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ABSTRACT 

A finite-difference based approach for computing flows 
with complex moving solid three-dimensional boundaries on 
fixed Cartesian grid has been developed. Internal solid 
boundaries are represented by “blocking off” the grid cells 
inside the boundary. This results in considerably increased 
computing efficiency over conventional body-conformal 
structured grid methods. A mixed explicit-implicit fractional 
step method is employed for time integration while the spatial 
discretization scheme is based on a second-order accurate 
central-difference scheme. The pressure Poisson equation is 
solved using algebraic multigrid as well as Krylov subspace 
based methods. The current simulation methodology is 
validated by simulating various canonical flows. Further, we 
compute the flow generated by a moving body as well as the 
flow generated by a synthetic jet in order to demonstrate the 
capabilities of this solver. 

 
INTRODUCTION 

Direct numerical simulation (DNS) of flows with 
engineering relevance remains a challenging task with current 
computer hardware and software capabilities. Hence, some type 
of modeling or approximation is usually introduced into the 
flow computations in order to simplify them and make them 
feasible on existing computer platforms. Usually, the 
approximation is introduced in the representation of the 
turbulence scales in the form of a turbulence model which 
significantly reduces the spatial and temporal resolution 
requirements. In the conventional Reynolds Averaged Navier-
Stokes (RANS) modeling approach which is heavily used in the 
engineering community, the model takes on the onus of 
representing the effect of all the turbulence fluctuations. Such 
modeling approach with its variants has been used extensively 
in a variety of flow configurations and seems to perform 

adequately for many high Reynolds number attached flows. 
However, for separated flows, the predictive capability of this 
approach is significantly more limited. Furthermore, for 
problems involving fluid-structure interaction, the fidelity of 
this modeling approach remains to be fully demonstrated. An 
alternative to DNS is large-eddy simulation (LES) approach, 
which resolves the energy-containing turbulence scales while 
modeling the subgrid scales (SGS). LES provides provides 
information about a wide range of spatial and temporal scales 
in the flow at a cost that is significantly lower than DNS. 
However, LES computations of high Reynolds number flows 
with complex geometries still remain out of reach of present 
day computers.  
 
For such flows, it seems worthwhile to explore other venues of 
simplifying the DNS/LES approaches as to retain their ability 
to resolve the temporal and spatial flow dynamics while 
reducing the computational resources required for these types 
of simulations. One approach is to simplify the specification of 
the solid boundary. To this end, a finite-difference based 
method has been developed to investigate flows with complex 
stationary and moving solid boundaries on fixed Cartesian 
grids. The key simplification is that any solid body 
configuration is represented through "blocking off" (also 
referred to as “iblanking”) the Cartesian grid cells which lie 
inside the body; hence, the body surface is represented only in a 
C0 continuous manner. Thus, in this method we sacrifice the 
ability to represent the body surface in a smooth manner. What 
we gain instead is a purely Cartesian nature to the governing 
equations offering tremendous advantages in terms of solver 
simplicity, parallelizability and efficiency. Fig. 1 shows the 
iblanking implemented for a circular cylinder embedded inside 
a Cartesian grid. It is noted that the boundary shape can be 
captured quite well on dense grids. Note that this simple 
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representation of the internal boundaries obviates the need for 
working with curvilinear structured or unstructured grids. 
Furthermore, complexities usually associated with conventional 
Cartesian grid methods [1] such as complex interpolation 
scheme, cut-cells and distributed body forces are also avoided. 
Clearly, this simplicity comes at the price of not being able to 
represent the body shape in a smooth manner. Due to this, one 
has to be careful in applying this approach to flows where the 
attached boundary layer on the internal boundary is turbulent. 
The objective of the current paper is to provide a preliminary 
assessment of such simulation a approach. In order to 
accomplish this, we have simulated a number of canonical 
flows and compared the results with well established 
experiments. Further, we present results for flows with moving 
boundaries as well as a relatively complex synthetic jet 
configuration. 

The divergence-free velocity field, , satisfies 1+n
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and applying the divergence operator and invoking the 
continuity equation, the Poisson equation for the pressure field 
is derived to be: 
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The spatial derivatives have been discretized with a second-
order accurate central difference scheme on a collocated finite-
difference stencil. In the collocated-grid arrangement, all 
variables (i.e., velocity components and pressure) are located at 
the same physical location in contrast to the staggered node 
arrangement where the velocities are centered with the pressure 
locations. For the pressure-Poisson equation (5), the gradient 
term uses a compact second-order central difference stencil. In 
addition to the cell-centered nodal velocities, we separately 
carry and update the face normal velocities. This permits to 
satisfy the divergence-free condition to machine accuracy (see 
Zang et al., [5] for further details). An iterative line-Jacobi 
solver is invoked to solve Eq. (2); while the Pressure Poisson 
Equation (PPE) is solved using an Algebraic MultiGrid (AMG) 
solver. Recently, a generic flexible suite of solvers based on the 
PETSC library [6] has also been incorporated [7]. Furthermore, 
a variety of boundary conditions including uniform and time-
dependent inflow, symmetry, and outflow, can be invoked 
during the solution procedure.  

 

MATHEMATICAL FORMULATION 
The current numerical procedure solves the time-

dependent conservative form of the three-dimensional mass and 
momentum equations for an incompressible fluid. The Navier-
Stokes equations written in tensor form are: 
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where the indices, i=1,2,3, represent the x (streamwise), y 
(cross-stream) and z (spanwise) directions, respectively; while 
the streamwise, cross-stream and spanwise velocity 
components are denoted by u (u1), v (u2) and w (u3), 
respectively. The equations are nondimensionalized by the 
appropriate length and velocity scales with Re corresponding to 
the Reynolds number. The equations are integrated in time 
using the fractional step method [2]. This approach follows 
along the lines of that used by [3,4]. In the first step, an 
intermediate velocity field, u , is calculated from the 
momentum equations without the contribution of the pressure 
gradient. In the second step, the pressure field is computed by 
solving a Poisson equation. The divergence-free velocity field, 

, is then obtained by correcting the intermediate velocity 
field with the computed pressure gradient. In the current 
solution procedure, the convective terms are represented using 
an explicit Adams-Bashforth scheme; while the diffusive terms 
are modeled with an implicit Crank-Nicolson procedure. The 
temporally discretized momentum equations are written as: 
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To permit the embedding of obstacles inside the computational 
domain, an “iblank” variable is defined for all the cells. This 
flag is set to a value of 1 for cells that are inside the boundary 
and equal to 0 for cells in the fluid. A fluid cell (with iblank=0) 
which has at least one neighbor inside the body (with iblank=1) 
is designated a “boundary cell” and the discretization of the 
equations is modified in these cells to account for the no-slip, 
no-penetration condition on the body. As with other Cartesian 
grid methods [1,8,9], the advantage of this approach is that very 
complex shaped bodies can be embedded in the grid without 
having to generate and work with complex grids. Furthermore, 
since the grid does not conform to the boundary shape, 
boundary motion can also easily be included. 
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                                               (3) Fig. 1. Representation of the geometrical configuration through 

“blocking-off” grid cells for a single circular cylinder with grid 
overlay. 
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RESULTS 
Backward Facing Step 

The canonical flow initially investigated is the flow past a 
backward facing step. This geometrical configuration 
represents a good validation test case since the “iblanking” 
capability captures exactly the Cartesian nature of the step. The 
grid chosen consists of 198x39 nodes with non-uniformly 
distributed cells. The computational domain extends in the 
streamwise (x) direction up to 30 and in the cross-stream (y) 
direction to 2. The step height (S) is 0.9423. Blocking-off of the 
backward step extends from the inlet till x=8. Uniform 
streamwise velocity inlet is prescribed at x=0, no-slip 
conditions are imposed on y=0 and 2; while a convective 
boundary condition is applied at the outflow (x=30) boundary. 
Computations are performed for a variety of Reynolds numbers 
(based on the mean inlet velocity and inlet height). Fig. 2(a) 
presents the variation of the reattachment lengths with 
Reynolds numbers obtained from the current simulations. It is 
observed that the reattachment length increases monotonically 
with increasing Reynolds number. Also shown are the 
experimental results obtained by Armaly et al. [10].  The 
computations corroborate well with the experiments up to 
Re=389. Significant differences are seen for higher Reynolds 
numbers as the flow transitions to a three-dimensional state. 
Fig. 2(b) shows the instantaneous spanwise vorticity contours 
in the configuration considered. The recirculation bubble with 
instantaneous vortical structure is captured downstream of the 
step; while significant vorticity is seen emanating on the top 
wall. 

(a) 
 

(b) 
 
Fig. 2. (a) Distribution of the reattachment length with Reynolds 
number for flow past a backward facing step. Square symbols 
represent experimental data [10] and circle symbols correspond 
to current numerical results [7]; (b) Contours of instantaneous 
spanwise vorticity for flow past a backward facing step with 
streamline contours capturing the recirculation bubble. 

 
Stationary Circular Cylinder 

The second configuration chosen to validate the 
current computational capability is the flow past a stationary 

circular cylinder at low Reynolds number (  where 
 is the free-stream velocity and D the cylinder diameter) of 

Re=100 and 200. The computations are carried out on a 
 computational domain and the cylinder center, is 

located at (10D,15D). At the inflow (x=0), the bottom (y=0) 
and top (y/D=30) boundaries, a uniform free-stream velocity is 
imposed; while a convective boundary condition is applied at 
the outflow (x/D=30) boundary. The computational grid 
consists of 240x120 cells and the time step size, ∆ , is set to 
5x10

ν/Re DU∞=

t

∞U

D30 D30×

-3. The computations have been integrated temporally for 
over 20 shedding cycles and results analyzed subsequent to 
when the flow reaches a stationary state. 
 
Fig. 3 presents contours of the instantaneous spanwise vorticity, 

, field for the flow past a circular cylinder at Re=200. The 
classical Karman shedding mechanism is well captured. Fig. 4 
illustrates the temporal variations of the instantaneous lift, C , 
and drag, , coefficients. The drag coefficient exhibits a 
dominant periodic time variation driven by the Karman vortex 
shedding process existing in the wake. Further, the lift 
coefficient is observed to have a zero time-mean value. The 
flow has been integrated over 350 nondimensional time units 
and statistics are gathered for the last 200 time units. The 
current computations predict a Strouhal number  
of 0.20 corroborating with the value of 0.198 measured by 
Williamson [11]. The mean drag coefficient is computed to be 
1.33, agreeing reasonably well with previous published values 
[8,12] of 1.35 and 1.38, respectively.  
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Fig. 3. Contours of instantaneous spanwise vorticity for flow 
past a circular cylinder at Re=200. Red (blue) values represent 
counterclockwise (clockwise) rotational motion. 
 
 

 
Fig. 4. Temporal evolution of lift and drag coefficients for flow 
past a circular cylinder at Re=200. 
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Fig. 5 presents contours of the root-mean-square (rms) of the 
streamwise velocity component. The profile is symmetric about 
the wake centerline with a maximum value of 0.47 close to the 
circular cylinder body. Also shown are the time-mean 
streamline contours. The mean wake bubble is clearly captured 
and has a length of 0.85D. Further, the base pressure 
coefficient ( )pbC  is computed to be –0.693. This result 
compares well with the value of -0.6 computed by Braza et al. 
[12] for Re=100.  

 

 

 

 
Fig. 6. Contours of instantaneous spanwise vorticity for a 
circular cylinder undergoing a streamwise translational and 
counterclockwise rotational motion in a channel at time 
instances (a) t=0.5, (b) t=10, and (c) t=25. Red (blue) values 
represent counterclockwise (clockwise) rotational motion. Initial 
cylinder center is located at (2D,2D). 
 
Synthetic Jet 

Fig. 5. Contours of root-mean square streamwise velocity 
fluctuation  for the flow past a circular cylinder at Re=200. 
Contour levels used are: (0.1 to 0.45 in steps of 0.05). Also 
shown are the time-mean streamlines capturing the wake 
bubble. 
 
Translating Rotating Circular Cylinder 

In order to demonstrate the capability of the code to 
simulate flow with moving bodies, computations have been 
performed for a circular cylinder undergoing translating and 
rotational motion in a channel. The channel height is 4D with a 
length of 10D. At the inflow (x=0), a uniform free-stream 
velocity is imposed; at the bottom (y=0) and top (y/D=4), no-
slip wall condition is applied; while a convective boundary 
condition is applied at the outflow (x/D=10) boundary. The 
initial cylinder center is located at (2D,2D). The circular 
cylinder has a nondimensional streamwise translational motion 
in the direction of the free-stream field of  
along with a nondimensional counterclockwise rotational 
motion of . The Reynolds number 
( ) considered has a value of 800. The 
computations are performed on a uniform 251x101 grid. Fig. 6 
presents instantaneous contours of the spanwise vorticity (ω ) 
at various time instances in the motion of the cylinder. The 
combined translation and rotation produces a complex topology 
of the shear layers on the cylinder surface. Note that in a typical 
body-conformal Lagrangian methodology, this simulation 
would have required the use of time-evolving complex mesh. 
This is quite easily avoided under the current approach and is 
completed in a very computationally efficient manner.
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In addition to these canonical cases, numerical 
simulations of 3D synthetic jet have been performed. These 
devices have emerged as an important micro (or meso) fluidic 
device for thrust vectoring in jet engines, mixing enhancements 
and active control of separation and turbulence in boundary 
layers. The jet is created at the slot by an oscillating diaphragm 
attached to the bottom of the jet cavity.  Fig. 7 shows two 
instantaneous flow visualizations of the flow for one case 
where a square jet slot is employed and they clearly indicate the 
formation of a strong jet and a coherent set of vortices. A 
comprehensive numerical investigation of this flow 
configuration is currently being carried out and these results 
will be reported elsewhere.  
 
SUMMARY AND CONCLUSIONS  

A computational technique has been developed to 
simulate the flow around complex bodies on fixed Cartesian 
grids. Embedded bodies are represented through “iblanking” of 
the cells inside the body; and therefore curved boundaries are 
represented in a stair-step fashion. Results obtained for the flow 
past a backward facing step and circular cylinder wakes 
indicate that the method is capable of providing a good 
prediction of complex geometry flows. Further, two relatively 
complex cases have been simulated to demonstrate the 
capabilities of the solver. The solver is currently being 
parallelized using OpenMP and MPI directives greatly 
facilitated by the use of the purely Cartesian grid, allowing 
more refined grids to be used for complex geometrical 
configurations 

ACKNOWLEDGMENTS 
RM would like to acknowledge financial support from 

NASA Langley through Grant NAG 1-10124. Computer time 
for these simulations was provided by a supercomputing grant 
from National Center for Supercomputing Applications at 
Urbana, Illinois. The authors would like to thank Mr. R. Raju 
for providing the results for the backward-facing step. 

 

 4 Copyright © 2003 by ASME 



REFERENCES 
[1] Ye, T., Mittal, R., Udaykumar, H.S., and Shyy, W., 1999, 
“An Accurate Cartesian Grid Method for Viscous 
Incompressible Flows with Complex Immersed Boundaries,” J. 
Comp.Physics, 156, pp. 209-240.  
[2] Chorin, A.J., 1967, “A Numerical Method for Solving 
Incompressible Viscous Flow Problems,” J. Comp. Phys., 2, pp. 
12-26. 
[3] Mittal, R., and Balachandar, S., 1996, “Direct Numerical 
Simulation or Flow past Elliptic Cylinders,” J. Comp. Phys., 
124, pp. 351-367. 
[4] Mittal, R., 1999, “A Fourier-Chebyshev Spectral 
Collocation Method for Simulating Flow past Spheres and 
Spheroids,” Int. J. Num. Meth. Fluids, 30, pp.  921-937. 
[5] Zang, Y., Streett, R.L., and Koseff, J.R., 1994, “A Non-
Staggered Fractional Step Method for Time-Dependent 
Incompressible Navier-Stokes Equations in Curvilinear 
Coordinates,”  J. Comp. Phys., 114, pp. 18. 
[6] Balay, S., Gropp, W.P., McInnes, L.C., and Smith, B.F., 
2000, “PETSc 2.0 Users Manual,” Argonne National 
Laboratory, ANL-95/11-Revision 2.0.29 
[7] Raju, R., 2002, Private communication, University of 
Illinois at Urbana-Champaign. 
[8] Udaykumar, H.S., Mittal, R., Rampunggoon, P., and 
Khanna, A., 2001, “A Sharp Interface Cartesian Grid Method 
for Simulating Flows with Complex Moving Boundaries,” J. 
Comp. Phys., 174, pp. 345-380. 
[9] Udaykumar, H.S., Mittal, R., and Rampunggoon, P., 2002, 
“Interface Tracking Finite Volume Method for Complex Solid-
Fluid Interactions on Fixed Meshes,” Communications in 
Numerical Methods in Engineering,  18, pp. 89-97. 
 [10] Armaly, B.F., Durst, F., Periera, J.C.F., and Schonung, B., 
1983, “Experimental and Theoretical Investigation of 
Backward-Facing Step Flow,” J. Fluid Mech., 127, pp. 473-
496. 

[11] Williamson, C.H.K., 1996, “Vortex Dynamics in the 
Cylinder Wake,” Ann. Rev. Fluid Mech., 28, pp. 477. 
[12] Braza, M., Chassiang, P., and Ha Minh, H., 1986, 
“Numerical Study and Physical Analysis of the Pressure and 
Velocity Fields in the Near Wake of a Circular Cylinder,”  J. 
Fluid Mech., 165, pp. 79. 
 

 

Fig. 7. Visualization of synthetic jet exiting a square 
orifice. 
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