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A method for reducing the spurious pressure oscillations observed when simulating mov-
ing boundary flow problems with sharp-interface immersed boundary methods (IBMs) is
proposed. By first identifying the primary cause of these oscillations to be the violation
of the geometric conservation law near the immersed boundary, we adopt a cut-cell based
approach to strictly enforce geometric conservation. In order to limit the complexity asso-
ciated with the cut-cell method, the cut-cell based discretization is limited only to the
pressure Poisson and velocity correction equations in the fractional-step method and the
small-cell problem tackled by introducing a virtual cell-merging technique. The method
is shown to retain all the desirable properties of the original finite-difference based IBM
while at the same time, reducing pressure oscillations for moving boundaries by roughly
an order of magnitude.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Immersed boundary methods (IBM) [1] are a highly versatile approach for the simulation of flows around moving/
deforming bodies with complex geometrical shapes. One undesirable property of IBMs being reported for the dealing with
such moving/deforming bodies on a fixed, non-body conformal computational grid is, unphysical, temporal oscillation of the
pressure fields [2–8]. These spurious pressure oscillations are observed virtually for all type of IBMs including flow-recon-
struction based methods [2–4] as well as discrete [5,6] and distributed [7,8] forcing methods. Other immersed boundary
based approaches also show spurious oscillations in the forces exerted on the moving body [9]. As will be shown here,
the primary source for this error is that for moving boundary problems, the role of some grid cells (or grid points) in the
computational domain changes in time leading to spurious mass sources/sinks. For example, in an IBM based on the
sharp-interface treatment [2], the governing equations (mass and momentum conservation) are solved only on the cells
in the fluid domain and for moving immersed boundaries, this leads to the generation of fresh cells (cells that go from being
inside the solid to being in the fluid) and dead cells (cells that go from being inside the fluid to being inside the solid). Luo
et al. [3] mentioned that the abrupt change of the stencils for the flow reconstruction and a finite-differencing of the gov-
erning equations associated with these cells causes spurious oscillations in the pressure. Similarly, in IBMs using the forcing
method [5–8], numerical stencils for applying forcing terms are changing with the boundary motion. Lee et al. [5] identified
two sources of the pressure oscillations in a discrete-forcing IBM; one source is the spatial discontinuity in the pressure
across the immersed boundary caused by the fresh cells, and the other is the temporal discontinuity in the velocity at the
dead cell. For diffuse-interface IBMs such as distributed forcing methods [7,8,10,11], spurious pressure oscillations are
diminished by spreading and smoothing out of the forcing term [8]. On the other hand, in sharp-interface IBMs, the pressure
. All rights reserved.
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oscillation error is manifested more severely and it is more difficult to control, since these methods have no intrinsic smooth-
ing mechanism at the immersed boundaries. A few remedies have been proposed for sharp-interface IBMs: for instance,
pressure oscillations are reduced by applying the flow reconstruction [3,4] or forcing [6] on cells that at inside as well as
outside of the immersed body. Such treatments, however, reduce the sharpness of the immersed boundary and may dimin-
ish the advantage of sharp interface methods.

In the present study, we have analyzed the pressure oscillations due to the boundary motion in a sharp-interface im-
mersed boundary method and made the case that the major source for the pressure oscillations is found to be the violation
of local mass conservation near the immersed boundary. The mass conservation error is in-fact primarily due to violation of
the geometric conservation law (GCL), a concept that is well established in body-fitted grid methods [12]. In order to reduce
the spurious pressure oscillations, we propose a method that significantly improves local mass-conservation. The proposed
approach employs ideas from the cut-cell approach but avoids some significant complexities associated with a cut-cell dis-
cretization. Tests are carried out to demonstrate the effectiveness and accuracy of the current approach.
2. Source of pressure field oscillation

Consider a rigid moving, immersed boundary on a fixed, non-body conformal grid (Fig. 1). For the class of immersed
boundary methods of particular interest here, the boundary conditions, which include no-slip, no-penetration for velocity
and appropriate Neumann boundary condition for pressure, are imposed to some order of accuracy (typically between
1st and 2nd order) on rIB. This imposition may be through the use of direct flow reconstruction by interpolation [3,4] or
extrapolation [2], or through the introduction of a discrete forcing term [5,6] in the momentum equations. Thus, the bound-
ary conditions are imposed at a finite number of points that are located precisely on the surface of the immersed boundary
and this leads to a ‘‘sharp-interface’’ representation of the immersed boundary. For an incompressible fluid, the fluid volume
inside the computational domain should be conserved through the satisfaction of the following condition:
Fig. 1.
body, r
Z
rIB

~Ub �~ndAþ
Z

rCV

~U �~ndA ¼ 0; ð1Þ
where rIB and rCV are the surfaces of the immersed body and the control volume, respectively (see Fig. 1), ~Ub is the boundary
velocity on the immersed boundary, and ~n is the surface normal unit vector. Here we assume that the solid boundary is a
non-porous, no-slip wall which allows no relative velocity between the fluid and the body. Using divergence theorem on
the first term, the above equation can be rewritten as
�dVIB

dt
þ
Z

rCV

~U �~ndA ¼ 0; ð2Þ
where VIB is the volume enclosed by immersed boundary surface, rIB. The fluid control volume is defined by ðVc
IB \ VCV Þ. For

stationary bodies, the total fluid volume should be unchanged in time. In projection-method based solution algorithms, mass
(volume) conservation is imposed when solving the pressure Poisson equation. In the finite-difference based, sharp-interface
IBMs, the pressure Poisson equation is solved for the cells inside the fluid domain and the local mass conservation is satisfied
by enforcing the following condition;
r � ~Unþ1 ¼ 0; ð3Þ
where ~Unþ1 is the face-velocity at the new time level. In a finite-difference based method, the above local mass conservation
can be written as (e.g. using the second-order central differencing, see Fig. 2)
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Immersed boundary in a fixed, non-body conformal Cartesian grid. rIB: immersed boundary surface, rSS: surface of stair-step representation of solid
CV : control volume surface, and grayed: computational cells inside the immersed boundary.
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Fig. 2. Sharp interface immersed boundary method based on a finite difference method. The velocity on the ghost node is obtained by extrapolation with
the fluid velocity on the image point and the boundary velocity on the body-intercept point.
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Ue � Uw

Dx
þ Vn � Vs

Dy
þWf �Wb

Dz
¼ 0: ð4Þ
Now consider the situation for a cell that is intersected by the immersed boundary such as cell ‘P’ shown in Fig. 2. For such a
cell, even though the velocities are carefully imposed using a second-order accurate ghost-cell based prescription of the
velocity on the immersed boundary surface (in this case at the adjacent body-intercept points), the control volume of such
a cell remains cuboidal with volume equal to DV = Dx � Dy � Dz, regardless of how the immersed body ‘‘cuts’’ this cell. For
example, on Fig. 2, the face velocity, Vs is computed using the velocity on the ghost node which is evaluated with the fluid
velocity on the image point and the boundary velocity on the body-intercept point. The mass conservation for this boundary
cell is however still written by Eq. (4) for a cell volume DV. Additionally, the mass conservation for the ghost cells (the cell-
center of which is inside the immersed body) is not considered at all although it contains some part of the fluid volume. In
this case, the fluid control volume is considered to be ðVc

SS \ VCV Þ. As a result, the global conservation law applied in the cur-
rent (as well as all other) sharp-interface IBM is effectively replaced by the following equation:
�DV
Dt
ðqnþ1 � qnÞ þ

Z
rSS

~Uf �~ndAþ
Z

rCV

~U �~ndA ¼ 0; ð5Þ
where qk corresponds to the total number of solid cells at time level k, DV is the volume of each of these cells, Dt is the time
step size, and subscript f denotes the value on the cell faces of the ‘‘stair-step’’ boundary, rSS associated with the immersed
body. The first term is associated with the fact that the volume enclosed by a ‘‘stair-step’’ shaped boundary changes abruptly
with the appearance of ‘fresh cells’ and ‘dead cells’ as shown in Fig. 3. The second term represents the ‘‘transpiration’’ mass
flux through the boundary which, as we will show presently, is also generally non-zero even when the original immersed
boundary has no transpiration. In order to estimate overall mass conservation error associated with the sharp-IBM treat-
ment, the above equation is re-written as:
� dVIB

dt
þ
Z

rCV

~U �~ndA ¼ DV
Dt
ðqnþ1 � qnÞ þ

Z
rIB

~Ub �~ndA�
Z

rSS

~Uf �~ndA
� �

; ð6Þ
where the right-hand side terms represent the error in mass conservation. The terms inside the bracket can be estimated as
follows (see Fig. 4):
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Boundary motion on a fixed Cartesian grid from time level n to n + 1. ‘F’ and ‘D’ denote fresh and dead cells generated by the boundary motion.
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Fig. 4. Projection of face areas on to the immersed boundary surface; DA: face area, dA: area projected on the boundary surface, f: face-center point, and b:
projected point on the boundary surface.
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As depicted in Fig. 4, each cell face is projected on to the immersed boundary surface and the face-velocity is evaluated
by a Taylor series expansion from the boundary velocity. In the above analysis, DA is the cell face area, dA is projected
area on to the boundary surface, and ~nf and ~nb are the unit normal vectors of the cell face and the boundary surface,
respectively. Consequently, the conservation statement that is actually enforced in finite-difference based sharp-interface
IBM solvers is
�dVIB

dt
þ
Z

rCV

~U �~ndA ¼ DV
Dt
ðqnþ1 � qnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

SV

�DA
X

face
~Ub ~nf �~nb ð~nf �~nbÞ
� �

� DA
X

face
ð~d � ~rÞ~U �~nf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sr

: ð8Þ
The right-hand side terms are essentially geometric conservation errors. The first term in the right-hand side (SV) corre-
sponds to a spurious source of fluid volume and this source is associated with the fresh and dead cells as shown in Fig. 3.
On the other hand, the second and third terms (Sr) are associated with the transpiration error through the surface area.
The second term is caused by the geometrical (shape and size) difference between the immersed boundary and the stair-step
boundary. As a simple example consider the fact that, for a circular immersed body of radius R, the surface area of the im-
mersed boundary is

R
rIB

dA ¼ 2pR whereas the surface area of a corresponding ‘stair-step’ boundary is given byR
rSS

dA ¼ 8Rþ OðDÞ. For a stationary boundary, the first and second terms become zero, since q is unchanged in time and
~Ub ¼ 0. The third term is associated with the mismatch in the location of the actual immersed boundary and the boundary
on which the conservation statement is enforced; it is proportional to the velocity gradients near the immersed boundary
and is non-zero even for a stationary boundary. It should be noted that while the third term is of a higher order in grid spac-
ing than the second term (due to the fact that d = O(D)), the actual magnitude of this term is difficult to determine a-priori
since the velocity gradient in the vicinity of the immersed boundary can be large.

Because the first term is associated with the sudden changes in fluid volume due to the fresh and dead cells, this error
would show a highly discontinuous variation in time. In contrast, the second and third terms, that are associated with
the shape change of the stair-step boundary relative to the immersed boundary are expected to vary more smoothly in time
since ~Ub; ~nb; ~nf , and~d are all expected to vary smoothly in time. Shape changes associated with the appearance of fresh and
dead cells contribute only a small fraction to these error terms and should not affect the temporal smoothness of these terms
significantly.

We also note that if we reduce the control volume size down to that of an individual fresh or dead cell, the volume con-
servation error can be written as
DV
Dt
� ~Ub �~An

				
				 ¼ DV

Dt
j1� CFLbj; ð9Þ
where ~An is the normal area vector of the boundary surface segmented by the cell and CFLb ¼ Dt~Ub �~An=DV . Thus, it is ex-
pected that the dominant component of the pressure oscillation error is proportional to the grid area (volume in 3D), and
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inversely proportional to the size of the time-step. This implies that one should choose the grid and time step size carefully
to reduce the pressure oscillation error. Lee et al. [5] have investigated the effect of time step size, grid spacing, and CFL num-
ber on the pressure oscillation error for several test cases.

In order to demonstrate the generation of spurious pressure oscillations in a moving boundary problem and investigate
its relation to the volume conservation error, we devise a simple test problem; a circular cylinder with center located at xc

and of diameter D, which oscillates sinusoidally in the x-direction, i.e.
Fig. 5.
oscillat
respect
(Sr).
xcðtÞ ¼ xcð0Þ þ Xo ½1� cosð2pf0tÞ�; ucðtÞ ¼ Uo sinð2pf0tÞ; ð10Þ
where U0 = 2pf0X0 and the period of oscillation is T = 1/f0. For this case, we choose X0 = 0.05D. The Reynolds number defined
as Re = U0D/m is set at 31, and the Strouhal number is St = f0D/U0 = 3.2. The Neumann type boundary conditions with zero
gradients are applied for the pressure and velocities at the outer boundaries. A relatively coarse grid with Dx = Dy = 0.1D
is employed and this corresponds to the cylinder being covered by 10 � 10 cells (see Fig. 5(a)). Furthermore, a small
time-step corresponding to Dt = 0.01T, (CFL = U0Dt/Dx = 0.0314) is used. In keeping with Eq. (9), the combination of a large
grid spacing and small time-step should produce large and noticeable spurious pressure oscillations. Furthermore, while the
cylinder motion for this case produces both fresh and dead cells, they do not occur at the same time, and this allows us to
distinguish the effect of these different cells on the pressure oscillations.

The total pressure drag on the body is given by
CPD ¼
R

pð~n �~iÞdA

ð1=2Þq0D3f 2
0

; ð11Þ
where CPD is a pressure drag coefficient,~n is a unit surface normal vector, and~i is a x-direction unit vector, is a good measure
of the instantaneous pressure around the body and we estimate this using the trapezoidal rule. The time histories of CPD are
plotted in Fig. 5(b), and one can see several peaks in the pressure force. The first term on the right hand side source of Eq. (8)
denoted by SV (bar graph) and other two terms denoted by Sr (solid line) are also plotted at the bottom. It clearly shows that
the volume source/sink error caused by fresh and dead cells, (SV) is much larger (by a factor of about 40) than the transpi-
ration error through the surface, (Sr). It is therefore not surprising that the oscillations on the pressure force is correlated
well with the SV plot. By comparing the two plots, it is clear that the pressure peaks appear when fresh or dead cells occur,
and the peaks caused by fresh cells and dead cells are marked with ‘F’ and ‘D’, respectively. Also note that dead and fresh cells
are created at different times for this problem. Fig. 5(b), therefore, clearly shows that the dominant source of pressure oscil-
lations is connected with the spurious mass source/sinks caused by the creation of fresh and dead cells. It should be noted
that in general, both dead and fresh cells may be created at a given time-step but the individual effects still do not cancel out
since they occur at different locations around the body. Fig. 5(b) confirms that the errors associated with the change in the
shape of the stair-step boundary (second and third terms on the right hand side of Eq. (8)) are smaller in magnitude and also
vary more smoothly in time than the volume change error.

In order to further assess the effect of grid spacing and time-step size on the pressure oscillation, we solve the oscillating
cylinder problem with larger oscillation amplitude, X0 = 0.125D, on four different grids (with grid spacing, Dx = Dy = D/16, D/
32, D/48, and D/64) and a fixed Dt equal to 0.002T (CFL = 0.025, 0.05, 0.1, and 0.2). We also solve the problem for different
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(a) Geometry and computational grid for fundamental oscillating body test problem. Bodies are resolved by about 10 by 10 grid points and
ion amplitude is 1Dx. (b) Time history of pressure drag coefficient. ‘F’ and ‘D’ mark time instances where fresh and dead cells are created
ively. The bar graph below represents the first term on the right hand side of Eq. (8), (SV), and the solid line is the sum of the second and third terms,
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time-step sizes (Dt/T= 0.002, 0.004, 0.008, and 0.016) for a fixed grid spacing of Dx = Dy = D/16 (CFL = 0.025, 0.05, 0.1, and
0.2). In order to quantify the amplitude of the pressure oscillations we define a 2d-discontinuity in the temporal variation
of a quantity F as
Fig. 6.
and tim
F2d ¼ jFnþ1 � 2Fn þ Fn�1j; ð12Þ
where n is time-step index. The root-mean-squared (RMS) values of C2d
PD are plotted in Fig. 6 as a function of grid spacing and

time-step size. As expected (and predicted by Eq. (9)) the pressure oscillations decrease with decreasing grid spacing and
increase with decreasing time-step. This tendency has also been confirmed in previous studies [3–5]. A best-fit power-
law though the points in Fig. 6 indicates that the pressure oscillations as quantified by C2d

PD scale as
C2d
PD �

ðDxÞ1:9

ðDtÞ0:8
: ð13Þ
This is very much in line with Eq. (9) which predicts that C2d
PD would scale as (Dx)2/(Dt) for a two-dimensional problem. It

should be noted that for the present test case, the second term of Eq. (9) is negligible, since the maximum CFL number based
on the body velocity is 0.025–0.2 and therefore much smaller than 1. Interestingly, for a solid body moving with constant
uniform speed U0, if the local grid size and time step size satisfy the condition, CFL = U0Dt/Dx = 1, our analysis suggests that
the conservation error terms vanish and the regional(or global) volume conservation error (Eq. (8)) is smooth in time (since
qn+1 = qn and the shape of ‘stair-step’ boundary is un-changed). We have tested such a case and observed no noticeable pres-
sure oscillations. These tests therefore provide strong support for our hypothesis that the pressure oscillations are caused
primarily by violation of the geometric conservation law which introduces local mass sources and sinks. It should also be
pointed out that some past studies have focused primarily on the pressure oscillations caused by fresh cells [13]. The current
analysis shows that dead cells are equally important sources of spurious oscillations.

It is useful to point out that for diffuse-interface methods which include the discrete-delta function based implementa-
tion [7,8] or penalization based methods [14,15], the interface is normally described by a discretized delta function, which is
spread smoothly over a set of local grid points. For example, the immersed boundary velocity is distributed by
~ubð~xÞ ¼ ~Ub � d�ð~x�~xbÞ; ð14Þ
where d⁄ is a discretized delta function which varies smoothly in space, and~xb is the position vector of immersed boundary.
The smoothing of the interface can be viewed conceptually as leading to the following modified local volume conservation
error:
dVd

dt
� dVIB

dt

				
				 ’ ~Ub �~An d�ð~x�~xbÞ � 1j j ¼ DV

Dt
CFLb d�ð~x�~xbÞ � 1j j; ð15Þ
where Vd is the smoothed solid volume. Smoothing of interface therefore leads to a smoother temporal variation of the error.
This is the reason why the pressure oscillation can be reduced by these diffuse-interface treatments. In fact, Yang et al. [8]
have shown that the pressure oscillations can be suppressed by introducing smoother discrete delta functions. Also, in the
diffused-interface IBM of Taira and Colonius [10,11], they claimed that the global mass is conserved well and there were no
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PD � ð1=DtÞg , where n = 1.9 and g = 0.8. (Dx0 = 1/16, Dt0 = 0.002).
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temporal oscillation errors on the body force for a moving boundary problem. Note however that the smoothing of this form
reduces pressure oscillations without mitigating the underlying conservation error.

Based on the above analysis it is therefore clear that the pressure oscillations can be suppressed by reducing the errors
associated with the geometric conservation law. One way to satisfy the geometric conservation law and local mass conser-
vation accurately is through the use of a Cartesian cut-cell method [16,17]. In this method, the boundary cells which are cut
by the immersed boundary are reconstituted into non-rectangular control-volumes and a finite-volume method used to en-
sure strict satisfaction of GCL as well as local and global mass (and momentum) conservation. Due to these conservative
properties, the Cartesian cut-cell method produces no significant spurious pressure oscillations for moving boundary prob-
lems [17]. However, there are two main challenges with cut-cell methods. First the cell cutting procedure for a 3D geometry
can produce seven different polyhedral control volumes (if the cell is cut by only one surface) and handling all these different
cell topologies in a single solver is highly challenging. Even state-of-the-art finite-volume solvers typically handle at most
two different cell topologies. The second issue is the formation of arbitrarily small cells which can lead to excessive stability
constraints and problems with convergence of elliptic equations such as the pressure Poisson equation. In order to avoid the
formation of very small cut-cells, a geometric cell-merging approach can be adopted [16,17]. Unfortunately, not only are
these merging schemes highly complex, they introduce additional cell topologies, and this severely complicates the discret-
ization process as well as the solution methodology. Consequently, the extension of these methods to 3D problems has been
very difficult. To resolve the small cut-cell problem in a 3D Cartesian cut-cell method, Kirkpatrick et al. [18] used ‘cell-link-
ing’ technique instead of ‘merging’, and Meyer et al. [19] proposed a ‘momentum-exchange’ technique which is a type of
‘virtual’ cell merging. Recently, a 3D cut-cell method which allows multiple small cell linking has been reported [20] for
the viscous compressible flows, but the efficiency of the method and its ability to address highly complex geometries re-
mains to be established.

In the present study, we propose a method to reduce the pressure oscillations for sharp-interface IBMs by adopting the
conservative properties of the Cartesian cut-cell method. However, two strategies are employed in order to preserve the effi-
ciency and simplicity of the finite-difference method; first, the cut-cell methodology is applied only to mass (and not to
momentum) conservation, and second, the small cell-merging/linking process is simplified by introducing the ‘‘virtual’’
merging technique of Meyer et al. [19]. This allows us to avoid all the significant complexities associated with geometric cell
merging/linking. The details of our approach and the numerical procedure are given in the following section.

3. Numerical method

The immersed boundary method used in this study is the sharp-interface IBM described by Mittal et al. [2]. The method
uses a ghost-cell method which is second-order accurate in space and a detailed description of this method can be found in
the original paper of Mittal et al. [2]. The incompressible Navier–Stokes equations are solved by a fractional-step method
based algorithm and we provide a very brief description of this method here. In the first sub-step of the fractional step meth-
od, the intermediate, cell-center velocity is computed by
Fig. 7.
and sm
~u� ¼ ~un þ Dt � 3
2

Cn � 1
2

Cn�1

 �

þ 1
2
ðDn þ D�Þ

� �
; ð16Þ
where C and D represent convection and diffusion terms on the momentum equations and both are discretized with a sec-
ond-order central-difference scheme. The face-velocities are subsequently evaluated from the cell-center velocities as
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Notations of numerical stencils for the discretization of governing equations. Capital letters indicate neighboring cells (‘P’ denotes the current cell)
all letters represent cell faces.
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U�e ¼
DeP � u�E þ DeE � u�P

DeE þ DeP
; ð17Þ
where D is the distance from the cell-face to the cell-center (see Fig. 7). The pressure is computed by the Poisson equation:
r2pnþ1 ¼ q0

Dt
ðr � ~U�Þ: ð18Þ
Finally, the cell-center and cell-face velocities are corrected by
~unþ1 ¼~u� � Dt
q0
� rccpnþ1; ð19Þ

Unþ1
e ¼ U�e �

Dt
q0
rfcpnþ1; ð20Þ
wherercc andrfc denote the gradients at the cell-center and cell-face, respectively. The moving, immersed boundary is rep-
resented in terms of Lagrangian markers whose location and velocity is denoted by ~xb and ~Ub, respectively. For fresh cells
which have no time histories of the flow velocity, the intermediate velocities are estimated by a trilinear (3D) or bilinear
(2D) interpolation [2] and this is followed by the pressure correction step.

Since we have determined that the major source of pressure oscillation associated with the boundary motion is spurious
fluctuations in the fluid volume (and mass) as well as changes in the effective geometry of the immersed interface, the cut-
cell approach is applied to Eqs. (18) and (19) to achieve better volume and mass conservation. The momentum equation, Eq.
(16) is solved as usual by a second-order central finite-difference discretization using the ghost-cell method [2] and one does
not need to spend additional effort in computing momentum fluxes and stresses for the cut-cells. Furthermore, the stability
restrictions (CFL and/or viscous stability depending on the temporal discretization of the method) caused by small cut-cells
can be avoided.

The finite-volume integration of Eqs. (18) and (19) are written as
Z
ðrpnþ1 �~nÞdA ¼ q0

Dt

Z
ð~U� �~nÞdA; ð21ÞZ

~unþ1dV ¼
Z
~u�dV � Dt

q0

Z
ðpnþ1~nÞdA: ð22Þ
In order to apply the finite-volume discretization to Eqs. (21) and (22), the volume-fraction (the ratio of fluid volume to the
total cell volume) and face-fractions (the ratio of face area in fluid region to the total face area) should be determined for the
cells cut by the boundary surface. The procedure for determining the cell cuts and the associated cell volumes and face areas
is relatively straightforward and has been described in previous papers [16,17]. In the present sharp-interface IBM, the arbi-
trary boundary surface is discretized with the triangular surface elements. For each cell near the immersed boundary we first
determine if the vertex of a given cell is located inside or outside the boundary surface. If at least one vertex is determined to
be inside the boundary surface, the cell is considered to be a cut-cell. For each boundary cell, we find the nearest surface
element, and the cell-cut determination is based on the orientation of this surface element. This implies a local linearization
of the boundary surface, if the grid resolution is coarser than the surface element resolution. Based on the vertex in/out test
result, we also know which edge of the cell is cut by the boundary, and we find those ‘edge intersections’ (see Fig. 8) through
simple, three-dimensional coordinate geometry. The area of each cut-face and boundary surface segmented by the cell can
then be computed by constructing polygons with the edge-intersections and cell vertices. Once all the areas are found, the
cell volume is obtained using the divergence theorem:
Vcell ¼
1
3

Z
~xc �~ndA ¼ 1

3

X
j

~xc;j �~njAj þ~xc;C �~nCC

 !
; j ¼ e;w;n; s; f ; b; ð23Þ
where ~xc is the position vector to the center of each surface, Aj and C are the areas of cut-face and boundary surface seg-
mented by the cell, respectively (see also Fig. 9). Fig. 9 shows the typical cut-cell topology created by such a procedure
and we note that there are two types of cut-cells created in the fluid; cells whose nodes are in the fluid region (called ‘‘reg-
ular’’ cut-cells) and cells whose nodes are in the solid (called ‘‘small’’ cut-cells). It should be noted that the volume-fraction,
a = Vcell/DV, of regular cut cells is greater than 0.5 and those of the small cells is less than 0.5, and the discretization of the
governing equations is done differently for these two types of cells.

For regular cut-cells, we proceed with a conventional discretization of the finite-volume Eqs. (21) and (22) as described in
Ye et al. [16]. With the given face and volume fractions, the discretization of Eqs. (21) and (22) leads to
pEae � pPðae þ awÞ þ pW aw

Dx2 þ pNan � pPðan þ asÞ þ pSas

Dy2 þ pF af � pPðaf þ abÞ þ pBab

Dz2 þ @p
@n

				
C

C
DV

¼ q0

Dt
U�eae � U�waw

Dx
þ V�nan � V�s as

Dy
þ

W�
f af �W�

bab

Dz
þ ~Ub;C �~nC

C
DV

� �
; ð24Þ
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Fig. 8. Schematic for determining cell cuts and some example of cut-cell topologies. Edge-intersection is the intersection between the boundary surface and
the edges of the cell.
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~unþ1 ¼~u� � Dt
aq0

peae � pwaw

Dx
~iþ pnan � psas

Dy
~jþ

pf af � pbab

Dz
~kþ pC~nC

C
DV


 �
; ð25Þ
where aj = Aj/DA are the face-fractions, a is the volume fraction, C is the area of boundary surface segmented by the cell, and
subscript C indicates the value on the boundary surface (see Fig. 9). Note that Eq. (25) is only used to update cell-center
velocities, while cell-face velocities are updated by:
Unþ1
e ¼ U�e �

Dt
q0

pE � pP

Dx

� �
: ð26Þ
One can see that the above equations are very similar to the finite-difference discretization of Eqs. (18) and (19). For the cells
located away from the boundary, all the face and volume fractions are equal to one and the above equations exactly coincide
with the second-order, central finite-difference form of Eqs. (18) and (19). The Poisson equation, Eq. (24), retains a 7-point
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(5-point in 2D) stencil and can therefore still be solved efficiently with our existing line-SOR-based geometric multi-grid
algorithm [2].

A different approach is adopted for the small cells. Given that a small cell can be arbitrarily small, discretization of the
equations for these cells along the lines of that described for the regular cells can be highly problematic. While for convec-
tion-diffusion type of equations, these small cells can cause CFL or viscous stability problems, for elliptic equations such as
the pressure Poisson equation, small cells produce ill-conditioned matrices that slow down the convergence of the iterative
solution methods. Furthermore, disretization of these cells as separate finite-volumes changes the total number of un-
knowns that have to be solved for at any given time-step. One way to avoid such problems is to geometrically merge small
cells with adjacent cut-cells as was done by Ye et al. [16] and Udaykumar et al. [17]. While this eliminates the small-cell
problem, the merging process is highly complex, especially in 3D, and can also lead to additional dependencies in the com-
putational stencil that can adversely impact convergence properties.

In the present method, the mass conservation associated with the small cell is accounted for through a ‘‘virtual’’ cell-
merging technique. In this approach, merging is effected by transferring the source term of the Poisson equation for the
small-cells to the adjacent cells (which may include regular cut-cells as well as non-cut, Cartesian cells). The approach is
inspired by the ‘momentum exchange’ method proposed by Meyer et al. [19] to solve the momentum equations for small
cells. However, instead of the momentum equation, we apply virtual merging to mass conservation via Eq. (24). The follow-
ing discussion is based on the schematic shown in Fig. 10. First, the value of

R
ð~U� �~nÞdA which is on the right-hand side of Eq.

(24) is computed for all cells including the small-cells. For the small cells, the computed value is transferred to adjoining
non-small cells (regular cut cells or normal, non-cut cells) which share a face with the small-cut cell using the following
prescription:
Fig. 10
cells. X
Z
~U� �~ndA

� �0
tgt j
¼

Z
~U� �~ndA

� �
tgt j
þ Xj; ð27Þ

Z
~U� �~ndA

� �0
src

¼
Z
~U� �~ndA

� �
src

�
X

j

Xj ¼ 0; ð28Þ
where subscript ‘src’ indicates the source (small cell) and ‘tgt’, the face connected normal or regular cut-cell. In the above
prescription, Xj is the amount of mass flux transferred to the jth target cell and is evaluated by
Xj ¼
bjP

jbj

Z
~U� �~ndA

� �
src
; j ¼ x; y; z ð29Þ
bj ¼
n2

j aj ðatgt j > 0:5Þ
0 ðatgt j 6 0:5Þ

(
; ð30Þ
where nx, y, z are x, y, and z component of unit normal vector to the immersed surface which cuts the small cell, tgt_x, y, z
indicate the target cells in the x, y, and z directions, and ax,y,z is the face-fraction of a face connected to the target cell in each
direction. Thus the amount transferred to each target cell is chosen based on the direction of surface normal vector as well as
the face area shared with the target-cell. This is consistent with the general notion that mass-transport associated with
boundary motion would primarily be aligned with the direction normal to the boundary and the amount of mass flux would
be proportional to the area. Once the virtual merging is done, the source of Poisson equation for the small cell becomes iden-
tically zero. The pressure Poisson equation, Eq. (24) is then solved for the remaining cells which consist of regular cut-cell
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Xysmall cut-cell

. Schematic of virtual merging technique. The source of pressure Poisson equation on the small cut-cell is transferred to adjoining non-small cut-
denotes the transferred amount in each direction.
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and non-cut Cartesian cells, and the pressure value on the ghost node associated with the small cell (see Fig. 10) is obtained
explicitly by the ghost cell method [2] while satisfying the boundary condition.

The above transfer procedure conserves the mass source regionally and ensures that the geometric conservation law is
satisfied. We refer to this conservative property as ‘‘regional’’ conservation to distinguish it from strict local mass conserva-
tion which can only be achieved through a cut-cell based finite-volume method with full geometric cell merging. This prop-
erty is also different from global mass conservation which conserves quantities only over the entire computational domain.
Note however that as with local conservation, regional conservation also guarantees global conservation. Given our previous
assessment of the source of pressure oscillations, the regionally conservative cut-cell approach should significantly diminish
the local errors in mass conservation and in doing so, reduce the spurious pressure oscillations. The global conservation law
applied in the present cut-cell method can be represented by
Fig. 11.
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; ð31Þ
where Vcell is the discretized cell volume given by Eq. (23) and the summation (j) is for all the cut-cells (both small and reg-
ular). The error on the right-hand side is just caused by the local linearization of the immersed boundary surface when deter-
mining cell cuts based on the given grid resolution. The first term on the right hand side ðS0V Þ is the volume error caused by
the linearization, while the second term ðS0rÞ is the transpiration error due to the error in the surface area, and both terms are

expected to be very small. The overall magnitude of each error term is estimated to be S0V �
P

j
1
Dt O Dc

Rj

� �
and

S0r �
P

jð~Ub �~nC;jÞO Dc

Rj

2
� �

, where c = 3 or 4 for 2D or 3D problems, respectively, and Rj is the local radius of curvature of im-

mersed boundary surface. In general, the order of magnitude of S0V and S0r is smaller than the corresponding error terms in Eq.
(8) by (D/R) and (D/R)2, respectively. In the following sections we assess the efficacy and performance of this new approach
by simulating a variety of carefully selected cases.
4. Result and discussion

The oscillating cylinder problem considered in Section 2 is solved again with the current method. The time histories of the
pressure drag coefficient, CPD are plotted in Fig. 11 for the original ghost cell method and the present regionally conservative
cut cell approach. As one can see from this figure, the present method significantly reduces the pressure oscillations. While
some small local extrema are still visible in the plot, the profile is smooth and sinusoidal. This improvement is achieved just
by satisfying the fluid mass/volume conservation more accurately via the regionally conservative cut-cell method, and with-
out any arbitrary boundary forcing or flow-field modification or ad-hoc adjustment of interpolation stencils. The results
therefore confirm that the major source of spurious pressure oscillations is the violation of the geometric conservation
law. It should be noted that in addition to the reduced amplitude of pressure oscillations, there is also a slight difference
in the overall amplitude as well as phase of the drag between the two results. Thus, it seems that while the mass source
errors are localized in time and space, these errors can in-fact have a global (in time as well as space) effect on the pressure
field. This is likely due to a coupling between the pressure field, which is elliptic in nature, and the velocity field which is
governed by convection as well as diffusion.
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In order to further analyze the effect of grid spacing and time-step size on the pressure oscillation, we consider a hori-
zontally oscillating cylinder but with a larger amplitude of oscillations. The circular cylinder in this case is placed at the cen-
ter of a 4D � 4D square domain and the upper and lower boundaries of the domain are set to no-slip walls. Neumann type
boundary conditions with zero gradient are applied for the pressure and velocities at the left and right outer boundaries. The
oscillation parameter is set to X0 = 0.125D (see Eq. (10)), and the Reynolds number, Re = U0D/m and Strouhal number, St = f0D/
U0 are set to 78.5 and 1.27, respectively. This larger (25% of the diameter) amplitude of oscillations should lead to significant
force generation and should serve as a more typical scenario for moving boundary problems.

The problem is first solved on the following four uniform grids: 642, 1282, 1922, and 2562 with a time-step is fixed to
Dt = 0.002T (CFL = 0.025, 0.05, 0.1, and 0.2). Thus on these four grids, the cylinder diameter D is spanned by 16, 32, 48
and 64 grid points, respectively. The computations are performed with the original IBM as well as the present cut-cell ap-
proach, and the time histories of the pressure drag coefficient are plotted in Fig. 12(a). As predicted by Eq. (9), the peak
amplitude of pressure oscillation decreases as the grid is refined. An interesting observation is that the most severe pressure
oscillation occurs when the body velocity is small (i.e. around the force is maximum and minimum) and this behavior is in
line with Eq. (9) which indicates larger conservation errors when the instantaneous CFL number is small. It is notable that a
much smoother solution is obtained with the present method for all grid resolutions. The temporal variation of drag force for
the present method is acceptably smooth for D/Dx P 32. Note, however, that the amplitude of pressure oscillations in the
original results decreases rapidly with increasing grid resolution and only on the very coarse resolution (D/Dx 6 16), does the
original method exhibit a noticeable phase shift in time and a different in peak force (see also Fig. 11), compared to the pres-
ent result. For the resolution of D/Dx = 64, the original result is almost the same with the present one in overall, except for
some small oscillations. Thus, as shown in previous studies [3–5], one can in fact suppress the pressure oscillations in sharp-
interface IBMs and obtain reliable results using fine enough grid resolution.

The effect of time-step size is also investigated for this case and the results are shown in Fig. 12(b). For this study, we employ
a 64 � 64 grid and the following time-steps are used: Dt = 0.002, 0.004, 0.008, and 0.016 (CFL = 0.025, 0.05, 0.1 and 0.2). For the
original method, the oscillation amplitude decreases with increasing time-step size but remains un-smooth even for the larg-
est time-step. In contrast, the present cut-cell method produces a much smoother temporal variation for all time-steps.

Fig. 13 shows the time evolution of the pressure field around a cylinder on the 64 � 64 grid (D/Dx = 16) with D t = 0.002
for both the present and original methods. A coarse grid is chosen here to accentuate the discretization errors. The plots
clearly show the presence of massive and highly non-localized fluctuations in the pressure field for the original method.
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Fig. 12. Time histories of pressure drag coefficient for a oscillating circular cylinder, X0 = 0.125D, Re = 78.5, St = 1.27. (a) On different grid resolutions with
fixed time step size, Dt = 0.002 and (b) for different time step size on the fixed resolution, D/Dx = 16. Solid lines: original finite difference method; dash-dot
lines: present.



Fig. 13. Time evolution of pressure field on 642 grid (D/Dx = 16) for t/T = 1.612–1.618. Upper half of each plot shows the contours for the present method
whereas the lower half shows the corresponding contours for the original non-cut-cell method.
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Thus, the elliptic nature of the pressure ensures that the pressure perturbations produced at the immersed boundary have an
instantaneous and global effect on the pressure field. In contrast, the time evolution of the pressure field with the present
method is much more continuous in time. It should be noted that the velocity field (not shown here) itself is not significantly
different between the present and original method since the pressure correction to the velocity is scaled down by the mul-
tiplication with Dt during the velocity-update step of the fractional-step method.

In order to quantify the pressure oscillations, we again compute the 2d-discontinuity in the pressure drag as defined by
Eq. (12). The RMS (root-mean-squared) values of this quantity are plotted in Fig. 14 both as a function of grid spacing as well
as time-step size for both methods. Overall, the current method produces roughly a seven-fold reduction in the RMS values
of the pressure oscillation. As seen for the previous case in Section 2, for the original method, the RMS values of C2d

PD can be
fitted by a power-law (Eq. (13)) with n = 1.9 and g = 0.8. On the other hand, a best-fit through the results of the new cut-cell
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method indicates a power-law with n = 1.8 and g = 0.5. The scaling with grid-size is effectively the same as the original meth-
od but the different scaling of the error with time-step suggests that the dominant source of pressure oscillation has been
moved from the spurious volume source/sink associated with fresh/dead cells (expressed by Eq. (9)) to another mechanism.
The candidates for these remaining mechanisms include:

� the inability to formulate a physically well-posed advection–diffusion equation for fresh cells. Past approaches to the dis-
cretization of fresh-cells have involved actual or effective merging of fresh-cells with neighboring cells [16], use of ghost-
cells values to provide time-history for fresh-cell variables [21], and the use of Lagrangian interpolation along particle
paths [13] to estimate the fresh-cell velocity;
� the abrupt change of velocity for boundary cells in the vicinity of fresh as well as dead-cells. Our simulations indicate that

this is particularly important for cells in the neighborhood of dead-cells. This temporal discontinuity in velocities caused
by the dead cell is also mentioned by Lee et al. [5]. One solution to this is the use of smooth stencils [3,4] to alleviate the
temporal discontinuity. However, this stencil modification process is ad-hoc and also reduces the sharpness of the
immersed boundary;
� errors in momentum conservation around the immersed boundary. This could be remedied by a cut-cell method such as

that of Ye et al. [16] or Günter et al. [20] or by application of the current regionally conservative cut-cell method to the
momentum equation;
� geometric conservation errors associated with the local linearization of the surface employed in determining cell-cuts:

right-hand side of Eq. (31). For the current case, these are O(10�5) but they could be larger in case where D/R is larger.

Our current results however also indicate that, at least for the case simulated here, all these other mechanisms put to-
gether produce pressure oscillations which are about 6 times smaller than those produced by the mass-conservation errors
which have been eliminated by the current cut-cell method. Furthermore, as shown by the above results, the residual oscil-
lations can be further suppressed by refining the grid.

The original immersed-boundary method of Mittal et al. [2] is locally and globally second-order accurate. However, since
the current, regionally conservative cut-cell modifies the discretization in the vicinity of the immersed boundary, it is useful
to reassess the grid convergence and spatial accuracy of the present method. This is accomplished by solving the same oscil-
lating circular cylinder problem described earlier in this section on three grids (642, 1922, and 3202 points) and assessing the
behavior of the error on these grids. The time-step in these simulations is fixed to a small value of Dt = 5 � 10�4 and since the
analytical or exact solution is not available, the reference solution for the estimation of the error is obtained from the com-
putation with a fine 5762 grid. For the flow field at t = 0.5T, the relative error, e is computed for the velocity components u
and v. The grid convergence of pressure is assessed by the relative error on the pressure gradient, dp = jrpj, since the pres-
sure value itself obtained with all Neumann boundary conditions is not unique. For the fair assessment of the error, the gra-
dient is computed on the coarsest grid stencil. The variation of the RMS (erms) and maximum-error (emax) norm plotted in
Fig. 15 represent the global and local errors respectively, and it indicates that the local as well as the global accuracy of
the original sharp-interface IBM [2] is preserved in the current method.

We now validate the present method by comparing the result with a well established case [6,21–23] of a horizontally
oscillating circular cylinder problem for which comparisons can be made with results from a body-fitted computational
method [24]. The amplitude of vibration as defined by Eq. (10) is set to X0 = 0.7957D and the Keulegan–Carpenter number
is set to KC = U0/f0D = 5. The Reynolds number based on the maximum velocity is 100. This problem has been used as a val-
idation case in many computational studies of moving boundary problems [6,21–23]. In the present study, the overall
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computational domain of 100D � 100D is resolved by 512 � 256 grid points with a non-uniform grid spacing. The minimum
grid spacing is Dx = Dy = 0.015D and the cylinder diameter is therefore resolved by about 60 grid points. The time step size,
Dt, corresponds to the CFL number 0.533. At the outer boundaries, Neumann boundary conditions are applied for the pres-
sure and velocities. The time histories of the total drag coefficient, CD ¼ Fx=0:5q0U2

0D obtained with the present as well as the
original method are plotted along with the data of Dütsch et al. [24] in Fig. 16. The present result is clearly smoother than the
original result; the RMS value of 2d-discontinuity is 0.23 for the original method, while the value decreased to 0.0322 with
the present method. This degree of reduction of oscillation is consistent with the results of the previous test case. As pre-
dicted by Eq. (9), the largest pressure fluctuations for the original method are observed when the body velocity is small. Note
however that, although the original result shows some small level of spurious oscillations, the phase and amplitude of the
drag matches the reference value quite well. This reconfirms our earlier notion that with sufficient resolution, the original
method provides good prediction of the forces.

The current approach is easily applied to 3D geometries and we demonstrate this by simulating a canonical 3D problem.
The problem tested is that corresponding to a sphere oscillating horizontally with X0 = 0.125D, Re = 78.54 and St = 1.2732.
The domain size is (4D)3 and is covered by a 643 uniform Cartesian grids. Neumann velocity boundary conditions are applied
for the velocities at the x-boundaries of the domain and all other boundaries are set to no-slip walls. The sphere diameter is
resolved by 16 grid points (D/Dx = 16) and the time-step size is equal to 0.01T (CFL = 0.125). The time-histories of the pres-
sure drag coefficient (in x-direction) are plotted in Fig. 17 for the original as well as the present method. Similar to the 2D
case, the drag variation for the current method is significantly smoother than that for the original method. Thus the present
method maintains its effectiveness for 3D moving boundary problems. It should be noted however that the pressure oscil-
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Fig. 17. In-line oscillating sphere. Left: Instantaneous velocity vector and stream trace colored by pressure. Right: Time histories of pressure drag
coefficient.
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lations produced by the original method are somewhat smaller when compared to the corresponding 2D case (see Fig. 12).
This is consistent with Eq. (9) which indicates that for 3D problems, the mass-error scales with the cube of the grid spacing
whereas it scales with the square of the grid spacing for 2D problems.

We note that the moving sphere problem is particularly relevant to the direct numerical simulation of particulate flows
[7,25]. In such simulations, each particle might only be resolved by O(10) grid points per particle diameter. With such coarse
particle resolution, diffuse-interface type method would result in significant numerical errors. However, if one solves this
problem with a typical sharp-interface immersed boundary approach, the force on the particle (and therefore its motion)
might be affected by spurious pressure oscillations. The new, regionally conservative cut-cell based method can alleviate this
problem while retaining the accuracy of the sharp-interface approach and lead to acceptable results with a relatively coarse
particle resolution.

5. Summary

We have presented an approach for reducing the spurious pressure oscillations that are observed in simulations of mov-
ing boundary problems with sharp-interface immersed boundary methods. The approach is grounded in analysis and
numerical experiments that indicate that the primary source of these oscillations are the errors in the geometrical conser-
vation law due to the appearance of fresh and dead cells, and local changes in the effective geometry of the immersed body,
which together, lead to local mass conservation errors. In order to reduce these errors, we apply a Cartesian cut-cell method
to the solution of the pressure Poisson equation. The cut-cell approach is coupled with a virtual merging technique to handle
the small-cell problem. With this implementation of the cut-cell, we retain the simplicity, efficiency and accuracy of the ori-
ginal sharp-interface IBM while reducing the spurious pressure oscillations by a factor of about seven. Reduction of oscilla-
tions is demonstrated for 2D as well as 3D canonical moving boundary problems. While the current method is implemented
for one particular ghost-cell based implementation of the sharp IBM [2], the ideas proposed here should be useful and effec-
tive for all methods in this category.

Spurious pressure oscillations for moving boundary problems have long been considered one of the primary deficiencies
of sharp-interface immersed boundary methods. Although such oscillations can be suppressed by increasing grid resolution,
this is very costly, especially for three-dimensional problems. The current method provides an effective and efficient ap-
proach for addressing this deficiency. The method proposed here would be particularly useful in flow problem such as
fluid-structure interaction and flow-induced sound where smoothness and accuracy of the pressure field and the hydrody-
namic force on the immersed body is essential.
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