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Abstract

Computational modeling is used to study intracardiac flows in normal and
diseased left-ventricles. The left-ventricle is modeled as a semi-prolate-spheroid,
and the wall motion is driven by a prescribed ventricular volume-change that
consists of five stages: early (E) filling, diastasis, atrial (A) filling, isovolu-
metric contraction (ISVC) and systole. Simulations are carried out with a
parallelized immersed-boundary flow solver that allows us to simulate this
flow on a stationary Cartesian grid. The ventricular flow behavior is ana-
lyzed to reveal blood flow patterns during both filling and ejection for normal
ventricles, as well as ventricles with diastolic and systolic dysfunctions. Im-
paired relaxation associated with early-stage diastolic dysfunction is modeled
by a reduced E/A ratio, and the systolic dysfunction addressed here is hyper-
trophic obstructive cardiomyopathy (HOCM), where the thickened ventric-
ular septum in the basal region obstructs the outflow tract. Simulations are
also performed to study the effect of septal myectomy on the ventricular flow.
We examine the characteristic features of these various conditions including
vortex dynamics, ’virtual’ color M-mode cardiography as well as mixing and
transport of blood through the left-ventricle during the entire cardiac cycle.
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1. Introduction

Despite many decades of research, the dynamics of blood flow inside
the human heart remains poorly understood. While recent advances in
MRI and ultrasound-based (ECHO) imaging techniques have significantly
expanded our ability to obtain blood-flow information in-vivo, the level of
detail available from computational fluid dynamics (CFD) models remains
unmatched. However, features of cardiac flows which include highly com-
plex three-dimensional geometries, large-scale boundary motion induced by
active (muscle contraction) as well as passive (flow-induced such as in valve
leaflets) mechanisms, represent a significant challenge for the computational
modeling of cardiac hemodynamics.

The earliest computational modeling of cardiac flows can be traced back
to Peskin who developed the immersed boundary method to study the flow
patterns inside a whole-heart model, [1, 2]. In this method, the flow was
solved on a fixed Cartesian grid and the cardiac wall represented by a set
of elastic fibers which were immersed in a Cartesian grid. These fibers
moved with local flow velocities and the effect of these fibers was transmitted
through a smooth delta-function to the fluid. Since the fluid mesh in this
method is not required to be body-conformal, it avoids complex mesh gen-
eration and remeshing, and is therefore well-suited for flows with immersed
elastic boundaries. The smearing of the boundary does, however, reduce
the accuracy of surface quantities such as pressure and shear stresses, [3].
This method has been applied to study whole-heart cardiac flow, [4, 5] and
left-ventricle (LV) flows, [6].

Another approach to modeling cardiac flow combines CFD and CT / MRI
/ ECHO imaging techniques, [7, 8, 9, 10] and has been enabled by advances
in medical imaging. In this method, a realistic geometry of the heart and the
endocardial motion is extracted from high-resolution medical images and the
CFD simulation is driven by the specified endocardial motion. This approach
does not require modeling of the cardiac electromechanics and it also has the
potential for significantly enhancing the prognosticative value of imaging.
However, accurate and rapid segmentation and registration of images for
CFD modeling is very challenging and consequently, the application of this
approach to cardiac mechanics has been limited to-date, [9, 10].

An approach more conducive to fundamental analysis of cardiac flows is
one that employs a simplified geometric model of the heart in conjunction
with a specified endocardial motion. Many groups, [11, 12, 13] have employed
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such an approach to study the flow-dynamics of filling (diastole) in the left
ventricle. In these studies, the left ventricle is typically represented by a sim-
ple shape (such as a semi-prolate-spheroid) and the endocardial kinematics
are specified to match the volume flow-rate into the ventricle from the mitral
annulus. The evolution of an asymmetric vortex ring as well as vortex-wall
interactions have been analyzed and the effect of three-dimensionality, inlet
velocity profile and the Strouhal number on the vortex formation and flow
patterns has been investigated [11]. Such models have also been employed
to study the effect of pathologies such as dilated cardiomyopathy, [14] and
myocardial infarction, [15] on the vortex dynamics of filling.

Most studies to-date have, however, employed simple time-varying volume-
change profiles to model and examine the dynamics of ventricular filling,
[11, 12, 14, 15]. Intercardiac flow effects, i.e. interaction between filling and
ejection, have however, not been investigated in detail. Also not studied
in detail is the role of multiphasic filling which consists of early (E) filling,
diastasis, and atrial (A) filling, . In the current study we used computa-
tional modeling to examine intercardiac flows in normal as well as diseased
left ventricles with realistic volume-change profiles during the entire cardiac
cycle. In addition to a normal ventricle, we examine intercardiac flows in
left ventricles for two different pathologies: early-stage diastolic dysfunction
as characterized by a reduced E/A ratio, [16] and obstructive hypertropic
cardiomyopathy (HOCM), [17]. HOCM is one of the most common inher-
ited heart conditions which manifests through a thickening of the ventricular
septum and a dynamic outflow tract obstruction. These features can have a
strong influence on the systolic performance of the LV, and in severe cases,
can lead to sudden cardiac death. The intercardiac flow pattern, and the
transport and mixing of blood in the ventricle are quantified in a number of
ways including swirl strength, ‘virtual’ color M-Mode echocardiography and
Lagrangian particle tracking

In addition to exploring the fundamental aspects of ventricular flows,
computational flow modeling has a role to play in the diagnosis and surgical
management of heart conditions. We demonstrate the potential of using
CFD for surgical planning by modeling the effect of septal myectomy[18] on
intercardiac flows for a LV with HOCM. Septal myectomy involves a resection
of the hypertrophic mass, but there are no tools available to guide the surgeon
in determining the extent and shape of the excision so as to maximize the
effectiveness of the surgery. In the current paper, we demonstrate proof-of-
concept for surgical modeling by simulating the effect of septal myectomy on
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the ventricular flow for one configuration of excision.
It is useful at this stage to also point out the potential caveats in the

current modeling study. Firstly, the geometric model and wall motion em-
ployed for the LV is highly simplified and this simplification will likely af-
fect the LV hemodynamics produced in the simulations. However, past
studies[15, 11, 12, 13, 14, 15, 4, 19, 20] have shown that by carefully choosing
all of the major geometric parameters and filling parameters, even simplified
models can produce a reasonable representation of real cardiac flow. Sec-
ondly, the mitral and aortic valves are excluded from the current study. The
mitral valve in particular can have an important effect on the filling flow
patterns [21, 22]. However, the choice of an appropriate inflow profile cou-
pled with a matching of the vortex formation number can alleviate some of
this discrepancy etc.[23]. In the current study, all of the major geometric
parameters as well as key flow parameters are chosen to be well within the
physiological range. The focus of current study is to use this simplified model
to understand fundamental flow features associated with normal as well as
diseased hearts. The natural next step in the study would be to include ad-
ditional anatomical details such as the valve leaflets but it should be noted
that that will significantly increase the modeling and computational effort.

2. Numerical method

2.1. Flow model

It is well established that in the large blood vessels, blood acts like a New-
tonian fluid. The governing equations for blood flow in the LV are therefore
the 3D, unsteady, incompressible Navier–Stokes equations which are
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where ui are velocity components in three directions, p is pressure, and ρ and
ν are flow density and kinematic viscosity, respectively. The equations are
discretized using a second-order, cell-centered, non-staggered arrangement
of the primitive variables ui and p. A finite-difference method is employed
to discretize the equation in space. The advection term is discretized using
a second-order Adams–Bashforth scheme and an implicit Crank–Nicolson
scheme is employed to discretize the diffusion term and to eliminate the
viscous stability constraint. A second-order fractional step method is used
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to integrate the equation in time. The solution procedure consists of three
substeps: in the first step, the solution is advanced by solving the advection-
diffusion equation. Subsequent to this, a geometric multi-grid method is used
to solve the pressure Poisson equation to obtain the pressure correction.
Finally, the velocities are updated using the corrected pressure, [24]. In
the version of the fractional-step scheme used here, the face velocity, Ui, is
computed and updated separately from the cell-center velocity. As shown
by [25], this separate update of the face-velocity results in discrete mass-
conservation to machine accuracy, and leads to a more accurate and robust
solution procedure.

The boundary conditions on the immersed boundaries are imposed through
a sharp-interface immersed-boundary method (IBM), which is well suited for
the simulation of complex moving boundary problems on a Cartesian grid.
In this method, a multi-dimensional ghost-cell methodology is used to incor-
porate the effect of the immersed boundary on the flow. The endocardial
surface is represented by an unstructured grid with triangular elements, and
this surface is immersed into the Cartesian volume grid. Further details of
the immersed boundary flow solver can be found in [24].

3. Simulation setup

A simple model which incorporates many of the key geometrical features
of the left-ventricle is employed in the current study. As shown in Figure
1(a), the endocardial surface of the left ventricle is approximated by a semi-
prolate-spheroid and the mitral annulus and aorta are represented by two
straight tubes which intersect on the basal (top) surface of the spheroid.
The diameter of the mitral orifice is 2.4cm and the end-systolic lengths of
the long and short axes are 8cm and 4cm, respectively. These dimensions
are carefully chosen to be within or close to the physiological range, [26].

As shown in [27], the endocardial motion of the LV can be decomposed
into seven components including an isotropic volume change, twisting, ellip-
ticalization and four asymmetric modes. Compared to the isotropic volume
change, the other six components are much smaller and we neglect them in
the current study. Thus, the endocardial motion is driven purely by the left
ventricular volume change and the ratio of the long and short axes is fixed
during the whole cardiac cycle, [27]. The time history of LV volume flow rate
during the cardiac cycle is shown in Figure 1(c). The wave form of this plot is
matched to that of [28] and the period of the cardiac cycle is assumed to be 1
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sec. The end systolic volume and end diastolic volume are 67ml and 147ml,
respectively which are close to the normal physiological values[26]. The re-
sulting stroke volume and ejection fraction are 80 ml and 0.54, which are
also within the physiological range, [26]. In the current study, two different
types of heart conditions: diastolic dysfunction and hypertrophic obstruc-
tive cardiomyopathy (HOCM), are studied and the modeling of these two
conditions is describe below. In the current study, we define peak Reynolds
number based on peak filling velocity, Vmax, the mitral orifice diameter D
and the kinematic viscosity of blood ν as Re = VmaxD/ν. For the normal
and impaired relaxation cases, the peak Reynolds number are 745 and 1134,
respectively and these values are similar to some other recent studies (e.g.
[11]).

3.1. Diastolic Heart Dysfunction

Diastolic heart dysfunction refers to abnormal ventricular filling that oc-
curs during diastole, [16]. During diastole, oxygenated blood enters the LV
through the mitral orifice and this filling process is composed of three dis-
tinct phases: ventricular relaxation(E-wave), diastasis and atrial contraction
(A-wave). The cardiac flow associated with the ventricular filling is highly
complex due to the inherent unsteadiness imposed by the large scale active
ventricular wall motion, complex vortex formation, and vortex and ventricu-
lar wall interaction. In the past, most of the cardiac flow studies have been fo-
cused only on the vortical flow during the ventricular relaxation, [11, 12, 13].
The effects of the more complex, multiphasic filling process on vortex for-
mation as well as flow transport and mixing remains unclear. Abnormal
filling patterns are usually a manifestation of conditions such as diastolic
dysfunction[29], myocardial infarction[30] and hypertension[29]. Abnormal
filling can also modify the pressure, efficiency and mixing characteristics of
the LV ,and lead to a cascade of worsening cardio-pulmonary function[16].
An understanding of the fluid dynamics of abnormal filling associated with
diastolic dysfunction could therefore help unravel the components of this
cascade.

Diastolic dysfunction is usually manifested through changes in the E/A
ratio which is the amplitude of the E and A waves of filling. The physiological
range of the E/A ratio for normal filling lies between 1 and 2, whereas that
for impaired relaxation associated with early-stage diastolic dysfunction, is
less than one[16]. In the current study, the E/A ratios are chosen to be 1.9
[28] for normal filling and 0.14 for impaired relaxation. The ejection-fraction
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(EF) is usually preserved in the early to mid stages of diastolic dysfunction
[16] and we mimic this behavior in our model by keeping the EF the same for
the two cases. It should be noted that impaired relaxation is associated with
a prolonged deceleration of the E-wave but we do not include this effect in our
current model. The time history of the volume flow for impaired relaxation
associated with diastolic heart dysfunction is shown in Figure 1(c) as a dashed
line.

3.2. Hypertrophic Obstructive Cardiomyopathy (HOCM)

HOCM is one of the most common inherited cardiac disease. It manifests
itself as a thickened basal ventricular septum and is characterized predomi-
nantly by an outflow tract obstruction, ([17, 31, 32, 33]). While there have
been many studies on the pressure-gradient in the outflow tract ([31, 34]),
the hemodynamics of ejection as well as filling in a LV with HOCM are not
well understood. The shape of the hypertrophic mass that we consider here
is generally representative of the basal-septal phenotype of HOCM. This ob-
struction is modeled here as an semi-ellipsoidal bulge ([32]) located very near
to the outflow tract. The maximum protrusion of the mass is about 60 %
of the base diameter, and it extends over 55 % of the height of left ventricle
from base to apex thereby presenting a severe obstruction to the outflow
tract.

All the geometric parameters in this model have been chosen very care-
fully to match the physiological range including the long and short axes
lengths, long-short axis ration, end diastolic volume, end systolic volume,
mean diameter of mitral orifice and LV geometric parameter. The key pa-
rameters associated with the ventricular flow are also derived from anatom-
ical data including ejection fraction, E/A ratio, fraction of stroke volume
contributed from A-wave filling, vortex formation number, heart rate and
cardiac output. The comparison between current values and physiological
range are summarized in Table 1. By carefully retaining all of the important
geometric parameters of the left ventricle, we expect that we will be able to
reproduce the essential features of cardiac flow. The use this simple model
also provides a small, well-defined parametric space that can be explored
easily through computational modeling.

The entire model is immersed into a 5.28cm×5.28cm×16cm rectangular
computational domain. A high resolution 128 × 128 × 256 Cartesian grid is
employed in order to resolve the complex flow in the ventricle and a small
time-step corresponding to 0.02ms is employed. Thus, a full cardiac cycle
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of one second requires 50000 time-steps. The inlet and outlet flow boundary
conditions are only applied on the top of the computational domain. During
diastole, a zero velocity boundary condition is applied at the entrance to the
aorta to block the aortic passage and the velocity gradient is assumed to be
zero at entrance of the atrium which allows the flow to enter the ventricle.
During systole, the mitral exit is blocked and all the flow exits through the
aorta.

4. Results and discussion

This section summarizes the results from the current computational study.

4.1. Grid-independence study

The grid for the current simulations is chosen after a comprehensive grid
refinement study. For this, we considered the normal left ventricle model (fig-
ure 1(a)) and compare results from simulations on three different (x× y× z)
grids: 64×64×128, 128×128×256 and 256×256×384. In each simulation,
we maintain the same time-step stability constraint by appropriately modify-
ing the time-step while keeping all other parameters to be exactly identical.
Results corresponding to this study are shown in figure 2(a)-(e). In frames
(a) to (c) of figure 2, we compare the flow field on the symmetry plane for
the three simulations, by plotting the velocity vectors superposed on top of
in-plane vorticity contours. It is clearly evident that except for near wall and
corner regions of the coarsest grid, most of the flow features are adequately
resolved in all three simulations. We do not notice any significant differences
in the flow features between frames (b) and (c) of figure 2 indicating that
the necessary convergence has been achieved on these grids. To demonstrate
grid convergence in a quantifiable manner, we compare the velocity profiles
along the axis of the mitral orifice for the three simulations at the end of the
E-wave (2d) and the end of diastole (2d). In either instants, we note only a
fairly minor deviation in the profiles and that too for the coarsest grid. The
profiles for the two finer grids are virtually indistinguishable. This confirms
that the 128× 128× 256 grid is sufficient for the current study and all other
results presented in this paper are are based on this grid.

4.2. Intercardiac vortex dynamics: comparison between normal and dysfunc-
tional LVs

Figure 3(a)-(e) shows the vortex structures for normal filling at five dif-
ferent time instants during the cardiac cycle. During diastole, the vortex
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formation numbers can be defined as V/(πD3/4), where V is the filling vol-
ume and D is the diameter of mitral orifice[23]. For normal filling, the vortex
formation numbers are 5.7 and 1.52 for E and A waves respectively. For the
impaired relaxation case, the vortex formation numbers are 1.52 and 5.7 for
E and A waves respectively. During the flow acceleration associated with the
E-wave, a vortex ring is formed at the mitral orifice. At the peak flow rate
of the E-wave (shown in Figure 3(a)), the vortex ring has already pinched
off from the mitral orifice and has also become asymmetric due to the ec-
centric location of the mitral orifice. Similar asymmetric development of the
E-wave vortex has also been observed in-vivo[35], in CFD models[36] as well
as phase-contrast MRI measurements [9]. In these works, the vortex ring is
also found to grow asymmetrically during the diastole and eventually tilt to
fill the elongated shape of the ventricle. Furthermore, the direction of the
tilting shows a similarity to the MRI [9] measurements in that the left side
of the vortex lags behind and the right side moves towards the apex of the
ventricle. This tilting of the vortex ring is believed to be essential for the
efficient ’flushing’ of the whole ventricle.

During the flow deceleration phase of the E-wave, the vortex ring con-
tinuously convects towards the apex. Towards the end of the E-wave (figure
3(b)) a vortex reconnection occurs between the left side inlet boundary layer
vorticity and the leading-edge of vortex in the opposite direction. The inlet
boundary starts to develop a vortex ring during this phase but this formation
process is not completed. A similar vortex structure has also been reported
by [11], however, they did not model the subsequent evolution of the vortex
structure in their study since the simulation was only conducted for the E-
wave. In the current study, the incomplete secondary vortex ring starts to
dissipate during diastasis, while the primary vortex ring continuously con-
vects toward apex. In the middle of diastasis (figure 3(c)), one side of the
primary vortex ring almost reaches the apex while the other side of vortex
ring interacts with the septum adjacent to the aortic entrance to form a small
ring that surrounds the aorta (Figure 3(c)). It should be noted that the ori-
entation of these vortex rings are somewhat different from those of [11] and
this might be due to the difference in the inlet velocity profiles. The velocity
profiles in [11] only has a vertical component whereas our velocity profile at
mitral orifice entrance is a result of the flow development in the mitral pipe
and has all components of velocity.

During the flow acceleration phase of the A-wave, the remnants of the two
vortex rings from the E-wave have dissipated and a smaller vortex ring is also
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developed at the mitral orifice. Due to the small vortex formation number
of the A-wave, rapid pinch-off of this vortex is not observed (figure 3(d)).
Instead, the vortex ring starts to pinch off during the flow deceleration phase
and slowly convects towards the apex. At the end of diastole, this vortex
ring has not reached the lateral wall and is not fully dissipated. During the
systole, the remnants of this vortex ring are pushed into the aorta. (Figure
3(e)).

Abnormal filling corresponding to diastolic dysfunction shows a very dif-
ferent vortex topology and evolution as compared to normal filling. Figure
4(a)-(e) shows the vortex structure at five different time instants for this con-
dition. For this case, more snapshots are chosen during the A-wave which is
the dominant phase during filling. During the E-wave, a weaker vortex ring
is generated and this asymmetric vortex is still attached to the mitral orifice
at the peak flow rate of the E-wave. During the flow deceleration phase of
the E-wave, the vortex ring starts to pinch off and convect towards the apex
(figure 4(a)). This vortex ring is quickly dissipated during diastasis and has
disappeared at the beginning of the A-wave. During the flow acceleration
phase of the A-wave, a strong vortex ring is generated and this vortex has
already moved away from the mitral orifice(Figure 4(b)) by the time the A-
wave reaches its peak. During the flow deceleration phase of the A-wave, the
vortex ring convects towards the apex and the vorticity connection occurs
again between the vortex ring and the boundary layer near the mitral orifice
(Figure 4(c)). A secondary incomplete vortex ring is also observed to form
at the end of A-wave (Figure 4(d)). During the iso-volumetric systolic con-
traction phase, the secondary incomplete vortex interacts with the primary
vortex and forms a complex conglomeration of vortex structures around the
center of the ventricle. These vortex structure persists during systole, and
are finally pushed into the aorta (Figure 4(e)) during systole.

In the case of the LV with HOCM, the strong vortex ring due to the
E-wave interacts with the left endocardium as well as the thickened hyper-
trophied mass on the right immediately after pinch-off from the base, (Figure
5(a)). However, in the normal case the interaction with the wall was present
only on the left side of the ventricle (Figure 3(a)) while a shear layer was
formed on the right side of the vortex ring. This lead to an asymmetric
entrance of the vortex ring into the left ventricle, a feature that is now sig-
nificantly diminished due to the presence of HOCM. Thus, the vortex ring
loses coherence and gets disrupted without filling up the ventricular cavity
(Figure 5(b)). Eventually, all these vortices are rapidly dissipated and only
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discrete eddies are found scattered near the apex of the left ventricle during
diastasis (Figure 5(c)). Moreover, unlike for the normal left ventricle, these
disrupted vortical structures are not effectively redirected back to the aorta
due to the obstruction imposed by the bulged septum. Similarly, even during
the A-wave, the obstruction due to HOCM prevents the tilting of this vortex
ring (see Figure 5(d)) which is now found to reorient itself along the long
axis. However, in both the normal and HOCM cases, the weaker A-wave
vortex ring dissipates rapidly without reaching the apex and has a negligi-
ble influence on the systolic flow pattern, (Figure 5(d)). During systole, the
presence of hypertrophy leads to the generation of several small scale eddies
near the hypertrophied mass (Figure 5(e)) while ejection is much smoother
in the normal case. Thus, HOCM prevents asymmetric filling of the LV and
also results in a more complex flow in the outflow tract.

4.3. CFD based color M-mode Doppler echocardiogram

In clinical practice, color M-mode Doppler echocardiogram is often used
to estimate the flow propagation velocity in the LV [16]. In contrast to
the maximum filling velocities, the flow propagation velocity is insensitive
to the preload and as such, is widely used in the clinical practice to assess
diastolic dysfunction[37]. In the current study, a ’virtual’ color M-mode
Doppler echocardiogram along the long axis is constructed from the CFD
data. The objective in doing this is two-fold: first this data could eventually
be used to validate the simulations against in-vivo measurement and second,
this representation of CFD might be more suitable for analysis by clinical
practitioners.

The contours of the vertical component of flow velocity along the long
axis are used to represent the M-mode and these are plotted in the time-
spatial coordinate(shown in Figure 6). For normal filling the flow propagation
velocity is estimated to be 37.1cm/s and 20.2cm/s for the E for A-waves,
respective. The physiological range of flow propagation velocity for the E-
wave is 37 ± 13cm/s[37] and the value from the simulation is therefore well
inside the physiological range. For the impaired relaxation case modeled
here, the flow propagation velocities are 14cm/s and 65cm/s for the E- A-
waves respectively. While for the HOCM case, these values were determined
to be 40.4 cm/s and 13.8 cm/s, respectively.
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4.4. Analysis of blood mixing using Lagrangian Particle Tracking

The mixing of freshly oxygenated blood from the left atrium and the
residual blood in the left ventricle (from the previous cycle) depends on
intraventricular flow dynamics. The degree of mixing as well as the patterns
of atrial and ventricular blood at the time of ejection are important since
they determine the residence-time of blood constituent (red-blood cells in
particular). In the current section, we analyze the effect of intraventricular
flow and vortex dynamics on the blood mixing using a Lagrangian particle
tracking approach. At the beginning of diastole, a total of 6000 particles,
which represent blood cells, are distributed randomly inside the ventricle
and mitral inlet. The blood cells which are coming through mitral inlet
into the ventricle during diastole are tagged as ‘atrial’ blood cell and the
blood cells residing in the ventricle at the beginning of diastole are tagged as
‘ventricular’ blood cells. The motion of blood cells is tracked by the equation;

~xp(t + ∆t) = ~xp(t) +

∫ t+∆t

t

~V (~xp)dt (2)

where ~xp is the particle position vector and ~V (~x) is the Eulerian velocity
vector field obtained from the full Navier-Stokes computation. The time
integration is performed by a four-stage Runge-Kutta method and the time-
step size used is ∆t = 5 × 10−5 seconds. The accuracy of particle tracking
has been assessed by recomputing the particle tracking with ∆t = 1 × 10−4

seconds. The two results are almost identical with a root-mean squared-
difference in the particle positions at t=0.644 sec. (end diastole) of only
4.5 µm, which is comparable to the size of an actual red blood cell (6-8
µm). Figure 7 shows the distribution of atrial and ventricular blood cells at
different time instance for the normal filling case. As mentioned above, the
mixing of the two blood-cell groups is driven by the vortical flow and most of
mixing occurs between time t=0.400 (Fig. 7d) and t=0.568 (Fig. 7e) where
strong primary and secondary vortex ring are formed (see Fig. 3).The blood
cell particle tracking has also been performed for the impaired relaxation and
HOCM cases, and the distributions of atrial and ventricle blood cells at the
end of diastole are shown in Fig. 8.

In order to quantify the degree of mixing for each case, we have evaluated
the probability mass function (pmf) of the atrial blood (termed as atrial
blood ratio) inside the left ventricle by volume sampling the two particle
groups. About 2700, 5 mm cube sampling-volumes are designated in the
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whole ventricle. Sampling-volumes are allowed to overlap by 50% and each
sampling-volume contains at least five particle. For each sampling-volume,
the atrial blood ratio (RA) is computed by RA = NA/NT , where NT is
the total number of blood cells inside the sample and NA is the number
of atrial blood cells. In order to increase the reliability of the probability
mass function, we have taken an ensemble-average of the probability mass
functions for five independent initial particle distributions. We have also
repeated the computation with a total of 10000 particles for the normal filing
case, but the maximum difference in the probability from the 6000-particles
result is only about 0.15%. The probability mass functions computed for the
atrial blood ratio are shown in Fig. 9 for normal, impaired relaxation, and
HOCM cases. If the atrial and ventricular blood cells are perfectly mixed,
the probability mass function will show a single peak at RA = EF (Ejection-
Fraction), while if the two blood cell groups are not mixed at all, two peaks
will appear at 0 and 1. As one can see in Fig. 9, impaired relaxation case
shows a clearly bimodal distribution with noticeably high peaks at low and
high value of RA indicates that the two blood-cell groups are not mixed well
for the impaired relaxation case. This can also be confirmed qualitatively
in Fig. 8. For impaired relaxation, most of atrial blood comes in with the
A-wave which occurs just before end-diastole, and thus, there might not be
enough time for the mixing to occur. The probability mass function of atrial
blood ratio for the HOCM case is very similar to the normal filling case,
and most of the noticeable difference is limited to region with RA < 0.2 and
RA > 0.8.

4.5. Effect of sepal myectomy on intercardiac hemodynamics

Severe cases of HOCM are usually treated by a procedure called sep-
tal myectomy ([17, 31, 32, 33]) where the surgeon resects the hypertrophied
mass. The objective of this procedure is to remove as much a tissue as needed
to recover near-normal outflow tract flow and pressure behavior while at the
same time avoiding septal muscle defects or heart blockage due to excess
tissue removal, [32]. This exercise in surgical optimization relies primar-
ily on the experience level of the surgeon, since no quantitative tools are
available that could predict the effect of surgery on the flow dynamics. How-
ever, the current computational modeling approach, enables us to explore
various resection options related to this procedure. This kind of modeling
approach could potentially be applied to patient-specific surgical manage-
ment of HOCM in the future but significant challenges in the generation of
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computational models from imaging data and rapid simulation need to be
overcome before this becomes a reality.

Here, we model one case of septal myectomy where a flat portion at the
top of the hypertrophied mass is removed in a direction parallel to the long
axis of the ventricle. The volume of tissue removed constitutes 16% of the
total hypertrophic mass and the filling and ejection vortex dynamics of this
case are shown in Figure 10. A primary vortex ring similar to that of normal
LV is formed and it pinches off from the base leaving behind a trailing jet
during early filling (E-wave). Additionally, secondary vortices are formed due
to the flow interaction with the resected septal wall, (Figure 10(a)). However,
the primary vortex ring still retains the tilt and structure similar to that of the
normal case during early filling and convects downstream towards the apex,
(Figure 10(b)). However, unlike the HOCM case, some vortex structures are
found to be redirected towards the aorta after reaching the apex, (Figure
10(c)). The dynamics for this case is found to be very similar to the normal
LV during the atrial contraction, with the formation of a weak vortex ring
that maintains its structure and orientation similar to that of the normal LV,
(Figure 10(d)). Vortex structures near the outflow tract also correlate well
with those of the normal left ventricle during ejection, (Figure 10(e)). Thus,
even this highly simplified model indicates that near-normal intercardiac flow
patterns can be recovered by a relatively small (by volume) resection of the
hypertrophied mass. To our knowledge, this attempt at a hemodynamical
analysis of septal myectomy is the first of its kind, and a rigorous analysis
pertaining to this study will be the motivating factor for future work.

5. Summary

Three-dimensional numerical simulations have been conducted to inves-
tigate the vortex dynamics of filling and ejection for normal left ventricles
as well as ventricles with diastolic and systolic dysfunctions. Simulations
have been subjected to a thorough grid-refinement study to establish the
adequacy of the grid used. The simulations employ a realistic multi-phasic
ventricular-volume-change profiles during the entire cardiac cycle. In addi-
tion to a normal ventricle, we examine intercardiac flows in left ventricles for
two different pathologies: early-stage diastolic dysfunction as characterized
by a reduced E/A ratio, [16] and obstructive hypertrophic cardiomyopa-
thy (HOCM), [17]. For the normal ventricle, the vortex dynamics of filling
is dominated by a tilted vortex ring which is similar to those observed in
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past studies [35, 36, 9]. Our simulation of impaired relaxation shows that
this conditions leads to complex vortex structures during the A-wave, which
persist beyond diastole and affect the ventricular flow during systole. The
presence of a large basal-septal obstruction in HOCM is found to disrupt
the filling vortex ring and also interfere with the redirection of the flow into
the aorta.Lagrangian particle tracking is used to examine diastolic mixing
of atrial and ventricular blood for all the above conditions. It is found that
while the presence of HOCM has relatively little effect on this mixing, im-
paired relaxation leads to a reduced level of mixing. Finally, we simulate a
case with HOCM where we mimic the effect of septal myectomy, a surgical
procedure that involves a resection of the hypertrophic mass. The simula-
tions show that even a small resection can potentially enable the resumption
of near-normal intercardiac flow.
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Table 1: Comparison of key geometric and flow parameters of the current model with the
physiological range.

Parameters Current Value Physiological Value
[27, 26, 11, 23]

Ratio of long to short axis 2 2
Diameter of Mitral Annulus (cm) 2.4 2.0-5.0
LV Geometric Parameters 2.19 1.7-2.0
End Systolic Volume (ml) 67 16-143
End Diastolic Volume (ml) 146 65-240
Stroke Volume (ml) 79 55-100
Ejection Fraction (%) 54.1 55-70
Cardiac Output (L/min) 4.74 4.0-8.0
Heart Rate (bpm) 60 60-100
E/A Ratio 1.9 1.0-2.0
Vortex Formation Number 5.7 3.5-5.5
Fraction of SV due to A-wave 0.21 0.2
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(a) (b)

(c)

Figure 1: (a) Geometry of the left ventricle model; (b) Geometry of the left ventricle model
with HOCM; (c) Time history of ventricular volume flow rate for normal and abnormal
filling during the cardiac cycle.
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(a) (b) (c)

(d) (e)

Figure 2: Grid independence study: (i) vorticity contours and velocity vectors are com-
pared at the end of E-wave (t=0.32s) on the symmetry plane: (a) Grid- 64× 64× 128; (b)
Grid- 128× 128× 256; (c) Grid- 256× 256× 384. (ii) Velocity profile along the mitral axis
is compared between various grids: (d) t=0.32s; (e) t=0.66s.
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Figure 3: Vortex structures for normal filling at five different time instants during the
cardiac cycle: (a) t=0.156s; (b) t=0.260s; (c) t=0.400s; (d) t=0.568s;(e) t=0.800s.
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Figure 4: Vortex structures for impaired relaxation at five time instants during the cardiac
cycle: (a) t=0.308s; (b) t=0.568s; (c) t= 0.600s; (d) t = 0.644s; (e) t = 0.800s.
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(a) (b) (c) (d) (e)

Figure 5: Vortex structures inside a left ventricle with HOCM at five time instants dur-
ing the whole cardiac cycle: (a) t=0.156s; (b) t=0.260s; (c) t=0.400s; (d) t=0.568s;(e)
t=0.800s.
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Figure 6: ’Virtual’ color-M mode analysis of propagation velocity via contours of flow
velocity along the long-axis: (a) normal filling; (b) impaired relaxation; (c) HOCM
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(a) (b) (c) (d) (e)

Figure 7: Distribution of atrial (white) and ventricular (black) blood cells for normal filling
case: (a) t=0.0s; (b) t=0.156s; (c) t=0.260s; (d) t=0.400s; (e) t=0.568s.
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(a) (b) (c)

Figure 8: Distribution of atrial (white) and ventricular (black) blood cells at the end of
diastole (t=0.644s): (a) normal filling; (b) impaired relaxation; (c) HOCM.
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Figure 9: Probability mass functions of atrial blood ratio (RA) for normal, impaired
relaxation, and HOCM.
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(a) (b) (c) (d) (e)

Figure 10: Vortex structures inside the left ventricle for the HOCM case with septal
myectomy at five time instants during the cardiac cycle: (a) t=0.156s; (b) t=0.260s; (c)
t=0.400s; (d) t=0.568s; (e) t=0.800s.

30


