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SUMMARY

A large-eddy simulation methodology for high performance parallel computation of statistically fully
inhomogeneous turbulent flows on structured grids is presented. Strategies and algorithms to improve
the memory efficiency as well as the parallel performance of the subgrid-scale model, the factored
scheme, and the Poisson solver on shared-memory parallel platforms are proposed and evaluated.
A novel combination of one-dimensional red–black/line Gauss–Seidel and two-dimensional red–black/line
Gauss–Seidel methods is shown to provide high efficiency and performance for multigrid relaxation of
the Poisson equation. Parallel speedups are measured on various shared-distributed memory systems.
Validations of the code are performed in large-eddy simulations of turbulent flows through a straight
channel and a square duct. Results obtained from the present solver employing a Lagrangian dynamic
subgrid-scale model show good agreements with other available data. The capability of the code for
more complex flows is assessed by performing a large-eddy simulation of the tip-leakage flow in a linear
cascade. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

With increasing computing power, applicability of computational fluid dynamics (CFD) has ex-
tended to more realistic and complex problems from traditional block body problems. In particular,
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the large-eddy simulation (LES) technique, in which resolved and subgrid-scale (SGS) motions are
defined by a spatial filter applied to the Navier–Stokes equations, has emerged as a promising tool
for time accurate simulations of turbulent flows. In most complex flow configurations of interest,
the need for grid resolution and corresponding computational resources make their analysis often
inadequate, except on large-scale parallel computers.

In addition to the need for computational resources, fully inhomogeneous complex turbulent
flows necessitate a localized version of the SGS model [1–4], complicated boundary conditions
[5, 6], and efficient computational algorithms. Especially when compared to configurations with
at least one homogeneous flow direction, the full inhomogeneity prevents the use of fast Fourier
transforms (FFT) and significantly increases computational overhead in the Poisson equation
required for mass conservation of incompressible flow. Since the direct solution method for the
Poisson equation is too expensive, the method has usually been substituted by an iterative scheme.
The multigrid method has been widely adopted for this purpose due to its rapid convergence.
However, its convergence property and parallelizability are significantly affected by the choice of
base relaxation schemes and its optimization usually requires extensive numerical experiments.

During the course of developing the present code, it was found that the solution procedure for the
Poisson equation is the most costly part in the entire computation and accounts for more than 60%
of the total computational cost. Therefore, in this study, the design and optimization of the algorithm
for the Poisson equation is considered with the highest priority. Although numerous relaxation
algorithms for multigrid methods and their two-dimensional applications have been reported in
the literature, much remains to be investigated regarding the extension of multigrid algorithms to
three-dimensional space and their evaluation, especially when they are coupled with parallelization
issues. The present study also intends to implement a more efficient three-dimensional multigrid
solver by experimenting with relaxation schemes in common use such as red–black Gauss–Seidel,
line Gauss–Seidel methods, and their combinations, with which the memory efficiency, parallel
performance, and favourable convergence property are satisfied.

Parallel performance is another important factor in the code development. Among the various
parallelization methodologies, message passing interface (MPI) (e.g. References [7–9]) and multi-
processing directives (OpenMP) (e.g. References [10–13]) are currently the dominant tools for
parallelization. MPI implementation has an advantage in the portability of the code regardless of
the computer platform’s specific memory architecture. However, it often requires much effort in
writing a new code or porting a serial code to a parallel one. Distributing data structure to CPUs
is the responsibility of the programmers, who must find efficient ways to accomplish the needed
data shuffling [14].

Recently, with the introduction of large-scale shared or shared-distributed combined memory
systems, OpenMP has emerged as an alternative to MPI on shared memory platforms. Since
OpenMP allows a serial code to be parallelized by inserting predefined parallelization directives to
the serial code, usually the implementation is easier than MPI parallelization. Also, data distribution
issues never arise in the shared memory implementation. A programmer needs only to make sure
that the CPUs have an equal amount of work to do with efficient access of the shared memory
[15, 16].

However, the parallel performance of OpenMP implementation observed in the literature shows
rapid saturation as the number of CPUs increases [10, 17]. Except for system based issues such
as nonuniform memory access (NUMA) and the finite bandwidth of a common bus of certain
systems, the lack of strategies for shared-memory parallelization has been usually identified as a
main cause for the parallel performance degradation [10, 11].
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The present LES solver adopts OpenMP as a parallelization tool to accommodate the shared and
shared-distributed systems provided by the U.S. Department of Defense (DoD) High Performance
Computing Modernization Program (HPCMP). Since an efficient memory utilization is the key
factor for parallel speedup in the OpenMP parallelization, designing an algorithm which retains
memory efficiency is essential to a LES of large-scale complex flows. Therefore, the main effort is
devoted to the optimal data distribution among the CPUs and memory management for large-scale
applications.

The main objectives of this study are: (i) to develop highly efficient algorithms including
the multigrid method for the Poisson solver; (ii) to optimize the algorithms for high parallel
performance; and (iii) to evaluate the feasibility of the newly developed code for LES of complex,
statistically fully inhomogeneous turbulent flows.

In what follows, details of the computational aspects of the LES solver are described. This is
followed by a discussion on strategies for parallelizing the main parts of the solver, and discussions
on benchmark simulations performed to evaluate the performance and capability of the newly
developed solver.

2. COMPUTATIONAL METHOD

2.1. Numerical method

The spatially filtered Navier–Stokes equations for resolved scales in LES are as follows:

�ui
�t

+ �
�x j

ui u j = − �p
�xi

+ 1

Re

�
�x j

�ui
�x j

− ��i j
�x j

(1)

�ui
�xi

= 0 (2)

where �i j is the SGS stress tensor and () denotes a filtered quantity. All the coordinate variables
xi , velocity components ui , and pressure p are non-dimensionalized by the length scale L , the
reference velocity Uref, and �U 2

ref, respectively. The time is normalized by L/Uref. Re denotes the
Reynolds number and is defined as Re= �UrefL/� where � is molecular viscosity.

The key feature of the numerical method is the use of a nondissipative, central-difference spatial
discretization scheme which has been demonstrated to be crucial for maintaining the stability and
accuracy of the LES approach over a range of spatial and temporal scales [18, 19]. In our LES
approach, aliasing errors are controlled by enforcing kinetic energy conservation, not by numerical
dissipation or filtering, and artificial damping of small scales is avoided. It has been reported that
numerical dissipation due to the use of upwind-biased schemes often overwhelms the SGS model
terms, and that the nondissipative second-order scheme even predicts better results than those
obtained using higher-order upwind schemes at similar grid resolution [18, 19].

The SGS stress tensor �i j is modelled by a Smagorinsky type eddy-viscosity model:

�i j − 1
3 �i j�i j = − 2c�2|S|Si j = − 2�t Si j (3)

where �i j , �, Si j , and �t are Kronecker delta, grid spacing, strain rate tensor, and eddy viscosity,
respectively. To compute the Smagorinsky coefficient c, a Lagrangian dynamic model is employed
[1]. Since the Lagrangian dynamic model averages the model coefficient along the flow pathlines
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as opposed to the homogeneous flow direction in the standard dynamic model [20], it is suitable
for fully inhomogeneous complex flows. The equation for computing the coefficient is

c2(x, t) = �LM

�MM
(4)

where

�LM = 1

T

∫ t

−∞
Li j Mi j (z(t), t ′)e−(t−t ′)/T dt ′ (5)

�MM = 1

T

∫ t

−∞
Mi j Mi j (z(t), t ′)e−(t−t ′)/T dt ′ (6)

The exponential weighting function (1/T )e−(t−t ′)/T is introduced in order to average Li j Mi j
and Mi j Mi j over pathlines with an exponentially decreasing weight in backward time. T is an
averaging time scale and is expressed as

T = ��(�LM�MM )−1/8 (7)

where � is a free parameter to be determined empirically.
Li j , Mi j , and z are defined as follows:

Li j = ûi u j − ûi û j (8)

Mi j = 2�2(|̂S|Si j − 4|̂S |̂Si j ) (9)

z(t ′) = x(t) −
∫ t

t ′
u(z(t ′′), t ′′) dt ′′ (10)

where (̂) denotes a test-filtered quantity.
The time-integration method used to solve the transformed governing equations is based on

a fully implicit fractional-step method employing the Crank–Nicolson scheme. The coordinate
transformation and discretization of the governing equations are described in detail in the following
sections.

2.2. Momentum equations

The Navier–Stokes equations can be expressed in generalized coordinate as

�qi

�t
= −Ni (q) − Gi (p) + Li (q) (11)

Diqi = 0 (12)

where q= (q1, q2, q3), Ni is the nonlinear convection term, Gi (p) is the pressure gradient term,
Li is the diffusion term, and Di is the divergence operator [21]. Generalized coordinates for the
streamwise and wall-normal directions and a Cartesian coordinate for the spanwise nonuniform
grid distribution are introduced in Figure 1 as

(x1, x2, x3; u1, u2, u3) → (�1, �2, �3; q1, q2, q3) (13)
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Figure 1. Schematic diagram of coordinate transformation from Cartesian
coordinates to curvilinear coordinates.

The qi is the volume flux across the faces of the cells, which is equivalent to the contravariant ve-
locity components on a staggered grid multiplied by the Jacobian of the coordinate transformation.
Then, each term in Equation (11) is expressed in the generalized coordinate as

Ni (q) = 1

J
�im
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�� j

1

J
cmk q

kq j (14)

Gi (p) = 	i j
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where q j = � j
k uk , c

j
k = �x j/��k , � j

k = J (ckj )
−1, 	 jk = J (cmj c

m
k )−1, and J = det(�x j/��k) for j, k, l,

m = 1, 2, 3.
Constraining the third (�3) direction as a Cartesian coordinate leads to c13 = c23 = �13 = �23 = 0 and

J = (c11c
2
2 − c12c

2
1)c

3
3, and necessitates only a set of two-dimensional arrays for c11, c

2
1, c

1
2, and c22

and a one-dimensional array for c33.
All terms including the cross-derivative diffusion terms are advanced in time using the Crank–

Nicolson method and are discretized by second-order central differences in space. The fully-
implicit, fractional-step method applied to Equations (11) and (12) results in

q̂ i − qi
n

�t
= 1

2
(Li (q̂) + Li (qn)) − 1

2
(Ni (q̂) + Ni (qn)) (17)

qi
n+1 − q̂ i

�t
= − Gi (
n+1) (18)
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with

Diqi
n+1 = 0 (19)

where 
 is a scalar to be determined. Equation (17) is a second-order-accurate fully-implicit
treatment of Equation (11) with Gi (p) excluded. Substituting Equation (18) into Equation (17)
shows that the overall accuracy is still second order. Here, 
 is referred to as the pseudo-pressure
and, in fact, is different from the original pressure by

Gi (pn+1) = Gi (
n+1) − 1
2 �t Li (G(
n+1))

+ 1
2 [Ni (qn+1 + �tG(
n+1)) − Ni (qn+1)] (20)

where G= (G1,G2,G3). The detailed procedure to obtain 
n+1 is described in Section 2.3.
The discretized nonlinear equations are solved using a Newton-iterative method. The Newton-

iterative method retains the nonlinearity of the equations and a quadratic convergence when the

initial condition is near the solution. The intermediate flux, q̂ i , is obtained by solving Equation
(17), which is rewritten as

q̂ i + 1
2 �t (Ni (q̂) − Li (q̂))= qi

n − 1
2 �t (Ni (qn) − Li (qn))≡ Rin (21)

or

Fi (q̂) = q̂ i + 1
2 �t (Ni (q̂) − Li (q̂)) − Rin = 0 (22)

Applying the Newton-iterative method to Equation (22) gives{
�Fi (q̂)

�q̂ j

}r

�q̂ j
r+1 = − Fi (q̂r ) (23)

where �q̂ j
r+1 = q̂ j

r+1 − q̂ j
r
, r is the iteration index, and j = 1, 2, 3.

Equation (23) becomes{
�i j + �

�q̂ j

(
1

2
�t (Ni (q̂) − Li (q̂))

)}r

�q̂ j
r+1 = − Fi (q̂r ) (24)

and we introduce matrices

Mi j =
{

�

�q̂ j
(Ni (q̂) − Li

1(q̂))

}
(25)

Qi j =
{

�

�q̂ j
(−Li

2(q̂))

}
(26)

where Li
1 and Li

2 are the diffusion terms without and with cross derivatives, respectively. Now
we split Mi j (= M1

i j + M2
i j + M3

i j ) into three parts, each containing �1-, �2-, and �3-derivatives,
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respectively. Using an approximate factorization technique, Equation (24) becomes

(
1 + 1

2
�tM1

		

)r (
1 + 1

2
�tM2

		

)r (
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2
�tM3

		

)r

�q̂	r+1

= − F	(q̂r ) − 1

2
��t

3∑
l=1

(Ml
	 j )

r�q̂ j
∗ − 1

2
�t (Q	 j )

r�q̂ j
∗

(27)

where �= 1 for j �= 	 and �= 0 for j = 	, with j = 1, 2, 3. No summation is implied in repeated

	 (	 = 1, 2, or 3). �q̂ j
∗
is updated during the iteration step. This requires inversions of tridiagonal

matrices which result in a significant reduction in computing cost and memory.
An inflow/outflow or periodic boundary condition is utilizable in the x1 direction while periodic

or Dirichlet boundary conditions can be applied in both the x2 and x3 directions.

2.3. Poisson equation

Equations (18) and (19) are combined to eliminate qi
n+1

, which results in a Poisson equation for

n+1:

DiGi (
n+1) = 1

�t
Di q̂i (28)

Since the Poisson solver is the most costly part in the computation of fully three-dimensional
inhomogeneous flows, it is crucial to improve both the convergence and parallel efficiency for
large-scale computations. Multigrid methods have been popular for this purpose and have shown
their competence in various applications [22]. However, using multigrids in all three dimensions
requires several times larger memory than the amount needed for a base grid and complicates the
coarsening procedure. On the contrary, two-dimensional multigrid coarsening (semi-coarsening)
with a direct solution procedure in the remaining direction reduces the memory requirement
considerably while its optimization is much easier. Both the line Gauss–Seidel and red–black
Gauss–Seidel methods have attractive features for the latter strategy and they have also shown
good convergence properties and parallelizability in a number of various applications [23–27]. The
advantage of semi-coarsening strategy is observed to be more significant as the flow anisotropy
becomes more prominent. For flow of which characteristics is mainly isotropic and homogeneous, a
fully three-dimensional coarsening or a Krylov based algorithm can be considered as an alternative
to the semi-coarsening strategy.

Equation (28) can be discretized as

Lh

n+1
i, j,k = f̂h (29)

where Lh is the second-order central-difference operator for DiGi , f̂h = (1/�t)Di q̂i , and h
denotes the grid spacing. For an approximate solution 
̃i, j,k to Equation (29), the correction (�h)
and the residual (rh) are defined as

�h =
n+1
i, j,k − 
̃i, j,k (30)

rh =Lh
̃i, j,k − f̂h (31)
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Since the Lh is a linear operator, Equations (30) and (31) satisfy

Lh�h = − rh (32)

In the multigrid algorithm, the residual equation (32) is approximated by

LH�H = − rH (33)

where LH and �H are the discrete Laplace operator and solution on a coarser grid. To define the
residual rH on the coarse grid, a restriction operator R is employed such that

rH =Rrh (34)

Once a solution �̃H to Equation (33) is obtained, a prolongation operatorP is applied to interpolate
the correction to the fine grid as

�̃h =P�̃H (35)

Finally, the approximation 
̃i, j,k is updated as


̃
new
i, j,k = 
̃i, j,k + �̃h (36)

A bilinear interpolation is employed for the prolongation operation (P) while the adjoint operator
to P is used for restriction (R) (see Reference [28] for details of the operators). The steps in
Equations (30)–(36) are repeated during a V- or W-cycle [28] multigrid iterations until a required
convergence is achieved.

In this study, two possible combinations of the line and red–black Gauss–Seidel methods are
considered as the smoothing operator for Equations (32) and (33). The first approach (1DRBL)
consists of a one-dimensional red–black method in the �1–�3 (i–k) plane and a line Gauss–Seidel
method in the �1–�2 (i– j) plane (see Figure 2). The line Gauss–Seidel approach in the i– j
plane results in an even–odd decomposition in i indices, and then each i th vector is solved using a
tridiagonal matrix solver in the j-direction. It is worth noting that in the present coordinate system,
partitioning the computational domain along the k-direction is beneficial in terms of load balancing
since the grids in x–y planes are not altered along the k-direction. The detailed steps at a certain
level of the multigrid cycle on a uniform structured mesh of grid spacing H are summarized as

Step 1: k = odd and i = odd

�̃,s1
j−H,i,k − 6�̃s1

j,i,k + �̃s1
j+H,i,k = − � j,i−H,k − � j,i+H,k − � j,i,k−H − � j,i,k+H − H2ri, j,k

Step 2: k = odd and i = even

�̃s2
j−H,i,k − 6�̃s2

j,i,k + �̃s2
j+H,i,k = − �̃s1

j,i−H,k − �̃s1
j,i+H,k − � j,i,k−H − � j,i,k+H − H2ri, j,k

Step 3: k = even and i = odd

�̃s3
j−H,i,k − 6�̃s3

j,i,k + �̃s3
j+H,i,k = − � j,i−H,k − � j,i+H,k − �̃s1

j,i,k−H − �̃s1
j,i,k+H − H2ri, j,k

Step 4: k = even and i = even

�̃s4
j−H,i,k − 6�̃s4

j,i,k + �̃s4
j+H,i,k = − �̃s3

j,i−H,k − �̃s3
j,i+H,k − �̃s2

j,i,k−H − �̃s2
j,i,k+H − H2ri, j,k

The second approach (2DRBL) consists of a two-dimensional red–black ordering as shown in
Figure 3(a). Then, the (i, k)th vector is solved using a tridiagonal matrix solver in the j-direction
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Figure 2. Schematic representation of the multigrid method (1DRBL) which consists
of: (a) one-dimensional red–black Gauss–Seidel method in the i–k plane; and (b) line

Gauss–Seidel method in the i– j plane.

Figure 3. Schematic representation of the multigrid method (2DRBL) which
consists of: (a) two-dimensional red–black Gauss–Seidel method in the i–k

plane; and (b) tridiagonal matrix solver in the j-direction.
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Figure 4. Convergence histories of proposed multigrid methods. —, 1DRBL; – – –, 2DRBL.

Figure 5. Parallel speedups of proposed multigrid methods on SGI Origin 3800. —,
linear speedup; – – –, 1DRBL; · · · ., 2DRBL.

(Figure 3(b)). The two-step algorithm is
Step 1: red-colour

�̃s1
j−H,i,k − 6�̃s1

j,i,k + �̃s1
j+H,i,k = − � j,i−H,k − � j,i+H,k − � j,i,k−H − � j,i,k+H − H2ri, j,k

Step 2: black-colour

�̃s2
j−H,i,k − 6�̃s2

j,i,k + �̃s2
j+H,i,k = − �̃s1

j,i−H,k − �̃s1
j,i+H,k − �̃s1

j,i,k−H − �̃s1
j,i,k+H − H2ri, j,k

The same coarsening strategy and restriction/prolongation levels show similar convergence
trends for both combinations (see Figure 4). Test simulations show that the second approach has
a slightly better convergence property while the first approach shows a better parallel speedup
(Figure 5). The utilization of these approaches for enhancing the parallel performance is discussed
in Section 3.2.
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3. PARALLELIZATION AND OPTIMIZATION

3.1. Momentum equations

The computation of the momentum equations is initiated with the computation of eddy viscosity (�t
in Equation (3)). The dynamic procedure to obtain the eddy viscosity involves filtering operations of
each velocity and strain rate tensor components, which in the standard shared memory approach,
increases the stack memory requirement considerably (see Equations (3)–(10) for the detailed
procedure).

To overcome this difficulty, as is often used in distributed memory parallelization, the computa-
tional domain is decomposed by the number of CPUs available. The resulting simplified algorithm
looks like:

· · ·
!$OMP PARALLEL PRIVATE (myid, mydomain, padding)

myid=OMP GET THREAD NUM()
mydomain= totaldomain/OMP GET NUM THREADS()
mydomain=mydomain + padding
CALL SGS(myid, mydomain)

!$OMP END PARALLEL
· · ·
SUBROUTINE SGS(myid, mydomain)
SHARED(velocity, grid, metric-coefficients, eddy-viscosity)
SHARED(LM (Equation (5)), MM (Equation (6)))
· · ·

DO i, j, k =mydomain
operations needed for Equations (3)–(10)
eddy-viscosity= . . .

ENDDO
· · ·
END SUBROUTINE SGS

Two or three mesh points are added as a padding to overlap data dependency regions for filtering
as well as for the flow pathline tracking needed in the Lagrangian modelling.

Once a three-dimensional array containing the eddy viscosity is obtained, the Newton iteration
to obtain an intermediate velocity field starts from the computation of the Ri terms in Equation
(22). These terms are evaluated using flow-field quantities at the previous time step and all the
computations are enclosed by do-loops with OpenMP directives in the outermost loop. To achieve
improved flexibility and efficiency in memory handling, dynamic memory allocation/deallocation
is utilized.

The factored equation given in Equation (27) consists of two main computational parts. First,
the right-hand side term, −Fi (q̂r ), in Equation (22) is computed in the same way as that used

in the computation of Ri . Then, inversion of three tridiagonal matrices gives updated q̂ i s. Con-
sidering that the inversions are performed along each of the �1, �2, and �3 directions, loop-
ordering and temporary arrays are configured to locate the tridiagonal inversions to the innermost
loop.
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Table I. Wallclock times and speedups measured with up to 64 CPUs of SGI Origin
3800 by the multigrid solvers employing 1DRBL and 2DRBL, respectively.

1DRBL 2DRBL

No. of CPUs Wallclock (s) Speedup Wallclock (s) Speedup

1 8160 1.000 7991 1.000
2 4090 1.995 4007 1.994
4 2110 3.867 2070 3.860
8 1074 7.598 1086 7.358

16 560 14.571 581 13.754
32 301 27.110 329 24.289
64 163 50.061 209 38.234

The problem size is 2573 and 3 multi-levels are used in both x(i) and z(k) directions for
achieving a residual of 10−6.

3.2. Poisson equation

In Section 2.3, three-dimensional multigrid methods which combine one- and two-dimensional
red–black Gauss–Seidel and line Gauss–Seidel methods are constructed. In Figures 4 and 5,
convergence properties and parallel performances of the multigrid solvers employing the two
alternative combinations for solving Equation (28) are compared. The flow configuration, mesh
size, and boundary conditions are described in Section 4.1 in detail. In this paper, the parallel
speedup is defined as

Speedup(n) = T (1)

T (n)
(37)

where T (n) represents wallclock time needed using n CPUs. Wallclock times have been measured
using the OpenMP library function OMP GET WTIME(), and those taken by both methods to
achieve the same residual defined as Equation (31) using up to 64 processors are compared
in Table I. Test results in the present study represent the averaged values of 10 one-time step
computations.

The 2DRBL shows a better result in wallclock time when the number of CPUs is small.
However, as the number of CPUs exceeds 8, the combination of 1DRBL gives better results. Fast
performance saturation due to reduced data locality and hence increased cache miss is observed
in the 2DRBL while the maximum utilizable number of CPUs is limited by the number of lines at
the highest multi-level in the 1DRBL. However, these disadvantages can be resolved by combining
the two methods, which allows for a better parallel speedup at larger numbers of CPUs with fast
convergence.

Considering that the 1DRBL is better than the 2DRBL in parallel performance, the 1DRBL is
first applied up to the multi-level where all CPUs can be utilizable. Then the method switches to
2DRBL when the number of grid lines is smaller than the number of CPUs requested. This novel
combination is also advantageous given the fact that the 2DRBL shows good convergence property
with a coarser mesh. Note that the ‘pressure’ array and related loops of operations are constructed
to locate the tridiagonal matrix inversions to the innermost level as done for the factored equation
(see Section 2.2).
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4. CODE EVALUATION AND VALIDATION

4.1. Parallel performance

The parallel performance of the code has been evaluated in three different shared memory computer
systems: SGI Origin 3800, IBM p690 (Regatta), and Compaq GS320. Considering that most of
the recent shared/shared-distributed memory systems are based on the nonuniform memory access
(NUMA) architecture, data distribution and affinity directives provided by each vendor are utilized
to retain data locality and low cache contention (see Reference [16] for SGI Origin 3800).

LESs of turbulent flow through a straight duct are performed to evaluate the parallel performance
and capability of the newly developed code (see Section 4.3 for flow-field solutions). The mesh size
used for this evaluation is 257× 257× 257 in the streamwise, vertical, and spanwise directions.
Periodic boundary conditions are applied for the velocity components and pressure while, on the
duct-wall, no-slip and Neumann boundary conditions are applied for the velocity and pressure,
respectively. Since the present code solves Navier–Stokes equations in a generalized curvilinear
coordinate system, memory and CPU time requirements are significantly higher than those of a
Cartesian code usually used for a duct flow simulation.

The achieved speedups of major code parts in the computation as well as their summation on
each platform are compared with a linear speedup and Amdahl’s law in Figure 6. Amdahl’s law is
often used to estimate the parallel speedup and represents the actual limit of achievable speedup
by means of the fractions of parallelized and nonparallelized parts of the code:

SpeedupAm(n) = 1

P/n + (1 − P)
, 0�P<1 (38)

where P is obtained from P = 2(Speedup(2) − 1)/Speedup(2).
The computation of Ri in Equation (21) achieves nearly linear speedups up to the maximum

number of CPUs available on all three platforms. This suggests that good parallel speedup can
be achieved using shared memory parallelism if memory is appropriately handled, even without
significant effort put into load-balancing among the CPUs usually needed for distributed memory
parallelization.

Newton iterations for the factored equation (27) and computation of the Poisson equation for
pressure show deviations from linear speedup as the number of CPUs increase. The tridiagonal
matrix inversions give rise to a bottleneck in the parallel performance of Newton iterations by
causing a difficulty in the construction of optimal loops. On the other hand, the huge memory
requirement for multigrid and resulting increased cache miss degrade the parallel speedup of the
Poisson solver, which has the dominant effect on the total speedup.

Deviation from linear speedup is more significant in the Compaq GS320 which has the smallest
memory capacity among the tested platforms (Figure 6(c)). The actual speedups obtained in the SGI
Origin 3800 and IBM p690 (Regatta) platforms are very close to the estimations using Amdahl’s
law and this suggests that there is no noticeable additional overhead in the present code as the
number of CPUs increases (Figures 6(a) and (b)).

4.2. LES of turbulent channel flow

Turbulent flow through a plane channel has been widely considered as a benchmark for validating
numerical schemes and turbulence models. The Reynolds number is 180 based on the channel
half height (�) and friction velocity (u�), and the standard dynamic SGS model [20] and the
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Figure 6. Parallel speedups achieved on various platforms: (a) SGI Origin 3800; (b) IBM p690 (Regatta);
and (c) Compaq GS320. —, linear speedup; – – – –, RHS (Equation (21)); · · · · · ·, Newton iteration
(Equation (27)); —·—, Poisson equation (Equation (28)); —•—, Amdahl’s law; —◦—, total speedup

(summation of RHS, Newton iteration, and Poisson equation).
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Figure 7. Mean streamwise velocity in wall units at Re� = 180. —, LESL with � = 1.5; · · · · · ·, LESL with
�= 0.5; —·—, LESL with � = 3.0; – – – –, LESD; ◦, DNS [29]. Mesh size is 64× 96× 64 (x × y × z).

Lagrangian dynamic SGS model [1] employing three different relaxation factors (� in Equation
(7)) for averaging time-scale are compared with direct numerical simulation (DNS) results [29].

A mesh of 64× 96× 64 grid points in the streamwise, wall-normal, and spanwise directions,
respectively, is employed in the computational domain size of 4� × 2� × 4

3�. Three simulations
are performed with the Lagrangian dynamic model while one simulation employs the standard
dynamic model.

Mean streamwise velocities and rms of velocity fluctuations from the simulations are shown
in Figures 7 and 8. In those figures, LESL and LESD denote LESs employing the Lagrangian
model and standard dynamic model, respectively. Reasonable agreements are obtained with DNS
results in the mean velocities and rms of velocity fluctuations. Although all the mean streamwise
velocities in these simulations predict slight overshoots in the log-layer, they compare well with
each other. This indicates that the Lagrangian dynamic SGS model is reasonably robust to the
choice of the relaxation factor. This result is consistent with the observation in Reference [1].

4.3. LES of square duct flow

In contrast to plane channel flows, in which there is only one inhomogeneous direction, a square
duct consists of two inhomogeneous flow directions and contains interaction of turbulence structures
in the vicinity of the corners. This increased flow inhomogeneity provides a good test case for
developing and validating the present code.

To examine the capability and performance (see Section 4.1 for the parallel performance) of
the newly developed code, LESs using a Lagrangian dynamics SGS model [1] at two Reynolds
numbers of Re� = 190 and 300, where Re� = hu�/� and h and u� are duct half width and mid-wall
friction velocity, respectively, are conducted. For the averaging time scale, the relaxation factor �
is set equal to 1.5.

Periodic boundary conditions are applied in the streamwise direction and the pressure gradient
that drives the flow is adjusted dynamically to maintain a constant mass flux through the duct. The
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Figure 8. The rms velocity fluctuations in wall units at Re� = 180. —, LESL with � = 1.5; · · · · · ·, LESL with
�= 0.5; —·—, LESL with � = 3.0; – – – –, LESD; ◦, DNS [29]. Mesh size is 64× 96× 64 (x × y × z).

domain sizes used are 8h × 2h × 2h and 4h × 2h × 2h in the streamwise, vertical, and spanwise
directions for Re� = 190 and 300, respectively. The streamwise domain size is selected to be more
than twice the correlation length scale in that direction.

A hyperbolic tangent function is used for distributing the grid points in cross-stream directions,
and in both Reynolds number cases, 15 or more grid points are assigned below y+( = yu�/�),
z+ = 10. The resolutions in each direction are �x+ = 29 and 31 for Re� = 190 and 300, respectively,
and 0.15��y+,�z+�8 for the Re� = 300 case. A final mesh of 129× 129× 129 used for both
Reynolds numbers has been determined from a careful examination of the flow fields obtained
in the simulations with 65× 65× 65 and 97× 97× 97 meshes. The maximum CFL number of 1,
corresponding to 0.14��t+ = �tu2�/��0.28, is used for time integration in both Reynolds number
cases.

The velocity vectors in the lower left quadrant are plotted in Figure 9. As the Reynolds number
increases, the core of the secondary vortex in the lower corner-bisector tends to approach the
wall and the corner. The locations of the secondary vortex cores are (y/h,

z /h) = (0.20, 0.51) and
(0.17, 0.44) for Re� = 190 and 300, respectively. They are in good agreement with the locations
(0.22, 0.52), (0.24, 0.56), and (0.17, 0.44) observed in DNS at Re� = 163 [30], LES at Re� = 181
[31], and DNS at Re� = 315 [32], respectively. Note that the Reynolds numbers based on the
wall-averaged friction velocities are 150, 180, and 300 in the previous duct flow studies [30–32],
respectively. The mid-wall friction velocity based scaling is more appropriate for comparing the
turbulence statistics along the wall-bisector [30, 32].

The mean streamwise velocities obtained from the present LES are also in reasonable agreement
with those of other duct flow studies [30–32] as shown in Figure 10. The discrepancies observed
in the log-law region may be caused by the different numerical schemes and resolutions used in
these studies. For example, the DNS employing upwind-discretization tends to over-predict mean
flow statistics in the under-resolved region [32] while the LES employing a dynamic SGS model
can generate a slight overshoot in the log-layer [33].

The rms of velocity fluctuations are plotted in wall units in Figure 11 for the two Reynolds
numbers in the present LES along with other duct data. Apparently, the rms velocities show

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:947–968
DOI: 10.1002/fld



METHODOLOGY FOR HIGH PERFORMANCE COMPUTATION 963

Figure 9. Mean velocity vector plots of square duct flow in a y–z plane: (a) Re� = 190; and (b) Re� = 300.

Figure 10. Mean streamwise velocity in wall units. —, present LES at Re� = 190; – – – –, present LES at
Re� = 300; �, DNS at Re� = 163 [30]; �, LES at Re� = 181 [31]; ◦, DNS at Re� = 315 [32].

sensitivity to Reynolds number variations. The rms velocities obtained in the Re� = 190 and 300
cases are in favourable agreement with other duct data for similar Reynolds numbers.

4.4. Tip-clearance flow in a turbomachinery cascade

The newly developed solver is capable of simulating the tip-clearance flow of a turbomachine,
which allows an analysis of the three-dimensional flow structures as well as dynamic interactions
between the tip-leakage vortex and end-wall turbulent boundary layer.

Low-Reynolds-number simulations are performed to evaluate the feasibility. The computational
domain is of size Lx × Ly × Lz = 1.7C × 0.929C × 1C (see Figure 12(a) for coordinate definition),
where C is the chord length, and the mesh size of 321× 256× 96 is used. To overcome the
geometric difficulty in the tip gap, a novel grid topology which combines an immersed boundary
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Figure 11. The rms velocity fluctuations normalized by u� in global coordinates: (a) u+
rms, (b) v+

rms
and (c) w+

rms. —, present LES at Re� = 190; – – –-, present LES at Re� = 300; �, DNS at Re� = 163 [30];
∇, LES at Re� = 181 [31]; ◦, DNS at Re� = 315 [32].
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Figure 12. (a) Flow configuration and coordinate system for LES of rotor tip-leakage flow; (b) iso-pressure
surfaces from a simulation at ReC = 3000; and (c) streamtraces of the tip-leakage flow at ReC = 10 000.

method with a generalized curvilinear mesh has been devised (see Reference [5] for more details).
Periodic boundary conditions used along the y-direction allow us to mimic the flow in the interior
of a cascade. The blade has a relatively high stagger angle of about 57◦ and the size of the tip
clearance is 1.6% of the total chord. A uniform laminar inflow and a stationary end wall are
employed.

The iso-pressure surfaces of which levels are smaller than the mean pressure and the instan-
taneous streamtraces along the tip-leakage flow for the Reynolds numbers of 3000 and 10 000
based on the chord and inflow free-stream velocity are shown in Figures 12(b) and (c), respec-
tively. Results from the simulations show that the method is capable of capturing the qualitative

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:947–968
DOI: 10.1002/fld



966 D. YOU, M. WANG AND R. MITTAL

features of the tip-clearance flow [34]. The flow field is found to exhibit strong circular motions
associated with tip-leakage and tip-separation vortices. These vortical structures are found to
convect downstream, expand in size, and generate intense turbulent fluctuations in the end-wall
region.

The present computational methodology is also being employed for LES of tip-clearance flow
in a turbomachinery cascade with the Reynolds number of 400 000 [5, 35]. Results from the
simulation show that the present LES solver is capable of capturing the complex flow features
observed in the experiment [34], and allows us to probe the flow field in unprecedented detail.
Qualitative and quantitative agreements with the experiment have been observed. An analysis of
the velocity and pressure fields suggests a high correlation between cavitation inception and the
tip-leakage vortex (see References [5, 35] for more details).

5. SUMMARY

A LES solver has been developed for high performance parallel computation of three-dimensional
fully inhomogeneous flows on structured grids. Numerical algorithms and parallel strategies have
been combined to obtain high computational performance and parallel scalability on the shared
memory platforms.

Memory issues appear as a major bottleneck in shared-memory parallelism, especially for a
large-scale computation. Strategies and algorithms to improve the memory efficiency, as well as
the parallel performance of the SGS model, the factored scheme, and the Poisson solver have
been devised and evaluated. The solution procedure for the Poisson equation is the most costly
part in the computation of fully inhomogeneous, incompressible flow. The present combination of
one-dimensionsal red–black/line Gauss–Seidel and two-dimensional red–black/tridiagonal matrix
solver shows good efficiency and performance for multigrid relaxation of the Poisson equation.
Also, measured global speedups are satisfactory on various shared-distributed memory systems up
to the available number of CPUs on the systems.

Validations of the code have been performed in the LESs of turbulent flows through a plane
channel and a square duct. Results obtained from the present solver employing a Lagrangian
dynamic SGS model show good agreements with other available data. In addition, the capability
of the code for fully inhomogeneous complex flows has been evaluated by performing a simulation
of the tip-leakage flow in a linear cascade at moderate Reynolds numbers.
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