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Abstract 
 

A recently developed numerical method for flows with moving boundaries 
is used for simulating the flow-induced vibration of cylinders. The key feature of 
the numerical method is that it allows us to simulate flows with moving 
boundaries on stationary Cartesian grids. The key features of the method are 
described. The method is used to simulate (a) transverse flow-induced vibration 
of a cylinder in a freestream where the computed  results are compared with 
theory and other simulations and (b) flow-induced vibration of a cylinder pair 
where we examine the effect of relative placement of the cylinders on the 
vibration of the two cylinders. 

1 Introduction 
 

In recent years there has been a surge of interest in numerical methods that 
compute flowfields with complex stationary and/or moving immersed 
boundaries on fixed Cartesian grids [1,2]. The obvious advantage of these 
methods over the conventional body-conformal approach is that irrespective of 
the geometric complexity of the immersed boundaries, the computational mesh 
remains unchanged. Cartesian grid methods free the underlying structured 
computational mesh from the task of adapting to the moving boundary, thus 
allowing large changes in the geometry due to boundary evolution. In the current 
paper, we apply a previously developed sharp-interface Cartesian grid solver 
[1,2] to two configurations with moving boundaries. The first is a canonical case 
of flow-induced vibration of a circular cylinder and the second involves the 
flow-induced vibration of a cylinder pair.  
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2 Numerical Method 
 

The schematic in Figure 1 shows a solid with a curved boundary moving 
through a fluid, which illustrates the typical flow problem of interest here. The 
equations solved are the incompressible Navier-Stokes equations. The non-
dimensionalized, integral form of these equations is given by:  
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where u
r

 and p are the non-dimensional velocity and pressure respectively, St 
and Re are the Strouhal number and Reynolds number respectively which are 
defined as oULω=St  and ν/Re LU o= , where ω is an imposed frequency, L 
the length scale, 0U  the velocity scale and ν the kinematic viscosity. In the 
above equations, subscript V and S denote the volume and surface of the control 
volume and n̂  is a unit vector normal to the surface of the control volume. The 
above equations are to be solved with ),(),( txutxu

rrrr
∂=  on the boundary of the 

flow domain where ),( txu
rr

∂  is the prescribed boundary velocity, including that 
at the moving immersed boundary. The above equations with the moving 
immersed boundary are to be discretized and solved on a Cartesian mesh shown 
in Figure 1. 

A two-step, mixed explicit-implicit fractional step scheme [3] is used for 
advancing the solution of the above equations in time. The Navier-Stokes 
equations are discretized using a cell-centered, collocated (non-staggered) 
arrangement of the primitive variables ( u

r
, p). In addition to the cell-center 

velocities which are denoted by u
r

, face-center velocities U
r

are also computed. 
In a manner similar to a fully staggered arrangement, only the component normal 
to the cell-face is computed and stored (see Figure 1b). The face-center velocity 
is used for computing the volume flux from each cell in the current finite-volume 
discretization scheme. The advantage of separately computing the face-center 
velocities has been discussed in the context of the current method in Ye et al. [2]. 
The solution is advanced from time level t to t+ t∆  through an intermediate 
advection-diffusion step where the momentum equations without the pressure 
gradient terms are first advanced in time. A second-order Adams-Bashforth 
scheme is employed for the convective terms and the diffusion terms are 
discretized using an implicit Crank-Nicolson scheme. This eliminates the 
viscous stability constraint, which can be quite severe in simulation of viscous 
flows. The discretized form of the advection-diffusion equation for each cell 
shown in Figure 1 can therefore be written as follows:  
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where *u
r

 is the intermediate cell-center velocity and subscript f denotes one face 
of the control volume. This equation is solved with the final velocity imposed as 
the boundary condition, i.e. ),()(* ttxuxu ∆+= ∂∂

rrrr
. The intermediate face-center 

velocities *U
r

 are obtained at this point by interpolating the intermediate cell-
center velocities *u

r
. The advection-diffusion step is followed by the pressure-

correction step in which the following integral equation is discretized: 
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By requiring a divergence-free velocity field at the end of the time-step the 
following elliptic equation for pressure is obtained: 
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With stationary, non-porous boundaries, a homogeneous Neumann boundary 
condition for pressure results in a consistent approximation of the Navier-Stokes 
equations [4]. Once the pressure is obtained by solving Eq. (4), both the cell-
center and face-center velocities, u

r
 and U

r
 are updated separately as follows: 
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where subscripts cc and fc indicate evaluation at the cell center and face center 
locations respectively. Further discussion regarding the adoption of cell-center 
and face-center velocities can be found in Zang et al [5] and in the context of the 
present method in Ye et al. [2]. 

The key element in the finite-volume discretization of the Eqs. (2)-(4) in the 
context of the current method is the evaluation of fluxes and derivatives at the 
faces of each control volume. These include momentum, mass and diffusive 
fluxes and gradients of pressure. A detailed discussion of this aspect, including 
validation of the accuracy of the solution procedure has been presented in Ye et 
al. [2] and Udaykumar et al. [3]. In the rest of the paper, we focus on the 
application of this method to three problems with moving boundaries. 

3 Simulation Results 

3.1. Flow-Induced Vibration of a Cylinder 
This is a canonical flow configuration that is often used to validate the 

accuracy of numerical solvers. In these simulations the cylinder is allowed to 
vibrate naturally in the vertical (transverse) direction in response to unsteady 
hydrodynamic forces.  
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where m is the mass of the system per length of the cylinder, C is the damping 
constant per length of the cylinder and k is the spring constant per length of the 
cylinder. CL is the coefficients of lift which is a periodic (or quasiperiodic) 
function with a characteristic frequency equal to the vortex shedding frequency 
ωs. Furthermore, ρ is the density of the fluid, ∞U is the velocity of the fluid and 
D is the diameter of the cylinder.  

We also define ωn
*and ωs

* as the non-dimensional natural frequency and the 
non-dimensional shedding frequency, which is equivalent to the Strouhal 
number (St). 
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From equation (6) the non-dimensional mass, damping and stiffness are obtained 
as  
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where ρs is the density of the cylinder per length, ωn is the natural frequency and 
ζ is the system damping ratio. It should also be noted that the natural frequency 
is not determined by the system mass but instead by the combined system mass 
and added mass. The equation of motion of the cylinder is discretized and solved 
in a loosely coupled manner with the flow equations and the flow is simulated at 
a Reynolds number of 200 and cylinder mass m* is set to 10.0. 

First we present results showing the variation of the vibration amplitude 
with reduced damping which is denoted as 4/πβ=gS  where 

*** 2 CSC ts πωβ == . Figure 2 shows the typical non-uniform Cartesian grid 
used for the simulations. In this grid, extra resolution is provided in the vicinity 
of the cylinder and in the wake. Figure 3 shows spanwise vorticity contour plots 
and transverse cylinder displacement for two representative cases which clearly 
show the extent of the cylinder vibration and the effect of the vibration on the 
vortex shedding from the cylinder. Simulations have been carried out for a wide 
range of values of the reduced damping parameter and in figure 4 we compare 
our results against the phenomenological model of Blevins et al. [6] and Blevins 
[7] as well as the simulations of Blackburn and Karniadakis [8]. It can be seen 
that our results compare quite well with the latter and the trend matches that 
predicted by theory. This provides strong validation of the overall computational 
methodology. 

3.2. Flow-Induced Vibration of a Cylinder Pair 
 

The study of the flow induced vibration of a cylinder pair is essential in 
many areas of engineering. Most of the studies to date have focused on the 
vibration of a single cylinder. However, the vibration of a pair of cylinders in 
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close proximity is expected to be significantly different from that of a single 
isolated cylinder.  Applications where the vibration of a cylinder pair would be 
of interest include (a) tubular heat exchangers, (b) marine risers (c) marine 
support structures (d) smokestacks (e) antennas (f) tall skyscrapers and (g) fibers 
during processing. Most previous studies of this configuration have been 
experiments [9,10]. Here we use numerical simulations to explore the flow-
induced vibration of a cylinder pair. 

The simulations described in this chapter are meant to highlight the effects 
of flow coupling on two identical but otherwise independent cylinders. The 
simulations are meant to explore the effect of the flow on cylinders positioned 
in-line, perpendicular, as well as oblique to the flow.  The simulations will also 
examine the effect that the cylinder spacing has on the vibration of the cylinders. 

The cylinder mass is set to m*=10.0 and Re=200. The cylinder parameters 
are such that both β=0.03 and U*=4 for all cases.  A total of nine simulations 
have been conducted and compared with a single elastic cylinder as well as with 
each other. The tested parameters are cylinder separation and arrangement 
configuration. The separation is non-dimensionalized by the cylinder diameter 
and is measured from cylinder center to center. Ddd /* = , where d is the 
cylinder separation distance from surface to surface and D is the cylinder 
diameter.  The values of d* for the experiments is 1, 2 and 3 as shown in figure 
4.2.  The cylinders are arranged in 3 configurations for each distance. The value 
of θ for the experiments is 0o, 45o and 90o as is shown in figure 5. Typical grid 
for these simulations employs 282x262 grid points. 

Figure 6 shows vorticity contour plots for two cases where the cylinders are 
placed in an inline arrangement. Figure 7 shows the cylinder displacement for 
these two cases. It can be seen that when the distance between the two cylinders 
in this arrangement is small, the vortex shedding from the upstream cylinder is 
suppresses and furthermore, the vortex shedding behind the downstream cylinder 
occurs much further downstream of the cylinder than in the case of a single 
cylinder. This results in the suppression of vibration in both cylinders. However, 
as the distance is increased, vortex shedding behind the upstream cylinders 
resumes and this results in a larger amplitude vibration of both cylinder. 

Figure 8 shows results for two cases where the cylinders are not inline and it 
can be seen that the vortex shedding is quite different for these configuration. 
Finally, Figure 9 summarizes the results of all the calculation carried out for the 
cylinder pair configuration. A comparison with respect to reduced distance 
shows different trends for the leading and trailing cylinders.  The leading 
cylinders have a tendency to increase in RMS amplitude as the distance 
increases, as if the trailing cylinder served as a damper.  This is not the case for 
the 90º configuration where there is no such thing as a leading and trailing 
cylinder.  The trailing cylinder decreased for the 45º case but increased for the 0º 
case. A comparison with respect to θ shows little dependence to θ for a reduced 
distance of 2, and a large dependence to θ for a reduced distance of 1.  Aside 
from the case where θ=0°the values of d*=3 showed little dependence to θ.  
However at θ=0° the value of d*=3 gave one of the largest response and the 
largest rate of change. 
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4 Summary 
 

The simulations presented here demonstrate the ease with which Cartesian 
grid methods can be used to simulate relatively complex fluid-structure 
interaction problems. It should be noted that these all simulations reported here 
have been performed on desktop UNIX and LINUX workstations and in most 
cases, require at most on the order of ten hours of CPU time. The Cartesian grid 
methodology has also been extended to three-dimensional incompressible and 
compressible flows and these results will be presented elsewhere. 
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Figure 2.  Non-uniform grid used for numerical analysis in the Cartesian Grid 

code.  Only every other gridline is shown in both directions. 

vint 

Regular cell

Interfacial cell 

P

N

S

EW U n

s

ew
Uu

u

Figure 1. (a) Illustration of a moving boundary cutting through a fixed mesh. 
Cells traversed by the interface are called interfacial cells. Cells away from the 
interface are regular cells. (b) A regular cell  
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(a)                                                   (b)  

Figure 3.  Contour plot of vorticity and transverse displacement of cylinder as a 
function of time  (a) β=0.003.  (b) β=0.3 
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Figure 4.  Comparison of mean values of peak-to-peak free vibration oscillation 

amplitudes as a function of reduced damping with Refs. [6] and [7]. 

 
Figure 5.  (a) The value of d* ranges from 1 to 3.  The value of the diameter (D) 
for all the cases is 1. (b) The value of θ ranges from 0°to 90. 
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Figure 6.  Contour plot of vorticity for the case of (a) d*=1 and θ=0. (b) d*=3 and 

θ=0 
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Figure 7. Cylinder displacement as a function of time for (i) d*=1 and θ=0. (ii) 
d*=3 and θ=0 (a) x-displacement of leading cylinder.  (b) x-displacement of 

trailing cylinder.  (c) y-displacement of leading cylinder.  (d) y-displacement of 
trailing cylinder.   

 

        
(a)                                                (b)  

Figure 8.  Spanwise vorticity contours and (a)  d*=1 and θ=45o.. (b) d*=3 and 
θ=90o For each case:       
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Figure 9.  Cylinder response (absolute RMS displacement) as a function of d*.for 
the cylinder pair  a) θ=0.  b) θ=45°.  c) θ=90° 
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