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novel structured grid approach which provides an efficient way
f treating a class of complex geometries is proposed. The incom-
ressible Navier-Stokes equations are formulated in a two-
imensional, generalized curvilinear coordinate system comple-
ented by a third quasi-curvilinear coordinate. By keeping all

wo-dimensional planes defined by constant third coordinate val-
es parallel to one another, the proposed approach significantly
educes the memory requirement in fully three-dimensional geom-
tries, and makes the computation more cost effective. The formu-
ation can be easily adapted to an existing flow solver based on a
wo-dimensional generalized coordinate system coupled with a
artesian third direction, with only a small increase in computa-

ional cost. The feasibility and efficiency of the present method
ave been assessed in a simulation of flow over a tapered cylinder.
DOI: 10.1115/1.2354533�

Introduction
In large-eddy simulation �LES� of flows in complex geometries,

he generation of a high-quality mesh and the large memory re-
uirement for the metric quantities of coordinate transformation
re often major obstacles, when a three-dimensional structured,
ody-fitted mesh is employed. The problem is particularly severe
or flow solvers employing the staggered mesh arrangement,
hich is strongly preferred in nondissipative LES codes for sta-
ility and discrete energy conservation �e.g. �1,2��. For instance, at
east 80 �eight positions with ten variables �metric coefficients
lus Jacobian� per mesh element� three-dimensional arrays are
equired, compared to ten three-dimensional arrays for collocated
eshes. This makes LES employing a staggered grid impractical
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on large grids. In addition, the increase of partial derivative terms
in the transformed governing equations cause a significant in-
crease in computational cost.

On the other hand, many geometries in engineering and scien-
tific applications can be handled using a two-dimensional curvi-
linear mesh with mild variations along the remaining third direc-
tion. Frequently observed variations are shift, rotation,
magnification/contraction, and skewing of the curvilinear plane
along a direction perpendicular to that plane. The airplane wing is
an example of the shift and contraction of the airfoil section, and
the blades in an axial compressor or turbine are observed to be
twisted along the radial direction while maintaining the blade sec-
tion profile.

The objective of this study is to exploit these geometric simpli-
fications in the design of a numerical method, which can be ap-
plicable to a wide class of problems while minimizing the
memory requirement and computational cost. To this end, a for-
mulation of incompressible Navier-Stokes equations based on a
“quasi-generalized” coordinate system is proposed. This coordi-
nate system consists of two generalized curvilinear coordinates
and a third quasi-curvilinear coordinate. By keeping all two-
dimensional planes defined by constant third coordinate values
parallel to one another, one can efficiently treat a wide class of
fully three-dimensional geometries, and, at the same time, avoid
the large memory requirement and high-computational cost asso-
ciated with a fully generalized coordinate transformation, espe-
cially when a staggered grid is used for stability of nondissipative
large-eddy simulation. In nondissipative LES, aliasing errors are
controlled by enforcing kinetic energy conservation in contrast to
the LES techniques employing dissipative upwind-biased schemes
or to the implicit LES �3� which relies on a high-order spatial filter
in lieu of a subgrid-scale model. The nondissipative feature was
proven to be important for successful LES of turbulent flows �1,4�
and it has been shown that better stability of the nondissipative
algorithm is achievable by utilizing a staggered mesh �5,6�.

A number of structured grid approaches have been proposed to
handle mildly three-dimensional flow configurations. For instance,
You et al. �5� and Tang et al. �7� proposed methods employing a
three-dimensional grid which is generated by either merely trans-
lating or rotating a whole two-dimensional curvilinear grid along
the remaining third coordinate. The present method significantly
differs from the previous methods �5,7� in that it allows more
general variations of a two-dimensional base grid along the re-
maining third coordinate, and therefore, can be utilized to con-
front problems involving a step further complex geometries.

The incompressible Navier-Stokes equations are transformed to
a quasi-generalized coordinate system in Sec. 2. Then, in Sec. 3,
formulas for some examples of geometric variations and their ap-
plicability are given. In Sec. 4, an implementation of the present
formulation is evaluated by considering the flow over a tapered
circular cylinder, and this is followed by a brief summary in Sec.
5.

2 Transformation of Governing Equations
The incompressible Navier-Stokes equations based on Carte-

sian coordinates are as follows:

�ui

�t
+

�

�xj
uiuj = −

�p

�xi
+

1

Re

�

�xj

�ui

�xj
�1�

�ui

�xi
= 0 �2�

All the coordinate variables, velocity components, and pressure
are nondimensionalized by a length scale L, reference velocity
Uref, and �Uref

2 , respectively. The time is normalized by L /Uref.
Equations �1� and �2� can be rewritten in the conservative form
in a generalized coordinate system as
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�qi

�t
= − Ni�q� − Gi�p� + Li�q� �3�

Diqi = 0 �4�

here q= �q1 ,q2 ,q3�, Ni is the nonlinear convection term, Gi�p� is
he pressure gradient term, and Li represents the diffusion term. Di

enotes the divergence operator. A transformation to generalized
oordinates is introduced in Fig. 1 as

�x1,x2,x3;u1,u2,u3� → ��1,�2,�3;q1,q2,q3� �5�

he variable qi is the volume flux across the faces of the cells,
hich is equivalent to the contravariant velocity components on a

taggered grid multiplied by the Jacobian of the coordinate trans-
ormation. Then, the terms in Eq. �3� are expressed in generalized
oordinates as

Ni�q� =
1

J
�m

i �

�� j

1

J
ck

mqkqj �6�

Gi�p� = �ij �p

�� j �7�

Li�q� =
1

J
�m

i �

��k�kj 1

Re

�

�� j

1

J
cl

mql �8�

here

qj = �k
juk, ck

j = �xj/��k, �k
j = J�cj

k�−1, � jk = J�cj
mck

m�−1

and J = ��cj
mck

m��1/2 for j,k,l,m,n = 1,2,3

When the fully three-dimensional curvilinear coordinate system
s used, the large number of partial derivative terms in the trans-
ormed governing equations and the required memory for three-
imensional metric coefficients and Jacobians severely limit the
omputation to a relatively small number of mesh points. Here,
e propose an approach which drastically reduces the memory

equirement and computational cost. This is done by imposing a
onstraint which requires the planes defined by constant values of
ne coordinate ��3 in the present formulation� to be parallel to one
nother. This results in c1

3=c2
3=�1

3=�2
3=0. With these vanishing

etric quantities, a significant reduction of derivative terms in the
ransformed Navier-Stokes equations, compared to the equations
n a fully three-dimensional generalized curvilinear coordinate

ig. 1 Schematic diagram of coordinate transformation from
artesian coordinates to curvilinear coordinates. Planes per-
endicular to �3 are required to be parallel in the quasi-
eneralized coordinates.
ystem, is obtained:
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�9�

for i=1,2, and j ,k , l=1,2 ,3, and

�10�

The total number of surviving derivative terms is only about one
half of that in the fully generalized curvilinear coordinate system.

Compared to the formulation with two-dimensional generalized
curvilinear coordinates and a nonuniform Cartesian third direction
�e.g. �5��, the above formulation which allows the third coordinate
to be curvilinear does not change the computational cost signifi-
cantly. For a numerical algorithm based on a fractional-step
method �8�, the computational cost is dominated by the inversions
of factored matrices and multigrid operations for solving the pres-
sure Poisson equation, which are not much altered by this gener-
alization.

The three-dimensional metric coefficients in the quasi-
generalized coordinates can be expressed as products of metric
coefficients in a two-dimensional plane and one-dimensional
functions along the third direction, with decoupled Jacobians J
= �c1

1c2
2−c2

1c1
2�1/2c3

3. These decoupled metric coefficients and Jaco-
bians, with variations of the plane mesh along the perpendicular
third direction as exemplified in the following section, result in a
significant reduction of required memory.

3 Plane Variations and Metric Coefficients
In this section, we present several examples of grid topology in

which variations along one direction are given by an algebraic
relationship. Note that nonalgebraic variations are also allowed in
the present formulation, as long as the mesh planes perpendicular
to that direction are parallel to one another. In addition, more
flexibility in the geometry can be achieved using a combination of
these variations.

�a� Shift �Fig. 2�a��

�x1i,j,k
= x1i,j,1

+ x1k

s

x2i,j,k
= x2i,j,1

+ x2k

s

�b� Magnification/Contraction �Fig. 2�b��
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�x1i,j,k
= ak�x1i,j,1

− x1im,jm,1
� + x1im,jm,1

x2i,j,k
= bk�x2i,j,1

− x2im,jm,1
� + x2im,jm,1

�c� Rotation �Fig. 2�c��

�x1i,j,k
= cos �k�x1i,j,1

− x1ir,jr,1
� − sin �k�x2i,j,1

− x2ir,jr,1
� + x1ir,jr,1

x2i,j,k
= sin �k�x1i,j,1

− x1ir,jr,1
� + cos �k�x2i,j,1

− x2ir,jr,1
� + x2ir,jr,1

�d� Skewing to x1 direction �Fig. 2�d��

�x1i,j,k
= �x2i,j,1

− x2i,js,1
�tan2 �xk

+ x1i,j,1

x2i,j,k
= �x2i,j,1

− x2i,js,1
��1 + tan2 �xk

� + x2i,js,1

�e� Skewing to x2 direction �Fig. 2�e��

�x1i,j,k
= x1i,j,1

x2i,j,k
= �x1i,j,1

− x1is,j,1
�tan �yk

+ x2i,j,1

n the formulas �a�– �e�, x1�2�k

s is the amount of shift in the x1�x2�

Fig. 2 Examples of algebraic functions use
magnification/contraction; „c… rotation; „d… ske
irection. x1�2�im,jm,1
, x1�2�ir,jr,1

, x2i,js,1
, and x1is,j,1

denote reference
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points for magnification, rotation, and skewing variations in x1
and x2 directions, respectively. ak and bk are the magnification/
contraction factors in x1 and x2 directions, while �k, �xk

, and �yk
are the rotation and skewing angles. Additional formulas can be
derived to meet other geometric need.

These algebraic variations, as well as combinations of the varia-
tions, result in not only geometric flexibility but also decoupled
metric coefficients. Any metric coefficients and Jacobians can be
expressed as products of those for the base grid at k=1 and varia-
tional functions along the k direction. This results in a great re-
duction of computational memory requirements with a negligible
increase in computational operations.

Figures 3 and 4 are examples of the geometries which can be
represented using the present formulation. Figure 3 shows a com-
pressor blade which is twisted along the blade span while the
blade cross-sectional profile is maintained. For this geometry, the
base mesh is rotated and skewed along the blade wall normal
direction with angles of up to 30 deg, and the skewing allows a

the proposed transformation: „a… shift; „b…
ng to x1 direction; „e… skewing to x2 direction
d in
wi
periodic boundary condition to be applied in that direction in a
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airplane wing; „b… mesh around the wing
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simulation of flow in a blade passage. An airplane wing can be
meshed by contraction and shift operations of the base grid, as
shown in Fig. 4. The present approach can also be employed for
internal flow configurations such as a pipe and a diffuser whose
cross sections vary along the streamwise direction.

Enhanced geometric flexibility can be achieved by combining
partially or approximately body-fitted meshes with an immersed
boundary method �9,10�. This method has been successfully ap-
plied to the rotor tip-clearance flow found in axial turbomachines
�5�.

4 Implementation and Evaluation
Numerical simulation of vortex shedding behind a linearly ta-

pered cylinder is performed to evaluate the present methodology
and implementation. The configuration, shown in Fig. 5�a�, is the
same as that studied experimentally by Piccirillo and Van Atta
�11�. The taper ratio, RT=L / �D2−D1�, is set to 50, where L is the
cylinder length, and D1 and D2 are the diameters of the small and
large ends of the cylinder, respectively. The Reynolds numbers
based on the diameters and freestream velocity are 60 and 180 at
the small and large ends, respectively.

A staggered grid arrangement is employed with the base grid of
257�257 mesh points which is shown in Fig. 5�b�, and parallel
mesh planes are generated along the perpendicular spanwise di-
rection by contraction and expansion operations. Thirty three
points are allocated uniformly along the span. A uniform laminar
inflow is used and convective and no-stress boundary conditions

Fig. 5 „a… Flow configuration and computational domain, and
„b… computational grid in a base x-y plane used for numerical
simulation of flow over a tapered circular cylinder
ig. 3 A twisted compressor blade generated by mesh rota-
ion and skewing: „a… compressor blade; „b… mesh around the
ig. 4 An airplane wing generated by contraction and shift: „a…

are employed at the exit and each side wall, respectively. The use

NOVEMBER 2006, Vol. 128 / 1397
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f a no-stress boundary condition at each side wall can be justified
rom the experimental observation that the vortex shedding of the
ow is largely unaffected by end conditions �11�. About 110 s on
CPUs of SGI Origin 300 are used per time step, and this is only

bout 10% more than that measured by the solver based on the
wo-dimensional generalized curvilinear coordinate coupled with

straight third direction and with the same number of mesh
oints.

Figure 6 shows snapshots of instantaneous vortical structures
ehind the tapered cylinder observed in both the experiment �11�
nd the present numerical simulation. The oblique vortex shed-
ing is a hallmark of this flow observed experimentally, and the

ig. 6 Instantaneous vortical structures behind a tapered cir-
ular cylinder: „a… water tunnel flow visualization †11‡; „b… �2
ortex identification from computational results
resent numerical approach is shown to capture this phenomenon.

398 / Vol. 128, NOVEMBER 2006
In contrast to the laminar vortex shedding observed behind a
straight cylinder, phase differences of the vortex shedding along
the spanwise direction is clearly observed, and this complicates
the downstream vortical structures. This phase difference acceler-
ates the decay of downstream vortices due to enhanced mixing.

Figure 7 shows a typical velocity time history and its autospec-
trum as a function of nondimensional frequency. The signal rep-
resents the velocity at a near-wake position x /D2=1, y /D2=0, and
z /D2=13.5. The Strouhal number of vortex shedding at this loca-
tion is 0.203, which in good agreement with the experimental
result �fD2 /U�=0.204� of Piccirillo and Van Atta �11�.

5 Summary
The incompressible Navier-Stokes equations have been formu-

lated in a two-dimensional, generalized curvilinear coordinate sys-
tem complemented by a third quasi-curvilinear coordinate. By re-
quiring all the two-dimensional planes to be parallel in the
perpendicular direction, the proposed approach makes structured-
mesh computation more affordable in fully three-dimensional ge-
ometries, in terms of both memory and CPU cost. In particular, it
alleviates the huge memory requirement for metric coefficients
and Jacobians by eliminating the need to save them as three-
dimensional quantities. This feature is especially important when
a staggered grid is used for stability of nondissipative large-eddy
simulation. The formulation can be easily adapted to an existing
solver based on a two-dimensional generalized coordinate system
coupled with a Cartesian third direction, with only a small in-
crease in computational cost. Furthermore, the present formula-
tion can be extended to cylindrical �spherical� based coordinates
by keeping the axial-circumferential �azimuthal-zenithal� planes
parallel to one another in the radial direction.
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