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SUMMARY

We present a numerical technique for computing 4ow*elds around moving solid boundaries immersed
in *xed meshes. The mixed Eulerian–Lagrangian framework treats the immersed boundaries as sharp
solid–4uid interfaces and a conservative *nite volume formulation allows boundary conditions at the
moving surfaces to be exactly applied. A semi-implicit second-order accurate spatial and temporal
discretization is employed with a fractional-step scheme for solving the 4ow equations. A multigrid
accelerator for the pressure Poisson equations has been developed to apply in the presence of multiple
embedded solid regions on the mesh. We present applications of the method to two types of problems:
(a) solidi*cation in the presence of 4ows and particles, (b) 4uid–structure interactions in 4ow control.
In both these problems, the sharp interface method presents advantages by being able to track arbitrary
interface motions, while capturing the full viscous, unsteady dynamics. Copyright ? 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Our goal is to develop an algorithm that is based on a *xed mesh through which arbitrary
motions of complex-shaped solid boundaries can be tracked. In previous papers, we pre-
sented the development of a methodology for simulation of diBusion-controlled growth of
unstable phase boundaries [1] and 4uid 4ow around *xed [2] and moving [3] immersed solid
boundaries. In each case, we showed that the method computes the *eld equations to second-
order accuracy, allowing capture of unsteady and viscous eBects. In this paper, we provide
a brief description of the method followed by applications to more challenging problems in
solidi*cation and 4uid–structure interactions.
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Figure 1. (a) Illustration of a moving boundary cutting through a *xed mesh. Cells
traversed by the interface are called interfacial cells and are trapezoidal in shape.
Cells away from the interface are regular cells; and (b) a regular cell showing the

cell-face nomenclature and cell-centre and cell-face velocities.

2. THE NUMERICAL METHOD

The present method performs 4ow computations on a *xed Cartesian mesh, while interfaces
arbitrarily travel through the mesh. Each interface is tracked using markers connected by
piecewise quadratic curves parametrized by the arclength [1; 2]. In References [1; 2], we
provide details regarding the interaction of the interfaces with the underlying *xed Cartesian
mesh. These include obtaining locations where the interface cuts the mesh, identifying phases
in which the cell centres lie, and procedures for obtaining a consistent mosaic of control
volumes in the cells. This results in the formation of control-volumes near the interface which
are trapezoidal in shape (see Figure 1). The *nite volume discretization is then performed
over these irregularly shaped cells.
The Navier–Stokes equations are discretized on the Cartesian mesh using a cell-centred

colocated (non-staggered) arrangement [4] of the primitive variables. A *nite-volume,
fractional-step scheme [5] is employed with explicit second-order Adams–Bashforth scheme
for the convective terms and implicit Crank–Nicolson scheme for the diBusion terms. The
semi-discrete integral form of the advection–diBusion equation can, therefore, be written as
follows:

St
∫
v

u∗ − un
�t

dV =−1
2

∮
[3un(Un · n)− un−1(Un−1 · n)] dS

+
1

2Re

∮
(∇un +∇u∗) · n̂ dS + Gr

Re2

∫
v
(T − T∞)j dV (1)
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The continuity-enforcing step is:

St
∫
v

un+1 − un
�t

dV =−
∫
v
∇pn+1 dV (2)

where u∗ is the intermediate cell-centre velocity and U∗ is the face-centre velocity, u is the
non-dimensional velocity vector, p is pressure, St is the Strouhal number, a non-dimensional
frequency parameter given by St=!L=U0; Re=U0L=� is the Reynolds number, Gr= g�
(Tm−T∞)R3=�2 is the Grashof number, ! is the imposed frequency, L is the length scale, U0

is the velocity scale, � is the kinematic viscosity and � is the coeOcient of thermal expansion.
Taking the divergence of (2) and applying Green’s theorem yields the pressure Poisson

equation in integral form: ∮
∇pn+1 · n dS= St

�t

∮
U∗ · n dS (3)

Once the pressure is obtained by solving this equation, both the cell-centre and face-centre
velocities, u and U are updated separately as follows:

un+1 = un − �t(∇pn+1)cc (4)

Un+1 =Un − �t(∇pn+1)fc (5)

where subscripts cc and fc indicate evaluation at the cell-centre and face-centre locations,
respectively.
The energy equation is solved, written in semi-discrete form as:

∫
v

T n+1 − Tn
�t

dV =−1
2

∮
[3Tn(Un · n)− Tn−1(Un−1 · n)] dS

+
1

2RePr

∮
(∇Tn+1 +∇Tn) · n̂ dS (6)

where Pr= �=� is the Prandtl number, where � is the thermal diBusivity.
The normal velocity of the moving interface is given by the physics of the problem. For

phase change of pure materials, this is provided by the rate of transport of latent heat away
from the solid–liquid interface (Stefan condition):

VI = Ste
((

@T
@n

)
S −

(
@T
@n

)
L
)

(7)

where Ste=Stefan number = (Tm − T∞)=L=Cp dictates the velocity of the solidi*cation front.
For 4uid–structure interaction problems [3], the velocity of the surfaces is either prescribed

or computed, based on the force balance at the solid surface. The normal interfacial velocity
may vary in time. It can be easily shown that this implies that @p=@n=−St(Du@=Dt) · n@ be
used as the boundary condition for Equation (3). The immersed boundary forms one side
of the recon*gured boundary cells. Therefore, at that cell face the boundary conditions are
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speci*ed. In Reference [2], we adopted a compact two-dimensional polynomial interpolating
function which allows us to obtain a second-order accurate approximation of the 4uxes and
gradients on the faces of the trapezoidal boundary cells from available neighbouring cell-centre
values. This interpolation scheme coupled with the *nite-volume formulation guarantees that
the accuracy and conservation property of the underlying algorithm is retained even in the
presence of arbitrary-shaped immersed boundaries. This has been demonstrated in References
[2; 3] for stationary and moving immersed boundaries.
The *nite-volume discretization of Equations (1), (3) and (6) in a given cell P (see

Reference [3]) can be written in the general form:

M∑
k=1

ak k = b (8)

where ak denote the coeOcients accompanying the nodal values  k within a stencil consisting
of M neighbours and b is the source term that contains the explicit terms as well as the
terms involving boundary conditions. For cells away from the interface M =5 in the central-
diBerence spatial discretization. A multigrid technique was used to accelerate convergence of
the pressure Poisson equation. Modi*cation of a standard full approximation storage (FAS)
multigrid [3] was required to take account of the presence of the immersed boundaries. In
particular, the immersed boundaries was treated only at the *nest grid level, and so coarsening
of the geometry was not required. The discrete Laplacian operator at the coarse levels was
modi*ed to take account of the presence of the immersed boundary by using a volume-fraction
approach.
The overall solution procedure with boundary motion is as follows:

1. Determine the intersection of the immersed boundary with the Cartesian mesh.
2. Using this information, reshape the boundary cells.
3. For each reshaped boundary cell, compute and store the coeOcients appearing in

discrete form of the Navier–Stokes equations.
4. Advance the discretized equations in time.
5. Advance the interface position in time. Go to step 1 for next time step.

3. APPLICATIONS

We now demonstrate the versatility of the numerical method by applying it to some challeng-
ing physical problems in solidi*cation and 4uid–structure interactions.

3.1. E*ects of convection on dendritic growth

In real systems, such as castings, and in nature, such as in the growth of snow4akes, both
forced and natural convection exert in4uences on the dendrite geometry and hence on the
*nal microstructure in the solid. Therefore, it is of utmost importance to be able to quantify
such convective in4uences on the solidi*cation microstructure. Simulation of 4ow interactions
with dendrites is challenging because the phase boundary grows into a complex shape and
the 4ow needs to be computed in a geometry that changes signi*cantly in time. In Figure 2,
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Figure 2. Simulation of 4ow around a growing dendrite: (a)–(d) temperature *eld around the growing
dendrite at equal intervals of time; (e) streamlines and pressure contours for 4ow around the dendrite;
and (f) velocity vectors around a dendrite arm. The contours in the background are of pressure. The

asymmetric evolution of the dendrite shape due to convection is seen.
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Figure 3. Calculations of dendrite–particle interaction. The seed crystal grows dendritically in the un-
dercooled melt toward an insulated particle. The sides of the domain are adiabatic leading to latent heat

trapping. Grey scales indicate hot (dark) and cold (light) regions.

we study the eBect of forced convection on a growing dendrite. Flow at Re=1:0 enters at
the left boundary and leaves at the right boundary. The shapes of the dendrite are shown
at four instants in the growth. The melt was initially at uniform temperature of T =−0:8,
and the solid was at T =0:0. In time, the diBusion of latent heat forms a thermal bound-
ary layer with thickness of order (�l=VI) in the liquid. The eBect of forced convection is
clearly seen in that the dendrite arms facing the oncoming 4ow grow much faster than
the arms on the downstream side. This is due to the compression of the thermal bound-
ary layer on the upstream side. This behaviour agrees with experiments [6–8] and dif-
fuse interface simulation [9]. Figure 2(e, f) shows the details of the 4ow*eld around the
mature dendrite. The contours in Figure 2(e, f) show the pressure *eld around the den-
drite.

3.2. Interaction of complex solidi,cation fronts with particles

In Figure 3, we show the growth of a dendritic front from an initial seed and study its
evolution as it approaches a stationary insulated particle placed some distance away in the
melt. Such dendrite–particle interactions are important to understand to eBect better microstruc-
tural control in the manufacture of advanced metal–matrix composites (MMCs) [10]. In the
computed example, the melt is pure, undercooled (Ste=−0:8), the sides of the domain are
adiabatic. In the case shown, the dendrite arm facing the bulk melt grows steadily as expected
from theory, with a parabolic tip of constant radius. The grey scale shows the temperature
distribution, darker shades implying hotter regions. The troughs of side-branches are dark due
to the capillarity eBect (Gibbs–Thomson condition) and the accumulation of latent heat in
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the grooves. The thermal boundary layer is thin, causing the tip to approach the insulated
particle very closely before it ‘feels’ the particle. Because the particle is insulated, the latent
heat accumulates between the particle and the tip, and a gap develops between the front and
the particle, as clearly shown here. Note that in MMCs, the ceramic inserts typically have
lower conductivity than the metal melt (e.g. Kp(SiO2)=Kl(Al)=0:35) and hence the devel-
opment of a trough is expected there as seen in experiments [11]. Contact with the particle
splits the dendrite tip in agreement with experiments [12]. This appears to set oB profuse
side-branching, and the wavelength of the side-branches near the particle is seen to be shorter
(perhaps due to the sharper tip of the split dendrite as it goes around the particle). However,
this behaviour may be sensitive to the ratio of particle radius (Rp) to dendrite tip radius
(Rtip). This type of microstructural length scale modi*cation, including grain re*ning by the
particles is observed in experiments [10; 12]. Away from the particle, the dendrite appears to
grow with the usual coarsening mode of evolution. In this case, the stationary particle has
been engulfed by the solidifying front; mobile particles and pushing eBects are now being
studied.

3.3. Simulation of a synthetic jet actuator

The synthetic jet has emerged as one of the most useful micro4uidic devices with poten-
tial applications ranging from thrust vectoring of jet engines to active control of separation
and turbulence in boundary layers [13; 14]. The performance characteristics of a synthetic jet
actuator depends on a number of geometrical, structural and 4ow parameters and there is little
understanding as to how the performance characteristics scale with these parameters [15]. A
schematic of a model of a diaphragm-driven synthetic jet actuator for boundary layer con-
trol is shown in Figure 4(a). The diaphragm oscillates sinusoidally in time and also has a
sinusoidal variation in space. The 4ow has been simulated on a non-uniform Cartesian mesh
and the entire synthetic jet cavity including the oscillating diaphragm is represented using
the technique described above. Figures 4(b–d) show spanwise vorticity plots for three diBer-
ent cases, corresponding to Re�=0; 1200 and 2600, respectively, where Re� is the Reynolds
number of the external boundary layer de*ned based on the freestream velocity and boundary
layer thickness. The plots clearly show the variation in eBectiveness of the actuator observed
with increasing Reynolds number. While for very low Reynolds numbers, the vortices gen-
erated at the cavity lip penetrates the boundary layer and are hence ineBective, at very high
Reynolds numbers, due to the strength of the cross-4ow, the synthetic jet is unable to heav-
ily in4uence the boundary layer thickness. Simulation of 4ow over one oscillation of the
diaphragm requires roughly 5 CPU h on a 750MHZ DEC-Alpha, UNIX workstation demon-
strating the ease with which this relatively complex 4ow can be simulated using the current
methodology.

4. SUMMARY

We have developed a numerical method for the computation of 4uid 4ow and thermal transport
in the presence of moving solid boundaries. Freeing the mesh from conforming to the often
complex evolving boundaries while maintaining a sharp solid–liquid interface allows for the
accurate solution of a wide range of phase change and 4uid–structure interaction problems.
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Figure 4. (a) Schematic of the synthetic jet con*guration for boundary layer control. Vor-
ticity contour for; (b) Re=0, for a particular position of the diaphragm; (c) Re=1200 at

the same instant; and (d) Re=2600 for that instant.

We have applied the method to two challenging problems, namely the dynamics of growing
dendrites in the presence of 4uid 4ow and embedded particles and 4uid–structure interactions
in 4ow control. Both problems demand the solution of viscous, unsteady 4ows with accurate
capture of boundary layers (momentum and thermal). The sharp interface nature and the
second-order spatial and temporal discretization coupled with a conservative *nite volume
scheme allows us to accurately compute the interfacial dynamics.
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