the slope of the spectrum is clearly less than
−10/3. Between S = 0.7 and 1.8, the slope of the spectrum matches favourably with
the −5/3 line although this match is tenuous at best.

Figures 18(e, f ) and 19(e, f ) correspond to locations x1/H = 14.53 and 15.73,
respectively, and both these locations exhibit similar behaviour. The period of high-
intensity fluctuation still occurs roughly between φ/2π = 0.35 and 0.8 at these two
locations, but the reduction in the intensity of fluctuation with downstream distance
is apparent, especially at x1/H = 15.73. The frequency spectra for these two locations
are shown in figure 20(iii). The key difference between these and the spectra at the
previous location is the absence of the −10/3 range. At these two locations, the
spectra shows a −5/3 range that extends from about S = 0.4 to 1.0. Beyond this
frequency, the spectra rolls off gradually and attains a slope of −7 at around S = 3.0.

Finally in figures 18(g) and 19(g) show the temporal variations of the velocity
at x1/H = 17.43. As can be seen from figure 9, this location is far downstream
of the region which is dominated by the shear layers from the upper and lower
walls. At this downstream location, the velocity fluctuations are of a much lower
magnitude and furthermore, the intense activity occurs in a shorter duration ranging
from φ/2π = 0.5 to 0.8. The frequency spectra corresponding to this location has
been plotted separately in figure 20(iv). Examination of this spectrum reveals that it
closely follows a −5/3 slope from S = 0.2 to 1.8 and rolls off rapidly to a −7 slope
beyond that. The relatively large inertial subrange is indicative of a well-developed
turbulent flow in this region. Furthermore, even though this location is far enough
downstream that it is not under the direct influence of the shear-layer vortices, the
roll-off in the spectrum from a −5/3 to −7 slope at roughly S =1.8 indicates that the
spectral dynamics is still governed by the fluctuations associated with the shear-layer
vortices.

In general, the current data support previous experiments of post-stenotic flows
that have found these various regimes in the frequency spectra of post-stenotic flows.
The fact that the current planar stenosis model produces results that are in line with
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experiments carried out in vitro in axisymmetric configurations as well as in vivo
studies again supports the assertion that the general flow features of post-stenotic
flows are relatively insensitive to the details of the geometric configuration.

Analysis of the velocity fluctuation and spectra allows us to connect the spectral
dynamics with the dynamics of the vortex structures. Furthermore, the presence and
extent of the inertial subrange in the velocity spectra provides a straightforward
indication of how well established the turbulence is in the flow downstream of the
constriction. However, the characteristics of the sound produced by post-stenotic flows
(arterial murmurs) are governed not by the velocity fluctuation but by the pressure
fluctuations. In particular, it is the wall pressure fluctuations that are transmitted
through the arterial walls and surrounding tissue and detected externally as an
audible acoustic signal. Thus, analysis of the pressure fluctuations and corresponding
spectra should provide some insight into the characteristics of sounds produces by
post-stenotic flows. With this as motivation, we examine the pressure fluctuation and
corresponding frequency spectra both in the midstream and upper and lower walls.

Figure 21 shows the pressure fluctuation (p′′) non-dimensionalized by ρV 2
max/2 at

the same seven midstream locations for which the velocity fluctuation is shown in
figure 19. The corresponding frequency spectra are shown in figure 22. The first
location at x1/H = 10.46 is upstream of where the shear-layer vortices are formed
and at this location, the pressure fluctuations shown in figure 21(a) are relatively
small and distributed evenly throughout the flow cycle. The frequency spectra at this
location show a small but distinct peak at S = 1.8 which has been established as
the vortex-shedding frequency for this particular flow. This is indicative of the elliptic
nature of the pressure field which senses vortex structures that form periodically
further downstream.

Figure 21(b) shows the pressure fluctuation at x1/H = 10.63 Although no pattern
of periodicity can be discerned in these fluctuations, it is noted that the fluctuation
level is somewhat higher around midcycle, i.e. around φ/2π = 0.5. The corresponding
frequency spectrum shows a large and distinct peak at the vortex-shedding frequency
of S = 1.8 and this is commensurate with the peak observed in the velocity spectrum
at this location.

Figure 21(c) shows the pressure fluctuation at x1/H = 10.85, and at this location
there is a significant increase in the fluctuation level. The period of increased activity
is centred around the midcycle with large cycle-to-cycle variation in the pattern of
fluctuations. The corresponding frequency spectrum shows two distinct peaks, one
at S = 1.8 and the other at about S = 1.1. We believe that this somewhat lower
frequency is associated with the periodic formation of vortices in the shear layer
that separated from the lower wall. The velocity spectra near the lower wall at
x1/H = 12.05 which is shown in figure 20(ii) also exhibits a peak at around S = 1.0
and this supports our hypothesis. Thus, the dynamics of the flow downstream of this
asymmetric constriction is governed by two incommensurate frequencies and this is
expected to produce complex dynamical behaviour in the flow downstream of this
region.

Figure 21(d) shows the pressure fluctuation at x1/H = 12.05 and, at this location,
there is a significant increase in the fluctuation intensity and duration. There is a clear
separation between periods of high and very low fluctuation activity with the former
occurring almost exclusively between φ = 0.35 and 0.85 in every cycle. The frequency
spectrum at this location, which is shown in figure 22(i), does not exhibit any distinct
peaks. However, it does exhibit a sharp roll-off beyond about S = 1.2 which is in line
with the frequency of the lower shear layer.
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Figure 21. Temporal variation of p′′ at various locations downstream of the constriction
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Figure 22. Frequency spectra corresponding to the temporal variations of p′′ shown in
figure 21. Each curve is marked with a letter which denotes the location of the point vis-à-vis
the previous figure. Note that solid, dotted and dashed straight lines correspond to S−7/3,
S−10/3 and S−11/3, respectively. (i) Spectra at locations corresponding to (a), (b), (c) and (d).
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In the past, the scaling of the pressure spectra in post-stenotic flows has been
investigated by a number of workers. In particular, previous investigations of Clark
(1977) and Fredberg (1977) found that wall pressure spectra gradually approached
a slope of −10/3 at higher frequencies. No physical justification for this scaling was
provided, although it is likely that the basis for this lies in the −5/3 inertial range
velocity spectrum and the quadratic dependence of pressure on velocity in inviscid
flows. In an unrelated but relevant study, George et al. (1984) analysed the pressure
spectra in homogeneous, turbulent free shear flow. The approach employed by them
was to directly Fourier transform the integral solution to the Poisson equation
for a homogeneous constant-mean-shear flow. The contribution to the pressure
fluctuation spectrum was decomposed into turbulence–mean-shear interaction terms
and a turbulence–turbulence interaction terms. Furthermore, assuming a k−5/3 scaling
in the velocity spectrum (where k is the wavenumber), it was shown that the
turbulence–mean-shear interaction component of the pressure fluctuation, which
would be dominant in the energy containing range, would scale as k−11/3. On the
other hand, the turbulence–turbulence interaction term, which would dominate the
high-wavenumber portion of the spectra would scale as k−7/3, a result they note has
previously been obtained by Inoue (1954) and Batchelor (1953). In the case of an
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anisotropic flow, they note that turbulence–mean-shear interaction will also produce
a k−9/3 type of scaling.

In comparing the scaling of the pressure fluctuations for the current flow with the
analysis of George et al. (1984), a number of points must be noted. First, even though
initial development of the shear layer that separates from the lip of the constriction
occurs away from the channel walls, the flow downstream of the constriction cannot
be classified as a free shear flow. In fact, this flow can be viewed as a pulsatile wall-
bounded jet. Furthermore, the current flow is highly non-homogeneous in the region
of interest. Thus, it is not clear how the presence of the wall and flow inhomogeneity
will affect the scaling of the pressure spectra. However, despite these differences, the
analysis of George et al. (1984) provides some analytical and physical background
for the analysis of the pressure spectra. It is expected that comparison itself, whether
favourable or not, will yield valuable insight into the dynamics of this flow.

In figure 22(ii), the pressure spectrum at x1/H = 12.05 is plotted separately along
with lines corresponding to S−9/3, S−10/3 and S−11/3 scalings. None of the plots in this
series showed any match with the S−7/3 scaling, and therefore this scaling is not shown
on these plots. Examination of the spectra reveals that within a frequency range from
about S = 1.2 to about 3, the slopes of the spectra match best with the S−11/3 line.
The spectra at two downstream locations, x1/H = 14.53 and 15.73, are plotted in
figure 22(iii) along with lines representing the three different scalings. Again, careful
examination reveals that between roughly S = 1.8 and 3.2 both spectrum are in best
agreement with the S−11/3 scaling. Finally, the spectrum at location x1/H = 17.46
does not show any observable match with any of these three scalings. Thus, it may
be concluded from these plots that there is fair evidence that the pressure spectrum
in the mid-channel region shows some similarity to a free-shear flow. In particular,
the inertial subrange matches best with the S−11/3 scaling.

Since arterial murmurs are created by wall pressure fluctuations, it is also useful
to analyse the spectrum of the pressure fluctuations on the upper and lower walls.
However, at the walls, the comparison with the analysis of George et al. (1984)
is not expected to be valid since the velocity and pressure fluctuations are most
probably affected by the presence of the wall and show little resemblance to a free-
shear flow. Since the region of highest pressure fluctuation intensity is expected to
dominate the sound produced by the flow, here we focus only on this region of the
wall. Figures 23(a) and 23(b) show the wall pressure fluctuations on the upper and
lower walls, respectively, at x1/H = 13.06 which is in the near vicinity of the peak
in wall pressure fluctuation intensity as indicated by figure 16. Note that just as
in the midstream locations, the pressure fluctuations at the wall also occur roughly
between φ = 0.35 and 0.85. During the rest of the cycle, the pressure fluctuation level
is very much lower. However, the amplitude of the wall pressure fluctuations in these
region is significantly higher than all the midstream locations examined earlier in this
section.

Figure 24 shows the corresponding frequency spectra at these locations and a
number of observations can be made regarding this plot. First, no distinct peak
corresponding to the shedding frequency of either shear layers is observed in the wall
spectra. The wall pressure spectrum on the lower wall shows a broad peak at around
S = 0.5, whereas the corresponding spectrum for the upper wall exhibits no peak
at all. However, both spectra exhibit a distinct roll-off at around S = 1.0 which is
commensurate with the observed shedding frequency of the lower shear layer. For the
lower wall, the spectrum beyond S ≈ 1 rolls off with a well-defined slope of −17/3.
In contrast, for the upper wall, the roll-off beyond S ≈ 1 is gradual up to about S = 3
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Figure 24. Frequency spectra corresponding to the temporal variations of p′′ on the wall at
x1/H = 13.06 shown in figure 23. Dotted, upper wall; solid, lower wall. The solid straight line
in the plot corresponds to S−17/3.

and exhibits a sharper than −17/3 roll-off beyond this frequency. This more complex
behaviour can be explained by noting that because of the upward deflection of the jet
after the constriction, the upper wall is affected by the dynamics of both shear layers,
whereas the lower wall is affected for the most part by only the lower shear layer.
Thus, the upper wall pressure spectrum shows the effect of two energetic frequencies,
whereas the lower wall pressure fluctuation corresponds only to the lower shear-layer
dynamics. The physical and theoretical justifications for the observed S−17/3 are not
apparent at this time.

A limited set of results for the Re =1000 case are presented in order to demonstrate
the general similarity in the spectral behaviour between this and the Re = 2000 case.
Figure 25 shows the frequency spectra of the streamwise velocity fluctuation (u′′

1)
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Figure 25. Frequency spectra corresponding to the temporal variation of u′′
1 along the channel

centreline for the Re = 1000 case. (i) Spectra at locations (a) x1/H = 10.41, (b) 10.75 and
(c) 12.05. (ii) Spectra at locations (d) x1/H = 14.00 and (e) 17.55. The solid, dashed and
dash-dot straight lines correspond to S−7, S−5/3 and S−10/3, respectively.
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Figure 26. Frequency spectra corresponding to the temporal variation of u′′
1 along the channel

centreline for the Re = 750 case. Spectra at locations (a) x1/H = 10.65, (b) 11.33, (c) 12.98 and
(d) 17.16. The solid, dashed and dash-dot straight lines correspond to S−7, S−5/3 and S−10/3,
respectively.

along the channel centreline in the region downstream of the constriction. As in the
Re =2000 case, a distinct peak corresponding to the shear-layer vortex formation
is observed at x1/H = 10.75. The value of the peak frequency is, however, about
S = 1.55 which is lower than the frequency observed for the Re = 2000 case. Further
downstream, the peak disappears and the spectra broadens out. Examination of
spectra at x1/H = 17.55 indicates the presence of a relatively short −5/3 range from
about S = 0.5 to 1.5. Beyond this range, the spectra rolls off and attains a −7 slope
at higher frequencies.

Next, we present frequency spectra for the Re = 750 case which is the lowest-
Reynolds-number case simulated here. Figure 26 shows the frequency spectra of the
streamwise velocity fluctuation (u′′

1) at four locations along the channel centreline
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Figure 27. Wall pressure frequency spectra corresponding to Re = 750 case at locations where
highest intensity of wall pressure fluctuations is found. Solid line, upper wall at x1/H = 13.48;
dotted line, lower wall at x1/H = 14.61.

ranging from x1/H = 10.65 to 17.16. At x1/H =11.33, the spectrum indicates a peak
at about S = 1. However, unlike the higher-Reynolds-number cases, the peak is
quite broad and extends from about S =0.9 to 1.2. It should be pointed out that
visualization of the vortex dynamics does not indicate clear vortex shedding at this
Reynolds number, and it would seem that the peak in the spectra is caused by small-
scale oscillations of the shear layer. Thus, the shear layer behaviour at this Reynolds
number is somewhat different from that observed at the higher Reynolds number.
Furthermore, the spectra further downstream does not show any match with a −5/3
slope, indicating that for the flow at this low Reynolds number there is no transition
to turbulence.

Finally, figure 27 shows the wall pressure spectra at locations on the upper and
lower walls where the intensity of pressure fluctuations is the highest. Also plotted
is a vertical line corresponding to S =1.2, which is the upper extent of the broad
peak observed in the centreline velocity spectrum. On the upper wall, the pressure
spectra clearly shows a sharp break in the vicinity of S = 1.2 which is in line with
our observations of the Re =2000 case. On the lower wall, the break in the spectrum
occurs at about S = 0.8. It should be reiterated that for the Re = 2000 case, it was
found that the characteristic frequency of the shear layer on the lower wall was
lower than that of the upper wall and that the break in the wall pressure spectrum
was associated with these characteristic frequencies. The wall pressure spectra for the
Re = 750 case also shows a similar behavior.

In addition to the three cases for which data are presented in this section, the
frequency spectra corresponding to the velocity and pressure fluctuations have also
been analysed in detail for the Re =1400 and 1700 cases. The analysis indicates that
the shear-layer vortex-shedding frequencies for these two cases are about 1.63 and
1.72, respectively. Thus, the shedding frequency is found to increase monotonically
with Reynolds number and this is commensurate with the experimental study of
Jones & Fronek (1987). Observed values of this non-dimensional frequency for all the
cases are given in table 1. Based on the limited number of cases simulated here, an
attempt has been made to extract an empirical correlation for the observed shear-layer
vortex-formation frequency. Figure 28 shows a plot of log(S) versus log(Re) for the
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Figure 28. Plot of log(S) versus log(Re) for all cases presented here. Best fit (solid) line
indicates that S ∝ Re0.37 for the range of parameters studied here.

various cases simulated here and a best-fit line through these points indicates that

S ∝ Re0.37

for this flow. The exponent in this correlation is found to be much lower than that put
forward by Jones & Fronek (1987). However, this is not entirely unexpected owing
to the difference between the two configurations (asymmetric planar in the current
case versus axisymmetric for Jones & Fronek). In fact, if we compare shear-layer
vortex-shedding frequency for cylindrical and axisymmetric bluff bodies, we find that
frequency increase with Reynolds number is more rapid for the latter. In particular,
for circular cylinders S ∝ Re0.67 (Prasad & Williamson 1996), whereas for spheres, a
fit through well-established experimental data (Sakamoto & Haniu 1990) in the range
800 < Re < 2000 indicates that the Strouhal number of shear-layer vortex shedding
is proportional to Re1.0.

5. Conclusions
Direct numerical simulation and large-eddy simulation have been used to study

pulsatile flow in a channel with a one-sided semicircular constriction over a range
of Reynolds numbers from 750 to 2000. The study is motivated by the quest to
understand the dynamics of flows downstream of severe arterial constrictions. The
non-dimensional pulsation frequency is fixed to a value of 0.024 and this, along
with the chosen range of Reynolds numbers, gives a parametric range which is
relevant to blood flow in the larger arteries of the human cardiovascular system.
It is found that despite the relative simplicity of the flow configuration employed
here, the flow downstream of the constriction in the current simulations, exhibits
a number of features observed before in experiments carried out in more realistic
configurations. Examination of the vortex dynamics indicates that the dynamics of
the flow downstream of the constriction is dominated by two shear layers, one
of which separates from the lip of the constriction and the other, from the lower
wall. Flow visualizations show that beyond a Reynolds number of 1000, a series of
distinct Kelvin–Helmholtz type vortices are formed in the shear layer that separates
off the lip of the constriction. Below this Reynolds number, the formation of these
vortices is not readily evident from the flow visualizations. The appearance of these
vortex structures at higher Reynolds numbers is in line with previous experiments
of Cassanova & Giddens (1978) and Lu et al. (1983) which were carried out in
axisymmetric configurations.
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Mean flow and pressure distribution computed over a number of cycles indicate
a relatively large mean recirculation region on the lee side of the constriction, and
this region is found to reduce in size with increasing Reynolds number. There is a
significant drop in the pressure across the constriction for all the Reynolds numbers
simulated here, and this is attributed to increased mixing induced by the shear
layers downstream of the constriction. As expected, the mean recirculation zones are
associated with low values of skin friction, which is well known in the haemodynamics
field (Zarins & Glagov 1994).

In order to characterize the dynamics of the complex unsteady flow downstream
of the constriction, flow variables have been decomposed into a phase average and a
fluctuation from this average. The phase average includes the time-mean as well as
the low-frequency portion of the variation which is associated directly with the flow
pulsation. On the other hand, the fluctuation from the phase average contains only
the high-frequency content which is characteristic of the non-deterministic turbulence
associated variations in the flow. The computed turbulent kinetic energy indicates
that the two shear layers are the primary turbulence-producing mechanisms in the
flow downstream of the constriction. As the Reynolds number increases, the vortex
structures that form in these shear layers become more energetic, leading to an
increase in the turbulent kinetic energy. However, the increased level of turbulence
intensity is accompanied by increased dissipation. This tends to diminish the turbulent
kinetic energy faster for the higher-Reynolds-number cases with the net result that by
about ten channel heights downstream of the constriction, the magnitude of turbulent
kinetic energy is quite similar for all the cases simulated here.

Examination of the wall pressure fluctuations indicates that the highest intensity
occurs roughly 3–4 channel heights downstream of the constriction where the
separated shear layers impact on the channel walls. This observation is in line
with the experimental observations of Tobin & Chang (1976) who found similar
behaviour in an axisymmetric configuration. This observation also has relevance
to the phenomenon of arterial murmurs, which are sounds attributed to the flow
downstream of an arterial constriction. In particular, our simulations support the
assertion of Bruns (1959) and Tobin & Chang (1976) that arterial murmurs are most
probably caused by the interaction of the shear layers with the arterial wall and not
by the pressure fluctuations associated with flow turbulence in the core flow. Owing
to the very same phenomena of shear layer–wall interactions, the fluctuation in the
wall shear stress is also the highest in this region, and this has implications for the
localization of arterial pathologies and atherosclerosis (Zarins & Glagov 1994).

Finally, the spectral characteristics of the flow downstream of the constriction are
examined in detail. Over the entire range of Reynolds numbers covered in the current
study, the frequency spectra indicate the presence of a characteristic frequency in
the upper shear layer. For Reynolds numbers higher than 1000, this frequency has
been associated with the formation of distinct Kelvin–Helmholtz type rollers in the
shear layer. At lower Reynolds number, the formation of these vortex structures is
not readily apparent, and it is hypothesized that the frequency corresponds to an
oscillation in the shear layer. This frequency is observed to increase monotonically
with Reynolds number and this is consistent with the observations of Jones &
Fronek (1987). A fit through the limited data available from the current simulations
suggests that the non-dimensional shear-layer vortex-formation frequency increases
as Re0.37. Similar shear-layer vortex formation has been observed in bluff-body wakes
(Sakamoto & Haniu 1990; Prasad & Williamson 1996) and there, too, its frequency has
been found to increase monotonically with Reynolds number. Thus, the connection
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between poststenotic and bluff-body wakes flows that was postulated by Bruns (1959)
turns out to be generally valid. Some limited results on the lower shear-layer spectra
are also presented which indicate that this shear layer exhibits the formation of
vortices at a characteristic frequency which is somewhat lower than the corresponding
frequency of the upper shear layer.

The frequency spectra corresponding to the streamwise velocity indicate that even
at the highest Reynolds number of 2000, the flow up to the region where the separated
shear layers attach to the channel walls is at most transitional in nature. Downstream
of this region, as the shear layer undergoes transition, the vortex structures associated
with the shear layers experience complex interactions among themselves and the
wall. This finally results in a turbulent flow which exhibits a well-defined inertial
subrange, at least for the higher Reynolds numbers. In this turbulent region, the
frequency spectra is observed to break from a −5/3 to a −7 slope at roughly the
frequency corresponding to the shear-layer frequency. Thus, even though the shear
layers themselves have disintegrated by the time the flow convects into this region,
the dynamics of the turbulent flow is clearly governed by the shear-layer dynamics.
At Reynolds number lower than 1000, no inertial subrange is observed, suggesting
that in this range, there is never a full transition to turbulence. The velocity frequency
spectra at the higher Reynolds numbers also show some indication of an S−10/3

scaling in the region upstream of where a well-developed turbulent flow is observed.
This provides some support for past experimental studies (Kim & Corcoran 1974; Lu
et al. 1983) that have reported the presence of such a scaling in flows downstream of
constrictions.

The frequency spectra corresponding to the pressure fluctuations have been analysed
in detail. In the region occupied by the separated upper shear layer, the pressure
spectra also exhibit a clear peak corresponding to the periodic vortex formation.
Further downstream, the pressure spectrum indicates a break in slope at roughly
the frequency corresponding to the characteristic frequency of the lower shear layer.
Furthermore, there are some indications that at the higher Reynolds numbers, the
pressure fluctuation spectra in the mid-channel region exhibit a S−11/3 scaling which
is consistent with the scaling attributed to turbulence–mean-shear interactions by
George et al. (1984).

Wall pressure fluctuation spectra have also been analysed in regions where the
intensity of the pressure fluctuations is high. For the entire range of Reynolds
numbers studied here, it is found that the wall pressure spectra exhibits a sharp break
in the slope at a frequency corresponding roughly to the shear-layer frequency. This
has important implications for the production and analysis of arterial murmurs. If we
accept the hypothesis that the arterial murmurs are primarily caused by wall pressure
fluctuations (Bruns 1959; Lees & Dewey 1970; Tobin & Chang 1976), then the current
simulations suggest that the signature of the shear-layer frequency should clearly be
present in the frequency spectrum of the arterial murmurs. Thus, our conclusion is
very much in line with Jones & Fronek (1987) who have suggested that acoustic
signals from flows through constricted arteries should contain information about the
shear-layer frequency. Therefore, a better understanding of this relationship between
the wall pressure spectrum and the shear-layer dynamics could potentially lead to
more accurate non-invasive acoustic methods for diagnosing the severity of arterial
constrictions.

These computations have been performed at the National Center for Supercomput-
ing (NCSA) at the University of Illinois at Urbana-Champaign. Insightful and detailed
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comments from one of the reviewers greatly improved the quality of the paper. We
would also like to thank Mrs Jodi Gritten-Dorsett for retyping the entire manuscript.
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