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a b s t r a c t

A new sharp-interface immersed boundary method based approach for the computation of
low-Mach number flow-induced sound around complex geometries is described. The
underlying approach is based on a hydrodynamic/acoustic splitting technique where the
incompressible flow is first computed using a second-order accurate immersed boundary
solver. This is followed by the computation of sound using the linearized perturbed com-
pressible equations (LPCE). The primary contribution of the current work is the develop-
ment of a versatile, high-order accurate immersed boundary method for solving the
LPCE in complex domains. This new method applies the boundary condition on the
immersed boundary to a high-order by combining the ghost-cell approach with a weighted
least-squares error method based on a high-order approximating polynomial. The method
is validated for canonical acoustic wave scattering and flow-induced noise problems. Appli-
cations of this technique to relatively complex cases of practical interest are also presented.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Low-Mach number, flow-induced sound plays a critical role in engineering applications such as transportation systems,
engineering appliances and turbo-machines. In many of these applications, flow-induced noise is undesirable and engineers
seek to identify noise source(s) with the objective of eliminating or diminishing the same. One examples of this is the cabin
noise in automobiles associated with external air-flow and another is the aeroacoustics sound associated with the flow from
an air-conditioning vent. Flow-induced sound also plays an important role in biomechanics. Human speech and animal
vocalization is enabled by the generation of flow-induced sound in the larynx [1]. In the cardiovascular system, sounds such
as ‘‘bruits’’ [2], heart murmurs [3], and Korotkoff sounds [4] are blood-flow-induced sounds that carry important information
about the health of the individual. Finally, hydroacoustic sound generation [5–7] associated with wakes, shear layers, jets,
tip-vortices, etc. are also low-Mach number flows phenomena which have tremendous importance in naval hydrodynamics
and ocean acoustics.

The ability to predict flow-induced sound in these various applications can advance the design of quieter devices/
machines and also lead to insights and non-invasive diagnostic techniques for pathologies associated with phonation, speech
and the cardiovascular system. However, all of the above aeroacoustic problems are associated with very complex geome-
tries, and accurate prediction of sound generation and propagation in such complex geometries is a challenging proposition.
Although sound wave propagation and scattering by a complex geometry can be modeled with a boundary element method
(BEM) [8,9], the prediction of flow-induced sound generation requires more direct approach such as the direct computation
of compressible conservation equations (see [10,11]). Computation of sound wave generation/propagation requires a
. All rights reserved.
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method that has very low dispersion and dissipation and is therefore best accomplished by high-order finite-difference
schemes such as compact schemes [12] or DRP (Dispersion–Relation-Preserving) scheme [13]. Most of these high-order, fi-
nite-difference numerical method used in computational aeroacoustics (CAA) are formulated on structured grids and are
usually very sensitive to the quality of the computational grid and the formulation of the boundary conditions. However,
it is difficult to generate high-quality structured grids around complex geometries and this has mostly limited CAA to rela-
tively simple geometries.

There are however a few approaches that have been used with some success for CAA in relatively complex geometries. A
high-order overset grid method [14,15] has been developed to solve the compressible flow and acoustics over complex
geometries. However the level of geometric complexity that this solver can handle is still limited. Furthermore, while the
method is well suited for high-Mach number sound, computations at low Mach numbers (M < 0.1) are difficult. The high-or-
der discontinuous Galerkin method [16–19] could be an alternative to solve for the aeroacoustic field around complex geom-
etries, but this method is computationally expensive. Thus, there is a clear need for developing a method that can compute
low-Mach number flow-induced sound in geometrically complex configurations.

The immersed boundary method (IBM) [20] is well suited for dealing with complex geometries. With IBM, all the
equations can be solved on a body non-conformal, Cartesian grid, and also the grid does not need to be re-generated
for moving or deforming bodies. Due to this flexibility, many different types of IBM are used in compressible and incom-
pressible flow solvers. A few IB based approaches for acoustic wave propagation/scattering problem in frequency [21,22]
and time domain [23,24] have also been developed. In these studies, however, only the linear wave propagation and
scattering with prescribed acoustic source is considered. The key to IBM is the treatment of boundary condition at
the body surface and the vast majority of immersed boundary formulation are first or second-order accurate (one excep-
tion is the high-order immersed-interface method of Linnick and Fasel [25]). For example, in the IB method of de Tullio
et al. [26] and de Palma et al. [27] for compressible flows, a direct forcing with a linear or inverse-distance weighted
interpolation is employed and this leads to a locally first-order accurate method. In the compressible IB method of Ghias
et al. [28], a ghost-cell method is used with two-point centered scheme, which results in local and global second-order
accuracy.

Acoustic field computations however require high-order boundary formulations so as to minimize the dispersion/dissi-
pation errors. Additionally, not only the order of accuracy of boundary formulation, but also the sharpness of interface would
be very important in order to limit the phase and amplitude errors generated by a wave interacting with the boundary. Re-
cently, Liu and Vasilyev [29] applied a Brinkman penalization method, which is an immersed boundary method based on a
porous media model equation, to the compressible Navier–Stokes equations and considered an acoustic wave scattering
problem. Although the order of accuracy of numerical scheme could be maintained near the immersed boundary, the im-
mersed interface is not sharp.

In the present study, we propose a sharp-interface, higher-order immersed boundary method to solve aeroacoustic prob-
lems with complex bodies in low-Mach number flows. For the efficient computation of low Mach number aeroacoustics, a
hybrid method based on the hydrodynamic/acoustic splitting technique [30–32] is employed. In this approach, the flow field
is obtained by solving the incompressible Navier–Stokes equations (INS), and the acoustic field is predicted by the linearized
perturbed compressible equations (LPCE) proposed by Seo and Moon [32]. The INS/LPCE hybrid method is a two-step/one-
way coupled approach to the direct simulation of flow -induced noise. In the method proposed here, we couple an existing
immersed boundary solver for incompressible flows [33] with a new high-order immersed boundary method for solving the
LPCE equations with complex immersed boundaries. The high-order immersed boundary method proposed here also em-
ploys ghost-cells as in Refs. [28,33] but the method is extended to higher-orders by using an approximating polynomial
method originally proposed by Luo et al. [34] for the solid mechanics equations. Dirichlet as well as Neumann boundary con-
ditions can be applied with a high order of accuracy on the solid surface using the method. Thus dispersion/dissipation errors
caused by the boundary condition formulation can be minimized thereby ensuring highly accurate representation of wave
reflection on the solid walls.

The current method therefore combines the flexibility of the immersed boundary method with the capability offered by
the INS–LPCE hydrodynamic/acoustic splitting technique for computing low-Mach number (M < 0.3) flow-induced sound. It
should be pointed out that the sound generation and propagation is modeled here in a natural way and unlike acoustic anal-
ogy methods (e.g. Lighthill’s analogy [35]), the predicted acoustic field is valid for both the far and near-fields. The time-
dependant base flow effects on the sound generation and propagation are also fully taken into account. Additionally, the
LPCE secures a consistent acoustic solution by suppressing the evolution of the unstable perturbed vortical mode [32]. Final-
ly, since this method is based on the incompressible flow solution, it is very effective for the flows at low Mach numbers
which are of particular relevance to the applications of interest to us.

The paper is organized as follows: In Section 2, the governing equations and numerical methods including the present
immersed boundary approach are described. In Section 3, several canonical acoustic wave scattering problems and a funda-
mental flow-induced noise problem are considered in order to validate the present method. The acoustic wave scattering
results are compared with analytical solutions while the flow-induced noise simulation is validated against data from a
highly resolved direct compressible flow simulation performed on a body-fitted grid using a different solver. Finally, the
capability of the present approach for modeling flow-induced sound in complex geometries is demonstrated by computing
the generation and propagation of sound in a modeled human vocal-tract as well as that from a modeled air-conditioning
vent.
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2. Computational method

2.1. Governing equations

In the hydrodynamic/acoustic splitting method, the total flow variables are decomposed into the incompressible variables
and the perturbed compressible ones as:
qð~x; tÞ ¼ q0 þ q0ð~x; tÞ;

~uð~x; tÞ ¼ U
!
ð~x; tÞ þ~u0ð~x; tÞ; ð1Þ

pð~x; tÞ ¼ Pð~x; tÞ þ p0ð~x; tÞ;
where q0;U
!
; P are the incompressible flow density (constant), velocity, pressure, and q0;~u0; p0 are compressible perturbed

counter parts. The incompressible variables predicted by the incompressible Navier–Stokes equations represent the hydro-
dynamic flow field, while the acoustic fluctuations and other compressibility effects are represented by the perturbed quan-
tities denoted by (0). The incompressible Navier–Stokes equations are written as
r � U
!
¼ 0; ð2Þ

@ U
!

@t
þ ðU

!
�rÞU

!
¼ � 1

q0
rP þ m0r2 U

!
: ð3Þ
The equations for the perturbed quantites (i.e. the perturbed compressible equations (PCE) [31]) can be derived by subtract-
ing the incompressible Navier–Stokes equations from the compressible ones with the variable decomposition, Eq. (1). The
PCE, however, contains the perturbed vortical mode ð~x0 ¼ r �~u0Þ generated by the coupling effect between perturbed veloc-
ities and hydrodynamic vorticity. While this may be not a major sound source at low-Mach numbers, it can cause a self-ex-
cited instability if not properly resolved [32]. A detailed order-of-magnitude analysis of the equation that governs this
quantity [32] shows that all the source terms are O(M4) which are clearly smaller than the O(M) terms retained in the lin-
earization process. Therefore, this term can be safely dropped from the linearized equations. A resulting set of linearized per-
turbed compressible equations (LPCE) can be written in a vector form as,
@q0

@t
þ ðU

!
�rÞq0 þ q0ðr �~u0Þ ¼ 0; ð4Þ

@~u0

@t
þrð~u0 � ~UÞ þ 1

q0
rp0 ¼ 0; ð5Þ

@p0

@t
þ ðU

!
�rÞp0 þ cPðr �~u0Þ þ ð~u0 � rÞP ¼ �DP

Dt
þ s0; ð6Þ
where s0 is any additional prescribed acoustic source. The boundary conditions on the solid wall are:
@q0

@n
¼ 0;

@p0

@n
¼ 0 ~u0 � n̂ ¼ 0;
where n̂ is the unit wall-normal vector, and the initial conditions are normally q0 ¼ ~u0 ¼ 0 and p0 ¼ p00. It should be noted that
the LPCE has a much simpler form than the original PCE. Furthermore, the perturbed velocity (Eq. (5)) and pressure (Eq. (6))
fields are decoupled from the perturbed density field (Eq. (4)), and if one is not interested in a perturbed density field, this
equation does not need to be solved. The left hand sides of LPCE represent the effects of acoustic wave propagation and
refraction in the unsteady, inhomogeneous base flows, while the right hand side only contains the acoustic source term.
For low-Mach number flows, it is interesting to note that the total change of hydrodynamic pressure DP/Dt is the only source
term coming from the incompressible base flow and this is consistent with the analysis of Goldstein [38]. The LPCE have been
well validated for fundamental dipole/quadruple flow noise problems [32] and also for the low-Mach number turbulent flow
noise problems [36,37]. Further details regarding the derivation of LPCE can be found in Ref. [32].

2.2. Numerical methodology

The underlying flow equations for the base flow are the incompressible Navier–Stokes equations (Eqs. (2) and (3)) and
these are solved with a projection method based approach [39]. A second-order central difference is used for all spatial deriv-
atives and time integration is performed with the second-order Adams–Bashforth method for convection terms and Crank–
Nicolson method for diffusion terms [33].

The LPCE are spatially discretized with a sixth-order central compact finite difference scheme [12] and integrated in time
using a four-stage Runge–Kutta (RK4) method [40]. The first derivative is evaluated with a sixth-order compact scheme as
follows:
af 0i�1 þ f 0i þ af 0iþ1 ¼ a
fiþ1 � fi�1

2h
þ b

fiþ2 � fi�2

4h
; ð7Þ
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where a = 1/3, a = 14/9, and b = 1/9. Near the immersed solid boundaries and domain boundaries, the following boundary
schemes are used.
f 0i�1 þ 4f 0i þ f 0iþ1 ¼ 3ðfiþ1 � fi�1Þ=h; ð8Þ
2f 0i þ 4f 0iþ1 ¼ ð�5f i þ 4f iþ1 þ fiþ2Þ=h: ð9Þ
Eq. (8) is fourth-order and (9) is third-order accurate. These boundary schemes are discussed and suggested in Ref. [12]. Since
a central compact scheme has no numerical dissipation, an implicit spatial filtering proposed by Gaitonde et al. [41] is ap-
plied to suppress aliasing errors and ensure numerical stability. A general Mth order spatial filtering formulation is written as
af
~f i�1 þ ~f i þ af

~f iþ1 ¼
XM=2

n¼0

an

2
ðfi�n þ fiþnÞ; ð10Þ
where �0.5 < af < 0.5 is a free parameter, and coefficients an can be found in Ref. [41]. For a value of af which is close to 0.5,
the filtering truncates only very high wave number components. In this study, we applied 10th-order filtering with af = 0.45
in the interior region. Near the boundaries, reduced, (8th, 6th, 4th, and 2nd) order filtering is used. A similar approach is used
in the high-order, body-fitted compressible flow solver in Ref. [42]. The spatial derivative, Eqs. (7)–(9), and filtering, Eq. (10)
form a closed tri-diagonal matrix system. Thus, the spatial derivative and filtering are computed by a usual tri-diagonal ma-
trix solver algorithm (e.g. Thomas algorithm [43]). For the non-uniform Cartesian grid, the physical derivatives are evaluated
by the following transformation:
@f
@xi
¼ @ni

@xi

@f
@ni

; ð11Þ
where xi and ni are coordinates for physical and computational domain, respectively. The metric, @ni
@xi
¼ 1=ð@xi

@ni
Þ is also computed

with the high-order numerical schemes described above to retain the order of accuracy [42]. Once the spatial derivatives are
evaluated, the LPCE system is solved by a fully explicit four stage Runge–Kutta time-marching scheme [40] and the spatial
filtering is applied at the end of each time-step.

2.3. Immersed boundary formulation

The incompressible Navier–Stokes equations for the base flow with complex immersed boundaries are solved using the
sharp-interface immersed boundary method of Mittal et al. [33]. In this method, the surface of the immersed body is repre-
sented with an unstructured surface mesh which consists of triangular elements. At the pre-processing stage before integrat-
ing governing equations, all cells whose centers are located inside the solid body are identified and tagged as ‘body’ cells and
the other points outside the body are ‘fluid’ cells. Any body-cell which has at least one fluid-cell neighbor is tagged as a
‘ghost-cell’ (see Fig. 1), and the wall boundary condition is imposed by specifying an appropriate value at this ghost point.
In the method of Mittal et al. [33] a ‘normal probe’ is extended from the ghost point to intersect with the immersed boundary
(at a body denoted as the ‘body intercept’). The probe is extended into the fluid to the ‘image point’ such that the body-inter-
cept lies midway between the image and ghost points. A linear interpolation is used along the normal probe to compute the
value at the ghost-cell based on the boundary-intercept value and the value estimated at the image-point. The value at the
image-point itself is computed through a tri-linear (in 3D) interpolation from the surrounding fluid nodes. This procedure
leads to a nominally second-order accurate specification of the boundary condition of the immersed boundary.

While the above normal-probe approach is well suited for achieving second-order accuracy, extension to higher order for-
mulations is problematic. Higher-order formulations require large interpolation stencils along the normal probe and for
complex geometries, these large stencils can intersect with other nearby immersed boundaries (see Fig. 2(b)). Also, the over-
Interface

Ghost point

Body point

Fluid point

Image point

Body intercept

Fig. 1. Schematic of ghost cell method.
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Fig. 2. Schematic of the boundary condition formulation.
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all accuracy could be limited by the interpolation method used to compute values on the image points. A method is therefore
needed which will enable higher-order boundary formulations while allowing a high degree of flexibility with respect to the
interpolation stencil. In the current approach we propose the use of high-order polynomial interpolation combined with a
weighted-least square error minimization. In this approach, the value at the ghost point is determined by satisfying the
boundary condition at the body-intercept point using high-order polynomial. Specifically, a generic variable / is approxi-
mated in the vicinity of the body-intercept point (xBI,yBI,zBI) in terms of a Nth-degree polynomial U as follows:
/ðx0; y0; z0Þ � Uðx0; y0; z0Þ ¼
XN

i¼0

XN

j¼0

XN

k¼0

cijkðx0Þiðy0Þjðz0Þk iþ jþ k 6 N; ð12Þ
where x0 = x�xBI, y0 = y�yBI, z0 = z�zBI and cijk are unknown coefficients. In fact, Eq. (12) is the approximation of / using the
Taylor series expansion from the body-intercept point:
/ðx0; y0; z0Þ ’ /BI þ
@/
@x

����
BI

x0 þ @/
@y

����
BI

y0 þ @/
@z

����
BI

z0 þ 1
2
@2/
@x2

�����
BI

ðx0Þ2 þ 1
2
@2/
@y2

�����
BI

ðy0Þ2 þ � � � ; ð13Þ
where subscript ‘BI’ denotes the value at the body-intercept point (xBI,yBI,zBI). The coefficients, cijk can be expressed as
c000 ¼ /BI; cijk ¼
1

ði!Þðj!Þðk!Þ
@ðiþjþkÞ/

@xðiÞ@yðjÞ@zðkÞ

�����
BI

: ð14Þ
The number of coefficients L for a polynomial order N is listed in Table 1 for 2D and 3D cases. In order to determine these
coefficients, we need values of / from fluid data points around the body-intercept point. Following Luo et al. [34], a conve-
nient and systematic method for selecting these data points is to search a circular (spherical in 3D) region (of radius R)
around the body-intercept point. (see Fig. 2). With M such data points, the coefficients cijk can be determined by minimizing
the weighted error estimated as:
e ¼
XM

m¼1

w2
m U x0m; y

0
m; z

0
m

� �
� / x0m; y

0
m; z

0
m

� �� �2
; ð15Þ
where ðx0m; y0m; z0mÞ is the mth data point, and wm is the weight function. In this study, we used a cosine weight function sug-
gested in previous studies [34,44]:
Table 1
Number of coefficients (L) for Nth order polynomial.

N L(N)

2D 3D

1 3 4
2 6 10
3 10 20
4 15 35
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wm ¼
1
2

1þ cos
pdm

R

� �	 

; ð16Þ
where dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0m

2 þ y0m
2 þ z0m

2
q

6 R is the distance between the mth data point and the body-intercept point. To make the
least-square problem well-posed, M > L(N) and the radial range R is adaptively chosen so as to ensure the satisfaction of this
well-posedness condition. Since we need to find the value at the ghost point in conjunction with the body-intercept point,
the first data point is replaced by the ghost point, and (M � 1) data points are found in fluid region (see Fig. 2). The exact
solution of the least-square error problem, Eq. (15) is given by
c ¼ ðWVÞþW/; ð17Þ
where superscript ‘+’ denotes the pseudo-inverse of a matrix, vector c and / contain coefficients cijk and the data / x0m; y
0
m; z

0
m

� �
respectively, and W and V are the weight and Vandermonde matrices given by
W ¼

w1

w2

. .
.

wM

2
66664

3
77775; V ¼

1 x01 y01 z01 x01
2 y01

2 z01
2 � � �

..

.

1 x0m y0m z0m x0m
2 y0m

2 z0m
2 � � �

..

.

1 x0M y0M z0M x0M
2 y0M

2 z0M
2 � � �

2
666666664

3
777777775
: ð18Þ
Note that ðx01; y01; z01Þ is the ghost-point and V is a M � L matrix where L is the number of coefficients listed in Table 1. The
pseudo-inverse matrix is computed by singular value decomposition (SVD) method [45]. After solving Eq. (17), the coeffi-
cients cijk can be written as a linear combination of /ðx0m; y0m; z0mÞ. For example,
c000 ¼
XM

m¼1

Að1;mÞ � /ðx0m; y0m; z0mÞ

c100 ¼
XM

m¼1

Að2;mÞ � /ðx0m; y0m; z0mÞ;

..

.
; ð19Þ
where A(l,m) is the lth row, mth column component of matrix A = (WV)+W, which has dimension of L �M. According to Eq.
(13), coefficients cijk represent the value and derivatives at the body-intercept point (xBI,yBI,zBI):
c000 ¼ /ðxBI; yBI; zBIÞ c100 ¼
@/
@x
ðxBI; yBI; zBIÞ c010 ¼

@/
@y
ðxBI; yBI; zBIÞ � � � : ð20Þ
Therefore, for given Dirichlet or Neumann type boundary condition at the body wall, the value at the ghost point can be eval-
uated with Eqs. (19) and (20). For example, given the Dirichlet boundary condition at the wall, /(xBI,yBI,zBI) = /w, the value at
the ghost-point can be computed as
/gp ¼ /w �
XM

2

Að1;mÞ � /ðx0m; y0m; z0mÞ
" #,

Að1;1Þ; ð21Þ
where /gp is the value at the ghost point ðx01; y01; z01Þ. For the Neumann type boundary condition, @/=@nðxBI; yBI; zBIÞ ¼ /0w , the
value at the ghost point is given by
/gp ¼
/0w �

PM
2 n̂ � Að2;mÞ̂iþ Að3;mÞ̂jþ Að4;mÞk̂

� 

� /ðx0m; y0m; z0mÞ

n̂ � Að2;1Þ̂iþ Að3;1Þ̂jþ Að4;1Þk̂
� 
 ; ð22Þ
where n̂ is the unit wall normal vector at the body point.
The present method allows a high level of flexibility with respect to the choice of the stencil points. One essentially needs

to find a sufficient number of fluid points around the body-intercept point to accomplish the interpolation and the simplest
procedure is to increase the radius R until the required number of fluid interpolation points are identified (see Fig. 2(b)). The
key to successful implementation of this method is to maintain the well-posedness of the least-square error problem, Eq.
(17), and a convenient way to check this is to monitor the condition number of matrix (WV). Large values of the condition
number are indicative of an ill-conditioned situation which has to be remedied by increasing the number of data points in
the stencil. It is found that the condition number is dependent on the geometrical configuration and the order of polynomial.
In most case, the matrix (WV) is singular, and it means that one cannot get a well-posed condition with the minimum num-
ber of data points, i.e. M = L(N). Even though the least-square error problem is successfully solved with the SVD technique
(Eq. (17)), for large condition number of (WV) (e.g. O(106) or larger), small numerical errors in the ghost-point value can am-
plify and lead to numerical instability. Thus it is necessary to limit the maximum condition number by increasing the num-
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ber of data points used in the interpolation. Note that even for large interpolation stencils, the computational expense asso-
ciated with the implementation of the boundary condition is a small fraction of the overall expense since the number of
ghost cells is a very small proportion of the total number of cells in the computational domain. Also, the search for the data
points and matrix computations for each ghost-point is done once at in the pre-processing stage and the matrix A = (WV)+W
is stored at that time. The computation for the value on the ghost point at every time step is then accomplished through
highly efficient vector multiplications (Eqs. (21) and (22)).

Once the boundary condition is imposed by setting the ghost-point value, the values at the internal body points need not
to be computed and these points are treated as holes in computational domain. For spatial derivative and filtering, the body
points are decoupled in the tri-diagonal matrix system by setting banded values as {010}. To close the tri-diagonal matrix
system, the same boundary derivative and filtering scheme used at the domain boundary are also applied at the immersed
boundary. Near the immersed body interface, spatial derivative and filtering scheme are applied as shown in Fig. 3. Here C6,
C4 and C3 indicate Eqs. (7)–(9) respectively, and FP denotes Pth order spatial filtering. Note that the first point of spatial
derivative formulation is the ghost-point, but this point is not filtered to ensure accurate specification boundary condition.
The present boundary derivative and filtering schemes are chosen by considering the stability and flexibility of the overall
method. We have found that one-sided higher-order derivative/filtering schemes [46,47] are unstable for the current meth-
od. This may be because the ghost-point value is not determined one-dimensionally along the numerical stencils. Further-
more, such one-sided schemes require extended one-sided numerical stencils which would degrade the overall flexibility of
the method, since such stencils can intersect with other nearby immersed boundaries. On the other hand, the present meth-
od can potentially work even when the distance between two immersed boundaries is relatively small. While the most sat-
isfactory solution to computing flows with small gaps is to improve resolution (such as with local refinement), sometimes
the flow in these regions might be of marginal interest and the present method would be particularly useful for such cases.

3. Results and discussion

In order to test the present immersed boundary method and boundary condition formulation for the LPCE equations, sev-
eral benchmark 2D and 3D problems in acoustic scattering are considered. Following this, we validate our computed solution
for sound generation by a cross flow over a circular cylinder against that obtained from a highly accurate direct simulation of
the full compressible flow equations. Finally, we demonstrate the versatility of the current approach by computing flow-in-
duced sound in two complex configurations with widely disparate applications: one in biomechanics and the other in engi-
neering acoustics.

3.1. Acoustic wave scattering bench-mark problems

In order to test the present immersed boundary method and boundary condition formulation, several benchmark prob-
lems are considered. The first problem is the acoustic wave scattering by a circular cylinder (Fig. 4) which is a well estab-
lished validations case [22,29,49]. A circular cylinder with diameter 1 is placed at (x,y) = (0,0), and the computational
domain is �6 6 (x,y) 6 6. The Gaussian pulse at (x,y) = (4,0) is given by the initial condition,
p0ðt ¼ 0Þ ¼ exp � lnð2Þ ðx� 4Þ2 þ y2

0:22

 !
: ð23Þ
Eqs. (5) and (6) are solved with U = 0, P = 1/c on a (600 � 600) uniform Cartesian grid with Dx = D y = 0.02, and a time step
Dt = 0.01 is used. At the cylinder surface, a slip-wall boundary condition is applied for the perturbed velocities, and the Neu-
mann boundary condition of wall-normal gradient zero is applied for the perturbed pressure. For outer boundaries, the ‘En-
ergy Transfer and Annihilating (ETA)’ boundary condition [48] is used to treat the out-going acoustic waves. For the
immersed boundary formulation, N = 3 (third-order polynomial) and M = 40 are used. As discussed above, the maximum
number of data points, M should be chosen so that the least-square error problem is well-posed. We have found that the
current numerical method is stable for the maximum condition number of matrix (WV) (in Eq. (17)) up to O(105), and
the number of data points M = 40 (about 6 � 6 grid points, if approximated as a square array stencil in 2D) is required to
get such well-posed condition for the present configuration. Note that this stencil size (about 6 along the grid line) is very
C3 C4 C6 C6 C6 C6 C6
F2 F4 F6 F8 F10 F10

InterfaceGhost point

Fig. 3. Application of compact scheme and spatial filtering near the immersed boundary.
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Fig. 4. Schematic of benchmark problem: acoustic wave scattering by a circular cylinder.
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much inline with the stencil of the sixth-order compact scheme (5 along the grid line). As mentioned earlier, the number of
data points used in the approximation does not significantly increase the overall computational time. For this particular case,
the computation time for the pre-processing step was about 10% of one time-step of the flow computation and the compu-
tation time for the applying immersed boundary condition was about 0.1% of the overall computation time.

The time evolution of the acoustic wave is shown in Fig. 5 and reflected as well as deflected waves are observed. The time
histories of pressure fluctuation monitored at four different positions around a cylinder (point a–d in Fig. 4) are plotted in
Fig. 6 along with the analytical solution [49]. We note that the computed results agree very well with the analytical solution.

We use this case to perform a convergence test of the present immersed boundary method. The convergence test employs
five different grid sizes with Dx = Dy ranging from 0.02 to 0.08. The results with Dx = 0.02, 0.04, and 0.08 are plotted along
with the analytical solution in Fig. 7(a) for the first reflected wave monitored at point a (x = 2,y = 0). The result with a grid
spacing, Dx = 0.04 is still acceptable, while the coarser grid, Dx = 0.08 causes noticeable reduction in the peak value. It should
however be noted that with Dx = 0.08, the cylinder is resolved by only about 12 grid points which explains the loss in accu-
racy. The grid convergence rate is analyzed by the error with respect to the analytical solution at the peak time for the inci-
dent and (first) reflected wave at point a, respectively. Since the error is computed at a fixed time, it addresses both phase
and amplitude error. The results are shown in Fig. 7(b) for different polynomial orders of immersed boundary formulation,
N = 1–4. Since the incident wave is not affected by immersed-boundary formulation, it shows a clear sixth-order conver-
gence. The error clearly increases for the reflected wave due to influence of the boundary schemes (reduced-order discret-
Fig. 5. Acoustic wave scattered by a circular cylinder. Perturbed pressure, p0 contours (10 contour levels between �0.04 and 0.04).



Fig. 6. Time histories of pressure fluctuation compared with analytical solutions. Sold line: present, dash-dot: analytical solution.
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ization/filtering near the boundary) and the immersed boundary formulation. It is observed that the absolute error is smaller
for the higher polynomial order, N, but the slope of convergence is similar for all N except the linear method (N = 1). The
result with N = 4 is not much different with N = 3. The convergence slope is about five for the finer grid resolution, but it
degrades to about three for the coarser resolutions. This might be due to the fact that the present boundary scheme is only
third-order accurate at the ghost point, and the ratio of number of ghost points to the number of interior fluid points along
the grid line is larger for the coarser resolution. However, the fast (nearly 5th order) convergence at relatively finer grid res-
olutions is very encouraging and quite acceptable for most aeroacoustic problems. From a practical point-of-view, the in-
creased error level due to the boundary formulation can be controlled with a non-uniform grid clustering around the
immersed boundaries.
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In the second test problem, the initial acoustic pulse is replaced by a time harmonic, Gaussian monopole source:
(b

1

Fig. 8.
solution
s0ðx; y; tÞ ¼ exp � lnð2Þ ðx� x0Þ2 þ ðy� y0Þ
2

b2

 !
� sinðxtÞ; ð24Þ
where x = 8p, b = 0.2, and (x0,y0) = (4,0). All other conditions are the same with the first problem. The snapshot of acoustic
field around a cylinder is shown in Fig. 8(a) and the directivity of p0rms at r = 0.52 (which is very near the immersed boundary)
and r = 5 are plotted along with the analytical solution [49] in Fig. 8(b) and (c). The present result agrees very well with the
analytical solution at both locations. Higher frequency wave scattering is also considered with x = 12p and 16p. For these
cases, b is set to 0.1 and the grid spacing and time step size are 0.01 and 0.005, respectively. The directivity of p0rms at r = 5 is
found to compare well with the analytical solution in Fig. 9 and thus high-frequency wave scattering is also resolved well by
the present immersed boundary method.

Now in order to test a complex geometrical configuration, the acoustic wave scattering by three cylinders with different
sizes is considered [50]. The time harmonic monopole source defined by Eq. (24) is placed at the origin, (x0,y0) = (0,0) and
source parameters are set to b = 0.2, x = 8p. The computational domain is �8 6 (x,y) 6 8, and a uniform Cartesian grid with
Dx = 0.02 is used. The first cylinder with diameter 1 is placed at (�3,0) and two cylinders with diameter 0.75 are placed at
(3,�4) and (3,4). Fig. 10(a) shows the instantaneous fluctuating pressure field, and p0rms profile along the y = 0 line is com-
pared with the analytical solution [50] in Fig. 10(b) and (c). We note that the present results coincide well with the analytical
solution thereby demonstrating the ability of the solver to provide accurate solution with relatively complex geometries.

Finally, we consider a three-dimensional acoustic wave scattering problem. A sphere with diameter 1 is placed at
(x,y,z) = (0,0,0), and a Gaussian monopole source is given by,
s0ðx; y; z; tÞ ¼ exp � lnð2Þ ðx� 4Þ2 þ y2 þ z2

0:22

 !
� sinðxtÞ: ð25Þ
The frequency x is set to 6p. A uniform Cartesian grid of 400 � 200 � 200 (16 million) with grid spacing 0.03 is used and the
time step is set to Dt = 0.01. For the immersed boundary formulation, N = 3 and M = 80 are used. The present LPCE solver is
fully parallelized by the domain decomposition technique using a message passing interface (MPI) library, and the current
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Time-harmonic acoustic wave scattering. (a) Snapshot of fluctuating pressure field, (b) directivity of p0rms at r = 0.52, (c) at r = 5. Solid line: analytical
, symbols: present.
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Cartesian grid is easily and efficiently decomposed into 8 � 4 � 4 (128) blocks. One time-step takes about 7 s with 128 pro-
cessors on the NICS-Kraken (Cray XT-5). The instantaneous perturbed pressure field is shown in Fig. 11(a) and the directivity
of p0rms at r = 2 on z = 0 plane plotted along with the analytical solution [51] in Fig. 11(b) shows excellent agreement.

3.2. Flow-induced noise

The present method is now applied to an actual low-Mach number flow-induced noise problem: the generation of tonal
noise by the flow past a circular cylinder. The Reynolds number based on a cylinder diameter D, ReD = U1D/m is 200 and Mach
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Fig. 11. Spherical, time-harmonic wave scattering. (a) Snapshot of fluctuating pressure field, (b) directivity of p0rms at r = 2 on z = 0 plane, sold line: analytical
solution, symbols: present.
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number M = U1/c = 0.2. Here U1, c, and m are free-stream flow velocity, speed of sound, and kinematic viscosity, respectively.
The incompressible flow field is solved by the immersed boundary incompressible flow solver, developed by Mittal et al. [33]
and described briefly in Section 2. The domain size for the simulation is �90D 6 x 6 90D, �100D 6 y 6 100D and a non-uni-
form 512 � 512 Cartesian grid with D xmin = Dymin = 0.015D is used (see Fig. 12). The grid is stretched in the outer region and
the maximum grid spacing is about 1.4D. The grid resolution in the far-field is designed to resolve only acoustic waves. For
the present case, the acoustic wave length is expected to be about 25D and this wave length is resolved by about 20 grid
points in the far-field. The time step for the flow simulation is set to Dtf = 0.005D/U1. For this particular case, the associated
LPCE are solved on the same Cartesian grid as the flow solver. However, it should be noted that in principle, the two grids can
be different and that would necessitate a spatial interpolation of the base flow terms employed in the LPCE equations. For the
flow solver, the viscous flow structure should be resolved accurately with the refined grid resolution around the immersed
body. In this regard, a local grid refinement strategy would be quite helpful in increasing the efficiency of the present im-
mersed boundary flow solver. For the LPCE simulation, Dta = Dtf/3 is used in order to satisfy the acoustic CFL condition,
cDta/Dx 6 1, and the base flow U, P and source term DP/Dt are obtained by a second-order temporal Lagrangian interpolation
of the incompressible flow solution. Thus, for tf < ta 6 tf + Dtf, the incompressible flow solutions at three time levels (tf�D
tf, tf, tf + Dtf) are used for the Lagrangian interpolation. Since the current flow solver is second-order accurate in time, this
temporal interpolation method is sufficient to retain the overall temporal accuracy of the solver. Both the flow and the
acoustic solvers are fully parallelized and computations are carried out simultaneously. On 16 processors of an IBM iDataPlex
cluster, the computation of one time step takes about 6 s for the flow solver and about 1 s for the acoustic solver.

Fig. 13 shows the instantaneous vorticity field obtained by the immersed boundary incompressible flow solver and time
histories of the drag and lift coefficients. Karman vortex shedding is observed in the cylinder wake and the computed Strou-
hal number is St = fD/U = 0.195 which matches well with the value of 0.196 reported in the literature [52]. The computed
mean drag coefficient CD,avg = 1.31 is also very close to the value of 1.33 obtained by Henderson [53]. Fig. 14(a) shows the
acoustic field solved by LPCE on the same Cartesian grid. The acoustic field is visualized by time fluctuation of total pressure:
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Fig. 12. Computational grid around a circular cylinder.
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Fig. 13. (a) Instantaneous vorticity field (immersed boundary incompressible flow solver), non-dimensionalized by U/D. (b) Time histories of drag and lift
coefficients.

Fig. 14. Comparison of instantaneous acoustic field; instantaneous pressure fluctuation contours, non-dimensionalized by q0c2. (a) Incompressible Navier–
Stokes/LPCE hybrid method on the Cartesian grid. (b) Direct simulation of compressible Navier–Stokes equations on the body-fitted, O-type grid.
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Dp0 ¼ p� �p ¼ ðP þ p0Þ � ðP þ p0Þ; ð26Þ
where overbar denotes time average and one can clearly observe the dipole noise generated by periodic vortex shedding. For
comparison, the problem has also been solved by a direct numerical simulation (DNS) on an O-type body-fitted grid. In this
simulation, the full compressible Navier–Stokes equations are solved on the cylindrical grid using a high-order numerical
scheme (a sixth-order compact scheme for spatial derivatives, and a four-stage Runge–Kutta method for time integration)
and both flow and acoustics are resolved simultaneously [31,32]. The outer domain boundary of the grid lies at r = 100D
and the grid employs 400 and 640 points in the circumferential and radial directions respectively. The minimum grid spacing
in this DNS is 0.005D and the results are compared in Figs. 14 and 15. The instantaneous acoustic field obtained by the direct
simulation shown in Fig. 14(b) is almost the same with the one predicted by the present method. It is however observed that
the vortical structure in the wake is damped out earlier in the present result than the compressible DNS. This is because the
spatial derivative scheme used in the present flow solver is second-order accurate, while the DNS employs a sixth-order
scheme. Furthermore, the stream-wise grid resolution is finer for body-fitted DNS. However, these convecting/diffusing vor-
tices at the far-downstream are not a significant noise source, and therefore do not affect the accuracy of acoustic field in
other regions. In Fig. 15, the pressure fluctuation Dp0 along the x = 0 line above the cylinder and along a line inclined 30� from
the wake are plotted for both direct simulation and the present method and one can see that the present result matches well
with the direct simulation.
3.3. Generation and propagation of voiced sound in the human vocal tract

The present method is now applied to the computation of voiced sound generation and propagation to demonstrate its
capability for dealing with complex geometries in practical applications. Human phonation and speech is well suited for the
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current methodology since it involves low-Mach number flow-induced sound in a complex geometry. It is well known that
the source of voiced sound is the flow rate fluctuation in the vocal tract caused by the vibration of vocal folds in the larynx
[54]. The glottal flow rate fluctuation generates monopole sound in conjunction with the acoustic response of the vocal tract,
and this monopole sound is the dominant component of voiced sound [1]. The typical human vocal tract system is shown in
Fig. 16(a). Note that the nasal pharynx is not included in this particular model but could be included easily if required. The
acoustic system of the vocal tract can be considered as an open-ended duct and acts as a resonator for acoustic waves. If one
assumes the vocal tract as a one-dimensional duct with a constant cross-sectional area, the resonance frequencies can be
estimated by
Fn ’
ð2n� 1Þ

4
c
l
; ð27Þ
where l is the length of the duct, c is the speed of sound, and n = 1, 2, 3, . . .. In reality, these resonance frequencies are shifted
by the cross-sectional area variation along the vocal tract, the radiation impedance at the mouth (open-end), and other cou-
pling effects. The resulting resonance frequencies of the vocal-tract constitute the formant frequencies of voiced sound [1].
Therefore, the shape of vocal tract has a significant effect on the actual voiced sound generation. There have been several CAA
studies on the human phonation problem [55–57]. All of these studies focused on the vocal fold vibration and laryngeal flow,
and the vocal tract is assumed as a simple, infinitely long duct. In the present study, we directly compute the voiced sound
generation for a given time-dependent glottal flow rate and also consider the propagation of this sound into the ambient
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Fig. 16. (a) Human vocal tract system. (b) Grid for voiced sound computation (only every 4th grid is plotted).
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region outside the speaker’s mouth. In this preliminary study, two-dimensional computations are performed with geome-
tries of human head and vocal tract representing the saggital symmetry plane as shown in Fig. 16(a). Although the geometry
has been simplified significantly, it is complex enough so as to pose a serious challenge to any conventional CAA method.

The computational grid around the head geometry is shown in Fig. 16(b). The diameter of the trachea in the larynx D (see
Fig. 16(a)) which is chosen as the characteristics length scale for this problem, and the outer domain boundaries are ex-
tended to 100D. A Cartesian grid with total 1024 � 1024 grid points is used and the head region is resolved by 600 � 800
grid points with uniform grid spacing, Dx = 0.02D. The vocal tract is modeled from the end of vocal folds and a glottal flow
rate is prescribed as an inflow velocity boundary condition at the lower end of the vocal tract which coincides with the glot-
tal outlet. The glottal gap size is assumed as d = 0.1D and velocity inlet boundary condition is only applied over this glottal
gap in order to model the glottal. A parabolic profile is used for the velocity distribution and the maximum jet velocity, Vmax

is chosen for the velocity scale. The dimensional values of length and velocity scale are D = 0.02 m and Vmax = 34 m/s [58].
Thus, the flow Mach number based on a maximum jet velocity is M = Vmax/c = 0.1.

In this study, the glottal flow rate waveform is modeled with the LF (Liljencrants–Fant) model [59] wherein the time
derivative of the glottal flow rate, E = dQ/dt over one cycle is given by
EðtÞ ¼
Eoeat sinðxotÞ; 0 6 t < Te;

�E1ðe�bðt�TeÞ � e�bðTc�TeÞÞ; Te 6 t < Tc;

0; Tc 6 t < T0;

8><
>: ð28Þ
where Eo ¼ �Ee=feaTe sinðxoTeÞg; E1 ¼ Ee=ð1� e�bðTc�TeÞÞ, T0 is a period, Te is the minimum flow rate derivative time, and Tc is a
vocal fold close time. a, b, xo, and Ee are parameters and E(t) satisfies the constraint:

R T0
t¼0 EðtÞ ¼ 0. The waveform for modal

voice sound is constructed with the following parameters: a = 8.0, b = 20.0, xo = 5.9631617, Ee = 0.8, and Te and Tc are set to
0.6T0 and 0.9T0, respectively. Fig. 17(a) and (b) show the flow rate wave form (Q) and its time derivative (E). The fundamental
frequency, f0 = 1/T0 is set to 125(Hz) which is a typical value of the adult male voice.

The flow field is computed with the immersed boundary solver of Mittal et al. [33] for about 40 glottal cycles (40T0). With
the fluctuating inlet flow rate, a pulsatile jet flow is developed at the vocal tract inlet and the instantaneous vorticity field is
shown in Fig. 18(a). The shear layer of the pulsatile glottal jet rolls-up into vorticies, which interact with the boundaries and
pair with the vortices formed in previous cycles. The vortices are eventually found to dissipate further downstream. The
hydrodynamic pressure fluctuation monitored near the vocal tract inlet is plotted in Fig. 18(b). The overall waveform of
the hydrodynamic pressure fluctuation is very similar to the time derivative of glottal flow rate. This is to be expected since
if one assumes the vocal tract system to be a quasi one-dimensional tube, the hydrodynamic pressure gradient along the
vocal tract can be represented by
DP ¼ q0
dQ
dt

Z
ds

AðsÞ ; ð29Þ
where s is the distance variable along the vocal tract, and A is the cross-sectional area of the vocal tract. Eq. (29) can be ob-
tained by integrating the quasi one-dimensional momentum equation while neglecting the viscous effects and assuming the
rate of cross-sectional area change is small. The small fluctuations observed in Fig. 18(b) are the effects of vortex motions.
Since the hydrodynamic pressure fluctuation in the vocal tract will be the major source of sound generation and the pressure
fluctuation is directly related with the time derivative of glottal flow rate as shown above, it is clear that the time derivative
of glottal flow rate is primarily responsible for the voiced sound source mechanism.

The acoustic field computed with LPCE is shown in Fig. 19. One can see the generation of monopoles sound at the end of
mouth and its propagation into the surrounding region. The acoustic wave-length corresponding to the fundamental fre-
quency, f0 is about 136D, but a higher frequency component with a wavelengths of about 50D is also clearly visible. The time
history of the acoustic pressure fluctuation monitored at 30D (about 60 cm) from the end of mouth and its sound pressure
level (SPL) spectrum are shown in Fig. 20. The acoustic waveform is quite different from the hydrodynamic pressure fluctu-
ation and its spectral peak is observed at the third harmonic of the fundamental frequency. As mentioned above, this is due
to the resonance effect of the vocal tract system. The length of current vocal tract system is about l = 12.5D and this results in
the first resonance frequency based on Eq. (27) of F1 = 2.72f0 (about 340 Hz). Although the observed resonance frequency is
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Fig. 17. (a) Glottal flow rate wave form (Q) and (b) its time derivative (E = dQ/dt) made with the LF model, Eq. (28).
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slightly shifted from this value, the estimated F1 is near the third harmonic of the fundamental frequency and also explains
the amplification of higher frequency components. In the ‘source-filter mechanism’ widely used in the analysis of voiced
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sound studies [1], the voiced sound signal is related to the glottal source (glottal flow rate or its time derivative) using a filter
or transfer function which represents the acoustic response of the vocal tract. This transfer function can be computed with
the present results. In the frequency domain, the transfer function (TF) can be estimated as
TFðf Þ ¼ Dp0ðf Þ=Eðf Þ; ð30Þ
where E is the time rate of change of the glottal flow rate. The spectrum of time derivative of glottal flow rate, E is plotted
along with the SPL spectrum of acoustic signal at 30D from the end of mouth in Fig. 20(b). The transfer function is computed
by Eq. (30) at every harmonic of the fundamental frequency, f = nf0 and plotted in Fig. 21. The transfer function represents the
acoustic response of the vocal tract system and one can clearly see the formant frequencies [1] of the current vocal tract sys-
tem. The first formant corresponding to 350 Hz is close to the F1 value estimated with Eq. (27), but higher formant frequen-
cies (683,1554,2093) are significantly shifted from the Fn values. The advantage of this direct computation of transfer
function is that all the effects such as area variation, radiation impedance, and acoustic energy dissipation can be resolved
without assumption or modeling. Moreover, the effect of the base flow can also be included in order to extract the finer fea-
tures of the voiced sound. The directly computed transfer function would be quite helpful in the study of glottal source by
the inverse filtering of voice sound signal [60].

Although the present voiced sound computations are performed with two-dimensional geometries, the fundamental
mechanisms of voice sound generation are well resolved. In future work, we will consider actual three-dimensional geom-
etry obtained with CT and ultrasound imaging [61] and also dynamic coupling with the vocal fold motion and laryngeal flow
for the real voiced sound computation.

3.4. Flow-noise from a modeled air-conditioning vent

The flow-induced noise by the deflector grille of the air-conditioning vent is known as one of the major interior noise
components for automobile [62]. The sound generated by the grille is a complex problem whereas multiple deflectors result
in a complex flow field and the generated sound also interacts with deflectors and the duct. In this section, the flow-induced
noise produced by a deflector grille on an air conditioning vent is considered. This problem is considered here in order to
demonstrate the capability of the present method for modeling complex low-Mach number flow-induced noise problems
in engineering application.

The geometry and configuration of air-conditioning vent and deflector grille considered in this study are shown in
Fig. 22(a). The deflectors are idealized by rounded plates and their length and thickness are l = 0.3D and h = 0.06D, respec-
tively where D is the duct height and the deflector angle is set to 30�. The relative dimensions of the duct and the deflectors
are based on the Ref. [62]. A parabolic velocity profile is applied at the duct inlet and the maximum velocity Umax is chosen
for the velocity scale. The Reynolds number and flow Mach number are set to ReD = UmaxD/m = 10,000 and M = Umax/c = 0.1,
respectively. The computational domain boundary is extended to 12D in x and y direction and open (velocity gradient
zero)/radiation (ETA) boundary conditions are applied at these domains for flow and acoustic solver, respectively. The sim-
ulations employ a high-density non-uniform 1024 � 1024 Cartesian grid (shown in Fig. 22(b)) with a minimum grid spacing
Dxmin = Dymin = 0.002D. The simulations are carried out on 256 processors of NICS-Kraken.

The flow field is computed with the incompressible flow solver and the instantaneous vorticity field is shown in
Fig. 23(a). The Reynolds number based on the deflector-plate thickness is 600 and therefore as expected, Karman vortex
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shedding is observed in the deflector wakes. For the uppermost deflector, a leading-edge separation vortex is also
observed and all of these vortices interact in a highly complex manner in the grille wake. Fig. 23(b) shows the vertical
velocity (V) fluctuation monitored at the near wake of each deflector. The quasi-periodic velocity fluctuation caused by
the Karman vortex shedding is clearly exhibited, especially for the lowest deflector (deflector 4). The Strouhal number
for the vortex shedding of this deflector based on the deflector thickness is Sth = 0.27. For the uppermost deflector,
the leading-edge separation affects the vortex shedding, and the dominant vortex shedding frequency for this
deflector (deflector 1) is about 0.12. Vortex shedding from Deflector 2 is clearly affected significantly by the vortices from
deflector 1.

The instantaneous acoustic field computed by LPCE is visualized in Fig. 24(a) with the dilatation rate, r �~u0ð Þ field to show
the structure more clearly. The power spectral densities of pressure fluctuation, Dp0, at four monitoring points (A–D) are also
plotted in Fig. 24(b). For the present low-Mach number flow noise problem, the dipole sound generated by the vortex shed-
ding for each deflector is expected to be the dominant noise source. The most clearly visible acoustic wave in Fig. 24(a) has
acoustic wave length about 2D. Also, in Fig. 24(b), the dominant peak is observed at Sth = 0.3, of which wave length is 2D.
Since this peak frequency is very close to the Karman vortex shedding frequency, Sth = 0.27, it is conjectured that the Karman
vortex shedding is the dominant source mechanism. However, it should be noted that the sound sources are located at the
duct outlet, and the generated sound wave interact significantly with the duct. In a previous experimental study [62], it was
found that the duct transversal mode plays an important role on the noise generated by the deflector grille. The observed
dominant acoustic wave length of 2D (Sth = 0.3) also matches the wave length of duct transversal mode. Therefore, it is be-
lieved that the dominant radiated noise is a result of the coupling of vortex shedding at the deflectors and the duct trans-
versal mode. A more detailed analysis for this problem will be performed in a future study which will include a more
realistic 3D geometric model of the vent.
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4. Conclusion

A sharp-interface, high-order immersed boundary method for the time-domain acoustic field computation is proposed.
The sharp representation of immersed boundary interface by a ghost-point method and the boundary condition formulation
using high-order polynomials enables accurate modeling of acoustic wave interaction with complex immersed boundaries.
For the efficient computation of low-Mach number flow noise, the proposed method is applied to the INS/LPCE hybrid meth-
od. Both the flow and acoustic solvers employ immersed boundary methods to resolve the flow and acoustic field around
complex geometries respectively. The accuracy and fidelity of present method is demonstrated through verification against
analytical solutions of canonical acoustic scattering problems as well as validation for the flow-induced noise by a flow past a
circular cylinder. Two practical flow-induced noise problems are also considered and the results show the potential of this
new solver for addressing complex aeroacoustic sound generation problems.
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