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The hydrodynamics of a highly deformable fish pectoral fin used by a bluegill sunfish
(Lepomis macrochirus) during steady forward swimming are examined in detail. Low-
dimensional models of the fin gait based on proper orthogonal decomposition (POD)
are developed, and these are subjected to analysis using an incompressible Navier–
Stokes flow solver. The approach adopted here is primarily motivated by the quest
to develop insights into the fin function and associated hydrodynamics, which are
specifically useful for the design of a biomimetic, pectoral fin propulsor. The POD
analysis shows that the complex kinematics of the pectoral fin can be described by
a few (<5) POD modes and that the first three POD modes are highly distinct.
The significance of these modes for thrust production is examined by synthesizing a
sequence of fin gaits from these modes and simulating the flow associated with these
gaits. We also conduct a scale study of the pectoral fin in order to understand the
effect of the two key non-dimensional parameters, Reynolds number and Strouhal
number, on the propulsive performance. The implications of the POD analysis and
performance scaling on the design of a robotic pectoral fin are discussed.

1. Introduction
Many fish employ the so-called labriform propulsion mode in which the primary

propulsive force is provided by the motion of the pectoral fins (Lighthill 1975). The
pectoral fins of such fish exhibit varying degrees of deformability. In particular, fish
that live in energetic marine environments such as rivers, streams, littoral zones and
coral reefs tend to have fins that generally exhibit higher levels of deformability. Fin
deformability adds significantly to the kinematic repertoire of the fins, and it likely
enables these fish to perform a large range of propulsive and manoeuvring tasks that
are required for survival in these complex aquatic environments. The pectoral fins of
fish usually are membranous structures, supported by a number of bony rays (figure 1)
that extend from the pectoral girdle to the outer portions of the fins. These rays can
rotate about the joints, and the fish can induce motion as well as conformational
change in the fin by differential rotation of these rays. In addition to this active
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Figure 1. Structure of the bluegill pectoral fin which consists of 14 bony rays. A deformable
membrane stretches across these rays, and the fin can be actively deformed through angular
motion of the rays. The rays are also flexible and allow for passive (flow-induced) bending.

deformation, the fins can also undergo passive deformation due to hydrodynamic
loads.

At a rudimentary level, a fish pectoral fin can be considered to be a pitching–rolling
(or flapping) foil, and a number of attempts have been made in the past to develop
flapping-foil propulsors that can be be used for propulsion and manoeuvring of
small underwater vehicles (Triantafyllou, Triantafyllou & Grosenbaugh 1992; Kato &
Furushima 1996; Techet et al. 2005). One feature that is shared by all these flapping-
foil propulsors is that they are quite rigid and not designed to exhibit any significant
active or passive deformation. These flapping-foil propulsors also have a few degrees
of freedom, which usually include the roll amplitude and the flapping frequency.
The use of rigid flapping foils with limited degrees-of-freedom requires relatively
simple actuation mechanisms, but in all likelihood, also limits the performance of
these propulsors. For instance, recent experimental (Lauder et al. 2005, 2006; Lauder
& Madden 2006) and numerical studies (Bozkurttas et al. 2006; Mittal et al. 2006;
Dong et al. 2009) of the hydrodynamics of labriform swimming in bluegill sunfish
with highly deformable pectoral fins have shown that the fin deformation can enable
the fish to produce requisite levels of thrust with high efficiency while at the same
time limiting the magnitude of the lateral forces that are produced.

The goal of the current study is to gain insights into the kinematics and
hydrodynamics of the bluegill sunfish (Lepomis macrochirus) pectoral fin that have
direct implications for the design and development of a deformable robotic fin
propulsor. As will be discussed in the next section, the kinematics of deformable
pectoral fins such as those of the sunfish are highly complex and do not lend
themselves easily to simple classifications such as ‘paddling’ or ‘flapping’ that have
been used in the past (Walker & Westneat 1997). A good engineered fin design would
be one which is a simple derivation of the fish pectoral fin but one which stills delivers
propulsive performance that matches that of the fish fin. This seemingly difficult task
would be possible only if one could determine and eliminate features of the fish
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fin design and kinematics that contribute to the design complexity but not to the
performance of the fin. Since the fin (like most other organs in biological organisms)
is not optimized for any single function, it is likely that there are features of the fin
and its motion that do not contribute much to the thrust performance. For instance,
pectoral fins in fish are not only used for propulsion during steady forward swimming
but are also used for manoeuvring, acceleration/deceleration, station keeping and
stabilization. In fact, use of these fins extends beyond locomotion into functions such
as, but not limited to, courting, threat displays and excavating burrows. Therefore, it
is quite possible that some features of the fin and its motion play little, if any, role
in steady forward swimming. An approach is therefore needed that would allow us
to determine these ineffective features of the fin motion and eliminate them from the
engineered fin design.

In the current study, we have used proper orthogonal decomposition (POD) as the
basic toolset to answer some of the issues raised above. POD is a powerful method
for data analysis, aimed at obtaining low-dimensional, approximate descriptions of
a high-dimensional process or dataset (Liang et al. 2002; Barber, Ahmed & Shafi
2005). The POD method has been used in many areas including image processing,
data compression, process identification and oceanography (Liang et al. 2002). POD
has also been used to obtain approximate, low-dimensional descriptions of turbulent
flows (Berkooz, Holmes & Lumley 1993), structural vibrations and dynamical systems.
Principle-component analysis (PCA) has also been used before for understanding the
gaits of biological entities (Urtasun et al. 2004). In the current study, POD is used
to decompose the fin motion into a relatively small set of components. Subsequently,
POD is taken a step further by performing computational fluid dynamics (CFD)
analyses of the fin gaits synthesized from the POD modes. Flow simulations of the
low-dimensional models are carried out and the nonlinear effects associated with the
fluid flow on the linearly superposed gaits examined.

A second issue that is important in the design of such propulsors is the scaling of
the fin performance with key parameters that define the size/geometry of the fin as
well as its operational characteristics such as frequency and flow speed relative to
the fin. The second half of the current study therefore focuses on the scaling of the
hydrodynamic performance with two important non-dimensional parameters: the fin
Reynolds number and the fin Strouhal number.

2. Pectoral fin kinematics
The method used to digitize the bluegill sunfish’s pectoral fin kinematics during

steady forward motion is described in detail in Standen & Lauder (2005). The fin
position through time was digitized using high-speed, high-resolution videos from
two orthogonal (ventral and lateral) views. The three-dimensional fin geometry was
measured by digitizing the ventral and lateral camera views and using the direct
linear transform (DLT) algorithm (Hartley & Zisserman 2004) to calculate the spatial
coordinates from the digitized points. The points chosen for tracking were all located
on the fin rays and were spaced at about 1 mm intervals along the rays. A cubic
spline fit was used to reconstruct the ray geometry. The maximum error in the tracked
locations of the points estimated from the DLT analysis was about 0.5 mm, and this
was confirmed by comparing the actual ray length of the fish fin with that obtained
from the DLT analysis. Given the 4 cm length of the longest fin ray, this amounts to
about a 1.25 % maximum position error. About 20 time frames and 280 total points
per frame were digitized for one individual fish, and figure 2(a) shows a surface
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Figure 2. (a) Surface mesh for the fin constructed from the points tracked in the
experiments. (b) Finer mesh with triangular elements used in simulations.

mesh constructed from all the (280) points that are tracked on the fin surface at
one time instant. This original surface mesh is used as the basis for reconstructing
a significantly higher-resolution mesh that is commensurate with the high-resolution
fluid mesh used in the simulations. The finer surface mesh employs cubic splines along
the ray-to-ray (or chordwise) direction, with the original tracked points on the rays
used as the collocation points. This automatically results in the finer surface mesh
having a smoother profile in the chordwise direction. Figure 2(b) shows this finer mesh
which has 34 866 triangular elements. Finally, the 20 time frames are interpolated in
time using a cubic spline so as to provide intermediate frames at the much higher
frame rate required for CFD.

The fin motion consists of three primary phases; abduction (fin moves away from
the body), which extends from t/τ = 0 to about t/τ = 0.57, adduction (fin moves
back towards the body), which extends from t/τ = 0.57 to about t/τ = 0.96 and
intermediate, which extends from t/τ = 0.96 to t/τ = 1.0. The intermediate phase
which is difficult to visualize, is not dynamically significant, since in this phase, the
fin is held against the body of the fish and likely does not produce any force during
this phase. The abduction and adduction phases are demonstrated in figure 3 via
snapshots using two views of the fin-beat cycle. As is clear from figure 3, the fin shows
significant deformation during the stroke. The deformation consists of (i) a change in
area, (ii) bending in both chordwise and spanwise directions, (iii) distinct correlated
movement of the upper (dorsal) and the lower (ventral) edges (while the middle of
the fin often lags behind) and (iv) waves of bending that pass out along the fin. This
complex motion is difficult to decompose into classical definitions such as ‘paddling’
or ‘flapping’. Furthermore, even if such a decomposition were to be attempted, the
applicability of the classical paddling/flapping classification could lead to questionable
insights into the hydrodynamics of such fins. For instance, Jayne, Lozada & Lauder
(1996) showed that fin kinematics in bass was much more complicated than a rowing
model of drag-based propulsion. Ramamurti et al. (2002) performed flow simulations
of a bird wrasse pectoral fin motion using 14 control points extracted by Walker &
Westneat (1997) to describe the fin kinematics. Subsequently, Ramamurti et al. (2005)
studied the effect of rigidity on the same fin’s performance by selecting a further
reduced number of control points to define the motion. An approach such as this
may have worked for the relatively stiff pectoral fin of the bird wrasse but would
be insufficient for the current fin, which undergoes a significantly larger deformation.
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Figure 3. Conformation of the sunfish pectoral fin during the fin-beat cycle (of period τ ) in
steady forward locomotion from side (left) and back (right) views. In side views, shade reflects
distance (in mm) from body, and in back views, shades depict distance along the body.
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A more inventive approach is therefore needed to decompose and study the motion
in a way that would be useful for the design of the deformable robotic pectoral fin.
The current paper describes such an approach that makes used of POD coupled with
CFD analysis.

3. Computational methodology
The simulations employ a sharp-interface immersed-boundary method (Mittal &

Iaccarino 2005) that has been described in detail in Dong, Mittal & Najjar (2006)
and Mittal et al. (2008). The equations governing this flow are the three-dimensional
unsteady, viscous incompressible Navier–Stokes equations,

∂ui

∂xi

= 0, (3.1a)

∂ui

∂t
+

∂(uiuj )

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂

∂xj

(
∂ui

∂xj

)
, (3.1b)

where ui are the velocity components; p is the pressure; and ρ and ν are the fluid
density and kinematic viscosity, respectively. These equations are discretized using a
cell-centred, collocated (non-staggered) arrangement of the primitive variables (ui, p).
In addition to the cell-centre velocities (ui), face-centre velocities are also computed.
Within the context of this method, the cell-centre velocity satisfies the momentum
equations, whereas the face-centre velocity satisfies mass conservation (Ye et al. 1999).
The equations are integrated in time using the fractional step method of Van-Kan
(1986).

A multi-dimensional ghost-cell methodology is used to incorporate the effect of the
immersed boundary on the flow. This method falls in the category of sharp-interface
‘discrete-forcing’ immersed-boundary methods as has been described in Mittal &
Iaccarino (2005). In the current method, the surface of a three-dimensional body,
such as the fish fin, which is the subject of the current study, is represented by
an unstructured grid with triangular elements (see figure 2). Using the ghost-cell
procedure, the boundary conditions are prescribed to second-order accuracy on the
body surface, and this, along with the second-order accurate discretization of the fluid
cells, leads to local and global second-order accuracy in the computations. This has
been confirmed by simulating flow past a circular cylinder on a hierarchy of grids
and examining the error on these grids (Mittal et al. 2008).

Boundary motion is accomplished by moving the nodes of the surface triangles in a
prescribed manner. The general framework can therefore be considered as Eulerian–
Lagrangian, wherein the immersed boundaries are explicitly tracked as surfaces in a
Lagrangian mode, while the flow computations are performed on a fixed, Eulerian
grid. Further details regarding such immersed-boundary methods can be found in Ye
et al. (1999), Udaykumar et al. (2001) and Mittal & Iaccarino (2005). In addition
to the simulations to be presented here, the solver has been validated by simulating
flow past stationary as well as accelerating cylinders and spheres. The accuracy of
the solver for zero-thickness bodies has been demonstrated by simulating flow past a
suddenly accelerated normal plate and comparing results with available experiments
and simulations (Mittal et al. 2008).

3.1. Simulation set-up

In this section, we describe the boundary conditions, computational domain and the
grids employed in the current simulations. The spanwise length of the fourth ray,
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Figure 4. Schematic of the computational domain employed in the current simulations, which
includes the velocity boundary conditions employed on the various boundaries. The figure
shows the conformation of the fin at two time instants.

which is the longest ray of the bluegill pectoral fin, is used as the primary length scale
for the current flow and denoted as Lfin . The fin stroke frequency f is used as the
time scale, and the mean fish velocity U∞ is chosen as the velocity scale. The key non-
dimensional parameters for the fin are the Reynolds number (Re) defined as LfinU∞/ν

and the Strouhal number (St) defined as f Lfin/U∞. The amplitude of the stroke can
be encapsulated in the stroke amplitude parameter defined as As = Dtip/Lfin , where
Dtip is the maximum linear distance travelled by the tip of the fourth fin ray.

The fish studied here ranged in size from about 14.5 cm to 17.5 cm, with fin sizes
ranging from 3.5 cm to 4 cm. The nominal conditions for the current simulations
correspond to a fish with a fin size Lfin of 4 cm travelling nominally at a speed of
about 1.1 body lengths per second (BL s−1, which corresponds to 0.16 m s−1 for this
particular fish) and flapping its fin at 2.17 Hz. This results in a fin Reynolds number
of about 6300 and a fin Strouhal number of 0.54. Furthermore, the tip amplitude Dtip

is about 3.4 cm, which leads to a normalized fin amplitude A of 0.85.
Figure 4 shows the nominal computational domain used in the current study. The

domain size normalized by Lfin is 3.8 × 4.5 × 1.8. The fin is placed along one of
the boundaries of the domain, and a no-slip, no-penetration boundary condition is
applied on this wall to mimic the effect of the fish body. Since the fin is held out
from the body during most of the thrust-producing periods of the stroke, the attached
boundary layer that develops on the body of the fish during forward travel is expected
to have a minimal effect on the flow around the fin. The boundary conditions used on
the other boundaries are as follows: at the left inflow boundary, we specify the flow
velocity to be equal to (U∞, 0, 0), whereas on the right outflow boundary, we apply a
convective boundary conditions that allows the vortex structures to exit the boundary
without any spurious reflections (Dong et al. 2006). On all the lateral boundaries,
we apply a far-field boundary condition which amounts to specifying the streamwise
velocity component to U∞ and setting the normal gradients of the other velocity
components to zero. We have employed a large, 201 × 193 × 129 (4.9 million points)
non-uniform Cartesian grid (shown in figure 5) for the Re = 6300 simulations. A
rectangular region around the fin and the wake is provided the highest resolution
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Figure 5. The grid employed in the current study: (a) top view; (b) side view; (c) front view.
The figure shows the conformation of the fin at two time instants.

with an isotropic grid spacing of 0.012Lfin , and this region has a 153×159×113 (2.75
million points) grid. Beyond this region of high resolution, the grid is stretched out
towards the outer domain boundaries. The above domain and grid specifications are
chosen based on previous fin simulations at a lower Reynolds number (Ref = 1140;
Bozkurttas et al. 2006; Mittal et al. 2006), and the adequacy of these choices has
been examined by grid and domain dependency studies. For lower-Reynolds-number
simulations described in the current study, we use a smaller grid which is described
in Mittal et al. (2006, 2008). A more detailed discussion of the grid and domain
dependency study is available in Bozkurttas (2007).

4. POD analysis of pectoral fin kinematics
POD (also known as PCA in some fields of application) is a powerful method for

data analysis aimed at obtaining low-dimensional approximate descriptions of a high-
dimensional process or dataset (Liang et al. 2002). The most remarkable feature of
the POD is its optimality: it provides the most efficient way of capturing the dominant
components of any dataset with only a finite and often surprisingly few number of
modes. In gait analysis, PCA has yielded insights into human walking strategies and
the interrelationships in terms of temporal, kinematic and kinetic variables. Urtasun
et al. (2004) have used PCA to identify invariant or common features within the whole
body kinematics of a contemporary dance movement pattern. Representing motions
as linear sums of principal components has become a widely accepted animation
technique (Alexa & Mueller 2000; Troje 2000).

POD of a given dataset can be obtained either through eigenvalue decomposition
of the data covariance matrix or through singular value decomposition (SVD) of
the data matrix. In the current study we have employed the SVD method, and close
connections and equivalence of these various methods can be found elsewhere (Liang
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et al. 2002). Since the theory of POD is well established, we will only describe here
the SVD procedure as applied to the current fin kinematic dataset.

4.1. SVD of the pectoral fin kinematics

SVD can be considered an extension of eigenvalue decomposition for non-square
matrices. The starting point for the SVD analysis in the current case is the dataset
that contains the displacement in space of the 280 nodes on the surface of the fin at
19 distinct instants in time. Note that the motion of the fin is assumed to be periodic
in time, and therefore, the 20th time instant is the same as the 1st time instant. This
matrix (denoted by �X) is as follows:

�X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�x1(t1) �y1(t1) �z1(t1) . . . . . . �x280(t1) �y280(t1) �z280(t1)

�x1(t2) �y1(t2) �z1(t2) . . . . . . �x280(t2) �y280(t2) �z280(t2)
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

�x1(t19) �y1(t19) �z1(t19) . . . . . . �x280(t19) �y280(t19) �z280(t19)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

19×840

(4.1)

An SVD of the above displacement matrix can be written as

�Xn×m = Un×nΣn×mVT
m×m, (4.2)

where Un×n and VT
m×m are two orthogonal unitary matrices; n is the number of

datasets (which in this case is the number of time steps) and m is the number
of data points in each set (which is equal to the number of surface nodes on the
fin); Σn×m is a diagonal matrix in which the diagonal values are called the singular
values of �X (and also �XT ), which are unique. The diagonal elements Σii consist of
r = min(n, m) non-negative numbers σi , which are arranged in descending order, i.e.
σ1 � σ2 � · · · � σr � 0. Within the SVD procedure, the σi values are the square roots
of the eigenvalues of �X�XT (and �XT �X), whereas the eigenvectors of �X�XT and
�XT �X make up the columns of U and VT respectively. In the above expression,
U represents the change of each mode with time, and V contains the eigenvectors
corresponding to the spatial distribution of the modes.

The singular values σi can be interpreted as the weight contributions of each mode
in the POD decomposition. Thus, the ‘shape’ of any particular mode (say the kth
mode) can be extracted by zeroing out all the singular values except for the kth value,
and reconstructing from the SVD as in (4.2). Similarly, lower-dimensional (say rank
K < r) approximations to the dataset can be obtained by using an approximation to
Σ denoted by ΣK wherein σK+1 = σK+2 = · · · = σr = 0 and reconstructing from the
SVD as follows:

�XK = UΣKVT . (4.3)

The displacement matrix �X is now subjected to SVD. In the current study, we
employ a MATLAB program to compute the SVD. As expected, the SVD leads to
19 distinct singular values, and the singular value spectrum of the fin kinematics is
shown in figure 6 along with a cumulative plot for the same data. The singular values
are normalized by the sum of all singular values, and therefore, the cumulative values
sum to unity. A number of interesting observations can be made from this plot. First,
the singular value spectrum shows three distinct ranges: the first between Modes 1–5
in which we see a rapid decrease in the amplitude, the second from Modes 5–11 in
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Figure 6. The POD spectrum for the pectoral fin kinematics. The left ordinate shows
|σi |/

∑
|σi |, and the right ordinate shows the cumulative value of the left ordinate.

which there is a much slower reduction in amplitude and, finally, the range from
Modes 12–19 that has negligible (<2 %) total contribution. The rapid initial decrease
in the spectrum is significant in that it suggests that a small number of modes contain
most of the essential features of the fin gait. In fact, the cumulative values show that
the first two, three and five modes capture about 55 %, 67 % and 80 % respectively of
the total motion. In fact, only the first mode captures close to 37 % of the motion of
the fin, which is a clear demonstration of the ability of POD to represent the dataset
with the least possible number of modes.

The gait corresponding to individual modes can be extracted as described above,
and the surface conformations for each of these extracted modes are then constructed
using the original fin mesh with triangular elements. The first three modes are highly
distinct and relatively easy to interpret, and we briefly describe the key qualitative
features of these modes. Figure 7 shows Modes 1–3 at seven different times during
one fin-beat cycle. Also shown on the left for direct comparison are the fin kinematics
from the experiment (also called the ‘Mode-All’ case, since it contains all the POD
modes). In these figures, the shades reflect the distance from the body in mm. Mode 1
involves considerable movement away from the body in what we call the ‘cupping’
motion in which the fin cups forward as it is abducted. It leads to a rapid acceleration
of the fin dorsal and ventral edges, forming two leading edges from them. This mode is
actively produced by the fish through differential angular displacement of the fin rays.

Mode 2 is named an ‘expansion’ mode in which the fin expands to present a larger
surface area during adduction. The increase in fin surface area during the adduction
phase can be observed in figure 7(b). This mode also includes a slight movement
away from the body at the middle region of the fin around distal edge during the
adduction phase. This expansion mode is also a result of active angular motion of
the fin rays by the fish.

Mode 3 is a wave-like motion in the spanwise direction, which occurs along the
dorsal edge of the fin. It presents as a rapid spanwise ‘flick’ of the dorsal edge of the
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Figure 7. Experimental kinematics (also called the Mode-All case) and the first three POD
modes of the fin kinematics during the fin-beat cycle in steady forward swimming.

fin tip during the abduction phase. The spanwise curvature associated with this mode
is most easily viewed in the third plot corresponding to this mode, where the dorsal
edge is found to curve upwards. In contrast to Modes 1 and 2, this mode is primarily
a result of flow-induced deformation. This can be deduced from the fact that there are
no muscles in the fin rays or in the fin that could produce spanwise deformation in
the fin. Furthermore, the spanwise deformation is in the direction of the flow relative
to the fin motion, which supports the assertion that this mode is flow-induced. The
rest of the modes in the spectrum are associated with relatively small motions that
are not very distinct. We therefore do not describe these individually, although we
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will consider the effect of higher modes on the kinematics and hydrodynamics in the
following sections.

It should be pointed out that deeper insights into the fin kinematics could be
gained by constructing a structural model of the fin and subjecting this model to
an eigenelastic and/or fluid-structure interaction (FSI) study. Comparison of the
eigenelastic modes with the POD modes could help, for example, to delineate passive
deformation modes from active deformation modes However, such an analysis requires
parameterization of the structural properties of the fin, as well as the compliance and
motor forces/torques at roots of the fin rays. Unfortunately, experiments that would
produce such parameterizations are extremely difficult to conduct, and no such
parameterization is currently available.

4.2. Low-dimensional models of the fin gait

POD has decomposed the fin kinematics into its orthogonal components and
helped us understand the key features of bluegill’s pectoral fin movement in steady
forward swimming. The POD results can also be used to reconstruct low-dimensional
approximations of the Mode-All case using a subset of the orthogonal modes. Lower-
dimensional models of the fin gait are synthesized by successively adding modes
to Mode 1. Figure 8 shows the surface snapshots at eight different times during
one fin-beat cycle for Mode 1, Mode 1+2 and Mode 1+2+3 in comparison to the
complete (Mode-All) motion. In these figures the contours are the same as figure 7.
Similarity between the fin shapes for Mode 1+2+3 and the Mode-All/experiment
cases is evident in this figure. Removal of higher POD modes from the kinematics is
analogous to filtering the experimental data in space and time.

The POD analysis suggests one natural approach to the development of the robotic
fin. Since a small number of modes capture a significant portion of the motion, it
stands to reason that a systematic procedure to developing a robotic fin would to be
to design actuation mechanisms that reproduce a small number of these modes. The
question that remains to be answered is what kind of propulsive performance can we
expect from these lower-dimensional fin models, and how does the performance scale
as we include additional modes? This will allow us to make a rational compromise
between complexity of fin design and fin performance. It should be noted here
that the propulsive performance is a consequence of the flow associated with these
lower-dimensional fin models. Thus, even though the modes are kinematically linear
(and therefore additive), the propulsive performance is not expected to scale linearly
with the modes, since the flow is governed by the Navier–Stokes equations which
are nonlinear. Thus, the answer to the above question requires that we explicitly
determine the propulsive performance for these lower-dimensional fin models. The
following section describes our approach to answering this question.

5. Hydrodynamics of low-dimensional fin gaits
Simulations have been carried out using the precise fin kinematics extracted from

the experiments (this case is termed here as Mode-All), and these have been discussed
in some detail in Lauder & Madden (2006) and Mittal et al. (2006). As pointed
out before, the nominal conditions for the current simulations correspond to a fin
Reynolds number of about 6300 and a fin Strouhal number of 0.54, and these
match the experimental conditions of Lauder & Madden (2006). Results from these
simulations and both qualitative and quantitative comparisons with the companion
experiments are presented in Dong et al. (2009). Although the main focus of the
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(a) Mode-All (b) Mode 1 (c) Mode 1+2 (d ) Mode 1+2+3

Figure 8. Surface conformations over one cycle of first three low-dimensional gaits
synthesized from the POD modes with comparison to the Mode-All case.
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Gait Re St

Mode-All (experimental kinematics) 6300 0.54
POD Mode 1 6300 0.54
POD Mode 1+2 6300 0.54
POD Mode 1+2+3 6300 0.54
POD Mode 1+2+3+4+5 6300 0.54
POD Mode 1+2+3 1440 0.54
POD Mode 1+2+3 540 0.54
POD Mode 1+2+3 1440 0.41, 0.7
POD Mode 1+2+3 0 ∞

Table 1. Summary of cases discussed in current study.

current work is the analysis of the hydrodynamics and propulsive performance of
low-dimensional models based on POD modes, some key results for the Mode-All
case are also included here, since comparison against this case is key to understanding
the scaling of the thrust performance as the dimensionality of the models is increased.
All the results presented here have been obtained by simulating the flow over six fin
strokes. In computing mean quantities, we have discarded the first two strokes, and
all plots of instantaneous quantities correspond to the third cycle in the stroke by
which time the flow has reached a well-established stationary state.

In the current study we focus on the following lower-dimensional gaits: Mode 1,
Mode 1+2, Mode 1+2+3 and Mode 1+2+3+4+5. In the first part of this paper,
all these gaits are studied at a Reynolds number of 6300 and Strouhal number of
0.54. Thus, dynamical similarity between the Mode-All case and the low-dimensional
models is maintained, and this allows us to isolate the effect of model dimensionality
on the fin propulsive performance.

Subsequent to this, we assess the scaling of the propulsive performance of the fin
wherein two sets of simulations have been carried out for the Mode 1+2+3 gait. As
will become clear subsequently, this particular gait represents the simplest gait that
captures the key hydrodynamic features of the fish fin. As such, we consider this gait
to be a good candidate for a robotic pectoral fin design and investigate scaling issues
for this gait. Reynolds number scaling of this gait has been examined by simulating
flow at the experimental Strouhal number of 0.54 with two additional Reynolds
number (540, 1440). On the other hand, in order to examine the Strouhal number
scaling, we fix the Reynolds number at 1440 and examine the propulsive performance
at two additional Strouhal numbers (St = 0.41, 0.7). Finally, we also examine the use
of the fin in a ‘starting’ manoeuvre, which corresponds to St = ∞. Table 1 summarizes
the simulation parameters of the POD-synthesized fin gaits presented in this study.

5.1. Effect of model dimensionality on fin hydrodynamics and performance

In this section, we describe the effect of increasing the dimensionality of the fin
motion on the propulsive performance. We first focus on the qualitative features
of the flow for these low-dimensional gaits and subsequently address the effect of
model dimensionality on the quantitative characteristics of the fin, including force
production and propulsive efficiency.

Figure 9 shows the vortex structures at two time instants in the stroke for the
Mode-All case. The vortex structures are identified by plotting contours of the ‘swirl
strength’ which is the magnitude of the imaginary part of the complex eigenvalue
of the velocity deformation tensor (Soria & Cantwell 1993; Mittal et al. 2006). In
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Figure 9. Wake structures for the Mode-All case (i.e. kinematics directly from the experiment)
at Re = 6300 and St = 0.54: (a) t/τ = 2/3; (b) t/τ = 1.0. The fish body is only shown for
context and not included in simulations.

these figures, the body of the fish is shown for visualization purposes only and is not
included in the simulations. Figure 9(a) shows the vortex structures at t/τ = 2/3,
which is immediately after the fin has initiated the adduction phase. One of the most
visible vortex structure at this phase is the strong tip vortex (identified with a dashed
line) that extends from the tip of the fin all the way into the wake over a distance
that is roughly twice the size of the fin. Also visible is the dorsal-edge vortex on the
anterior surface of the fin (highlighted by an arrow) that is formed due to the rapid
forward motion of the fin during adduction. The vortex conglomeration associated
with the previous fin stroke (identified by a dashed circle) has convected further
downstream by this time.

Figure 9(b) shows the vortex structures at t/τ = 1, which represents the completion
of the fin stroke, and a number of distinct vortex structures are observed at this phase
of the cycle. The spanwise tip vortex formed during the abduction phase (denoted
as V1 in the figure) is now completely separated from the fin and extends far into
the wake. Also visible is another tip vortex (identified as V2), which is formed at the
spanwise tip of the the fin due to fin adduction. There are also two vortices (V3 and
V4) which can be identified, and these are vortices shed by the ventral and dorsal
edges respectively. Finally, at this phase, we also identify an attached dorsal-edge
vortex (V5), which is formed after the vortex (V4) formed earlier in the adduction
phase has shed from the dorsal edge. Thus, at the end of the stroke, there are a number
of distinct vortex structures that are created and released by the fin. These vortex
structures are subject to mutual induction effects as they convect downstream, which
leads to deformation (stretching and turning) of the vortex filaments and the eventual
development of a highly complex conglomeration of vortices further downstream in
the wake.

Similar views of the vortex structures are given in figures 10–13, for the Mode 1,
Mode 1+2, Mode 1+2+3 and Mode 1+2+3+4+5 gaits respectively. It can be
observed that the vortex topology of the Mode 1 gait is quite different from that
of the Mode-All case. In particular, the strong abduction tip vortex (V1) is virtually
absent, and the other vortex structures (adduction tip vortex and dorsal and ventral
edge vortices) are also not identifiable. The Mode 1+2 gait on the other hand,
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Figure 10. Wake structures for the POD Mode 1 gait at Re = 6300 and St = 0.54.
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Figure 11. Wake structures for the POD Mode 1+2 gait at Re = 6300 and St = 0.54.

exhibits a clearly identifiable abduction tip vortex, although this vortex is not as
well-developed as the Mode-All case. The Mode 1+2 approximation also shows an
attached dorsal-edge vortex during the abduction phase. Furthermore, during the
adduction phase, the Mode 1+2 approximation produces weak dorsal- and ventral-
edge detached vortices as well as an adduction tip vortex, although all of these vortices
are not as well-formed as for the Mode-All case.

The Mode 1 + 2 + 3 gait exhibits a wake (shown in figure 12) that is quite similar
to the Mode-All case. A strong abduction tip vortex is followed by clearly identifiable
dorsal- and ventral-edge detached vortices during the adduction phase as well as a
tip vortex during this phase of the motion. Thus, the results seem to indicate that
three POD modes suffice to reproduce most of the key features of the wake topology
of the fin. Finally, the Mode 1 + 2 + 3 + 4 + 5 wake shown in figure 13 is virtually
identical to the Mode-All wake.

The time variations of thrust, lift and spanwise force coefficients are presented for
all the low-dimensional gaits and compared to the Mode-All case in figure 14(a–c)
respectively. The force coefficient for a generic force F is defined as

CF =
F

1/2ρU 2
∞Afin

, (5.1)
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Figure 12. Wake structures for the Mode 1 + 2 + 3 gait at Re = 6300 and St = 0.54.
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Figure 13. Wake structures for Mode 1 + 2 + 3 + 4 + 5 gait at Re = 6300 and St = 0.54.

where Afin is the nominal fin area; ρ is the density of the fluid; and U∞ is the
free stream velocity. The force components are calculated by directly integrating the
computed pressure and shear stress on the fin surface. For instance, if σ is the traction
over the fin surface, then the thrust is given by

T (t) =

∫
Afin

σ1dA , (5.2)

where σ1 is the component of the surface traction in the direction of thrust.
Another key parameter associated with the hydrodynamic performance of the fin

is the propulsive efficiency. In the current context, propulsive efficiency is defined as

η =
P̄out

P̄in

, (5.3)

where P̄out is the mean useful power produced by the fin over one stroke and P̄in is
the mean total power input to the fin over the stroke. The mean useful power is equal
to T̄ U∞, where T̄ is the mean thrust produced by the fin and U∞ is mean forward
velocity of the fish. The total mean mechanical input power to the fin can then be
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Figure 14. Comparison of the time variation of force coefficients between the Mode-All and
POD-synthesized gaits at Re = 6300 and St = 0.54: (a) thrust; (b) lift (or vertical force); (c)
spanwise force. The abduction phase extends from t/τ = 0 to t/τ = 0.57, and the remaining
portion of the stroke is the adduction phase.
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computed as

P̄in =
1

Mτ

∫
Mτ

∫
Afin

(σ · V ) dA dt, (5.4)

where V is the local velocity of the fin surface. A detailed discussion regarding the
efficiency is presented in Dong et al. (2009). Efficiency values for the low-dimensional
models of the fin gait are also given in table 2.

Several observations on how each POD mode contributes to the performance of
the fin can be made from these results. It should be noted that only Mode 1 can
be simulated by itself. However, given the underlying nonlinearity of the flow, the
contribution of Modes 2 and 3 are investigated by considering the differences in the
performance from the lower-level gait. Thus, the effect of Mode 2 on performance
is obtained by analysing the difference between the performance of the Mode 1 and
Mode 1+2 cases. Similarly, the effect of Mode 3 on fin performance can be assessed
by comparing the performance of the Mode 1+2+3 case with that of the Mode 1+2
case.

First of all, figure 14(a) shows that all POD-synthesized gaits produce thrust
through the entire fin-beat cycle as in the Mode-All case. This can be seen as a
distinguishing characteristic of the fish fin function, since it is known that rigid
oscillating wings produce drag in some phase of their thrust-producing motion Dong
et al. (2006). In Dong et al. (2009) we have also performed a detailed comparison of the
peak-to-peak values of all the force coefficients with the companion experiments of
?, and the comparison is found to be quite reasonable. In these experiments the
acceleration of the centre of mass of the fish body was tracked using high-speed
videogrammetry, and this was used to determine the acceleration of the fish during
steady state swimming. In addition, Drucker & Lauder (2000) have measured the
drag on the body of a sunfish, and using this estimate and assuming that for steady
swimming both the fins together produce a force that counteracts this body drag, we
get an estimate a fin thrust coefficient of 1.03±0.23. This value is a reasonable match
to the computed fin thrust coefficient of 1.18.

The second key observation is that all POD-synthesized gaits except for Mode 1
show two main peaks of thrust, one in the abduction phase and one in the adduction
phase. Two peaks of thrust have been confirmed by the experiments of the bluegill’s
pectoral fin in steady forward motion as well (?). Mode 1 captures the first peak of
the thrust in the abduction phase with a smaller amplitude, but the second peak is
almost non-existent. As a reminder, Mode 1 is the so-called cupping movement of
the fin, and it represents 37 % of fin motion based on the normalized singular values
given in POD spectrum (see figure 6). The time-averaged thrust coefficient for the
Mode 1 case is calculated as CT = 0.5, which corresponds to 42 % of the mean thrust
produced by the Mode-All case.

Focusing now on the Mode 1+2 gait, we find that the addition of Mode 2 generates
slightly higher thrust during the abduction phase in comparison to Mode 1. However,
the major impact of the addition of Mode 2 is on the thrust during the adduction
phase. With this mode added, a second peak during adduction appears, albeit with
a smaller amplitude than the Mode-All case. An examination of the kinematics
of Mode 1 and Mode 2 suggests that the key feature that Mode 2 adds is the
expansion (area increase) of the fin perpendicular to the flow direction during the
adduction phase. Thus, Mode 2 essentially introduces kinematics analogous to the
power phase of a ‘paddling’ stroke wherein, on the backstroke, the paddle surface is
made perpendicular to the direction of the motion of the paddle. The impact of this
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Motion (%) CT CL CZ η Thrust production (%)

Mode-All 100 1.18 0.22 −0.16 0.60 100
POD Mode 1 37 0.50 0.16 0.087 0.73 42
POD Mode 1+2 45 0.75 0.11 0.13 0.59 64
POD Mode 1+2+3 67 1.09 0.29 −0.26 0.53 92
POD Mode 1+2+3+4+5 80 1.18 0.22 −0.16 0.60 100

Table 2. Comparison of the hydrodynamic performance for the Mode-All and
POD-synthesized gaits at Re = 6300 and St = 0.54.

on the force production is quite significant; the time-averaged thrust value for Mode
1+2 is computed as CT = 0.75 (see table 2), and this is about 64 % of the thrust of
the Mode-All case. It should also be pointed out that Mode 1+2 constitutes about
55 % of the complete fin motion but captures 64 % of the thrust of the Mode-All
case.

The addition of Mode 3 is examined by simulating the Mode 1+2+3 gait and
comparing with the lower-dimensional gaits. As shown in figure 14(a), the inclusion
of Mode 3 improves the thrust performance considerably in both abduction and
adduction phases. In fact, the Mode 1+2+3 gait captures the thrust production
of Mode-All case quite well for the first three quarters of the cycle. The superior
performance of this gait is an indication of the significance of spanwise tip flick
represented by Mode 3. The mean thrust is CT = 1.09 for this case, and this is only
8% lower than that of the Mode-All case. Clearly, the missing part is due to the
remaining modes in the POD spectrum. Thus, Mode 1+2+3 which constitutes 67 %
of the motion captures 92 % of the complete thrust. It should be reiterated that
unlike Modes 1 and 2 which are produced due to active deformation through angular
motion of the fin rays, Mode 3 is primarily due to flow-induced deformation. Thus,
Mode 3 can be considered to be a result of the fin motion (as defined by the addition
of Modes 1 and 2) and the spanwise flexibility of the fin.

The Mode 1+2+3+4+5 gait has been studied as the highest level of approximation,
and it constitutes about 80 % of the fish fin motion. The addition of Mode 4 and
Mode 5 enhances the thrust production over the Mode 1+2+3 gait during the
adduction phase. However, there is still a slight discrepancy with the Mode-All case
at the end of the cycle. This is compensated by better performance during the
abduction phase, and hence, the Mode 1+2+3+4+5 gait recovers a mean thrust
which is nearly the same as that of the Mode-All case. Since Mode 4 and Mode 5
movements are not as distinct as the lower modes (Mode 1–3) and since the Mode
1+2+3 gait itself produces 92 % of the thrust produced by the Mode-All case, the
Mode 1+2+3 gait emerges as one that might be appropriate for biorobotic fin design.
The above also suggests the effectiveness of the POD method for decomposing the
fin kinematics into its minimal essential components and, in particular, to set a lower
bound for the kinematics that are acceptable in well-performing bio-inspired pectoral
fin. It should be noted that these higher modes also have a relatively more complex
spatial and temporal structure, and replication of these modes in a robotic pectoral
fin would likely require a larger number of actuators and a higher degree of control.
The POD analysis, coupled with computational modelling, conclusively shows that
replication of these modes is not required, and this can substantially ease the design
challenge for such propulsors.
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It should be pointed out that both the Mode 1+2+3 and the Mode 1+2+3+4+5
approximations predict a higher thrust than the Mode-All case during abduction,
whereas both produce lower thrust during adduction. Thus, addition of the modes
does not produce a monotonic approach to the Mode-All case. This is, however, not
unexpected due to the underlying nonlinearity of the flow.

The lift curve trends are similar for all gaits except for Mode 1 (see figure 14b).
All POD-synthesized gaits and the Mode-All case have a positive peak in abduction
phase and a negative peak in the adduction phase. It should be noted that the peak-
to-peak values of lift are lower than that of thrust, which is one key for the superior
efficiency compared to the rigid flapping fins. The time-averaged values of the lift
coefficient presented in table 2 are small for all cases. The advantage of small mean
vertical force is abundantly clear; it reduces the vertical drift in the trajectory of the
fish as it swims forward. What is interesting is that the fish manages to effectively
cancel out the positive lift in the abduction phase with a nearly equal negative lift in
the adduction phase despite very different kinematics in these two phases.

Figure 14(c) shows the time variation of the spanwise force coefficients, and these
behave similarly for Mode 1+2+3, Mode 1+2+3+4+5 and the Mode-All case. They
all have a negative peak during the abduction phase and a positive one during
adduction. Although Mode 1 and Mode 1+2 have a different trend in time variations
of this force component, the mean values calculated for all POD gaits are small
in comparison to thrust. The same explanation holds for the spanwise force; the
fish needs to keep side forces as small as possible for stability and station-keeping
purposes. It should be noted that similar behaviours in the lateral forces would be
desirable in the design of biorobotic fin kinematics.

Values of propulsive efficiency are calculated using (5.3) and are also included in
table 2. Mode-All and Mode 1+2+3+4+5 have the same efficiency values of 60 %,
and Mode 1 is the most efficient gait with a 73 % efficiency. Mode 1+2+3 gait has
an efficiency of 53 % which, although the lowest, is only about 12 % lower than the
Mode-All case. The Mode 1+2 gait has an efficiency of 59 %, which is nearly the
same as the Mode-All case. It is interesting to note that the propulsive efficiency has
a highly non-monotonic variation as the model dimensionality is increased, and this
is, yet again, a clear manifestation of the underlying nonlinearity of the fluid flow.

6. Reynolds-number-scaling effects
Two non-dimensional parameters that can potentially affect the performance of the

fin are the Reynolds number (Re = U∞Ls/ν) and Strouhal number (St = Lsf/U∞).
Examination of the scaling of the fin performance with these two parameters allows
us to gain a better insight into the fundamental mechanisms of force generation.
Biologically inspired, flapping-fin-propelled autonomous underwater vehicles of sizes
ranging from a few inches to a metre or more in length are being developed by
various groups. Thus, a Reynolds number scaling also allows us to address the
practical question of how the performance of the fin is expected to change with
changes in size, speed and frequency. and given that Mode 1+2+3 despite employing
only three modes recovers much of the propulsive performance of the Mode-All case,
it is an excellent basis for a design of a biorobotic pectoral fin. In fact, preliminary fin
designs by Tangorra et al. (2007) have attempted to mimic these three modes. Given
this, we have examined the issue of Reynolds and Strouhal number scaling for the
Mode 1+2+3 case.
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Figure 15. Wake structures for the Mode 1 + 2 + 3 gait at St = 0.54 and t/τ = 1.0.

In the first set of simulations, we examine the scaling of the fin performance with
Reynolds number by simulating the fin flow for two additional values of 540 and
1140. Given the nominal Reynolds number of 6300, the above simulations represent
a range spanning an order of magnitude in this parameter. In these simulations, St

is kept constant at the nominal value of 0.54. A practical way to interpret this set of
simulations is as follows: if we were to scale the size of the fish (or of a biorobotic
underwater vehicle employing such fins) by a factor of λ, then the Reynolds number
would scale by a factor of λ2, since the fin size and velocity would each change by a
factor or λ. Note that here we assume that the fish/vehicles of different size continue
to swim at the same speed in terms of BL s−1. At the same time, since both the
fin size and the forward velocity change by the same factor, the Strouhal number
remains the same. Thus, reduction of the Reynolds number to 1140 and 540 can be
interpreted as reduction to 43 % and 29 % of the nominal size respectively.

The wake vortex structures for the three cases are compared in figure 15, and it is
observed that although the structures get simpler with decreasing Reynolds numbers,
many of the key features are similar in all the cases. In particular, the abduction
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Re CT CTp CTs CL CZ η

6300 1.02 1.09 −0.07 0.29 −0.26 0.53
1440 0.74 0.84 −0.10 0.31 −0.26 0.48
540 0.47 0.66 −0.19 0.35 −0.25 0.45

Table 3. Effect of Reynolds number on fin performance for the POD Mode 1 + 2 + 3 gait at
St = 0.54.
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Figure 16. Time variation of thrust coefficient at three different Reynolds numbers for the
POD Mode 1 + 2 + 3 gait and St = 0.54.

and adduction tip vortices, as well as the adduction ventral-leading-edge vortex, are
clearly visible in all cases. Reduction in the Reynolds number, however, does tend
to dissipate the adduction dorsal-edge vortex as it does many of the smaller scale
vortex structures. It is also noted that as the Reynolds number decreases, the helical
structure of the abduction tip vortex becomes less noticeable.

Figure 16 shows the variation of the forces on the fin for the three Reynolds
numbers, and table 3 shows the mean values of the force coefficients for the three
force components. We focus here on the pressure forces (denoted by CTp in table 3)
in order to examine how the reduction in the Reynolds numbers and the associated
changes in the vortex structures affect the pressure component of the thrust on the
fin. The shear stress component (CTs ) is quite small at these Reynolds numbers, and
as expected, the shear drag increases with decreasing Reynolds number. The plots
and the table essentially indicate that there is relatively little change in the pressure
forces as the Reynolds numbers is reduced from 6300 to 1440. As the Reynolds
number is reduced further to 540, there is some reduction in the force magnitude.
The reduction is most noticeable during the adduction phase, where the peak force
coefficient drops from about 1.7 for Re = 6300 to 1.1 for Re = 540. The changes in the
other force coefficients are even smaller in magnitude, and these figures are not shown
here.

Table 3 shows that there is about a 20 % loss of pressure thrust when the Reynolds
number is reduced to 1140, and this loss increases to about 40 % as the Reynolds
number is reduced to 540 from 6300. On the other hand, time-averaged lift forces
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increase slightly with decrease in Reynolds number, whereas the spanwise force
coefficients remain unchanged for three cases. As a result, the efficiency value of 0.53
calculated for Re = 6300 drops to 0.48 and 0.45 for the Re = 1440 and Re = 540
cases, respectively.

The above analysis of the vortex structures and forces indicates that indeed, as
the Reynolds number is reduced by a factor of about 10, some fine-scale vortex
structures are dissipated rapidly, and there is a significant (40 %) reduction in the
forces produced by the fin. At the same time, the general similarity in the vortex
topology and temporal variation of the forces indicates that the essential fluid dynamic
mechanisms are unchanged within the range of Reynolds numbers studied here. This
is in line with past studies (Dong et al. 2006) of rigid flapping foils that have also
found little qualitative change in these flows as the Reynolds numbers is changed from
100 to 400. Anderson et al. (1998) have also noted the insensitivity of the qualitative
features of the flows associated with flapping foils for Reynolds numbers ranging
from O(103) to O(104). The fin performance at Reynolds numbers much higher than
6300 is, however, unknown and, given the CPU cost of such simulations, cannot be
easily assessed using numerical simulations.

The Reynolds-number-scaling effect studies suggest that further performance
analysis can be carried out at a Reynolds number of 1440, which is about one
fourth of the nominal value. An advantage of studying this lower Reynolds number
is that it requires 2.35 million points, instead of the 4.9 million employed for high-
Reynolds-number simulation. This saves significant CPU time and allows for more
rapid assessment of the scaling effects.

7. Strouhal-number-scaling effects
In this section, the effect of Strouhal number on the fin performance is examined.

In flapping-foil fluid mechanics and aquatic locomotion, the Strouhal number
is considered a key parameter, one which has a significant effect on the wake
characteristics and propulsive performance. The Strouhal number for flapping foils is
typically defined as St = Lwf/U∞, where Lw is a measure of width of the wake of the
foil. For a pitching heaving foil, the wake width is well characterized by the the total
(peak-to-peak) heave amplitude of the foil (Triantafyllou et al. 1992). Some studies of
pitching–rolling foils have used the total amplitude at 70 % span to characterize the
wake width (Triantafyllou, Techet & Hover 2004; Techet et al. 2005). If the current
pectoral fin is assumed to be similar to a pitching–rolling foil, then based on the
70 % span amplitude definition, the Strouhal number for the current case would be
about 0.36. It should be noted that the kinematics of fish swimming at a variety
of speeds with their pectoral fins have been studied by several authors, and scaling
relationships have been determined for surfperch, a species that has a body shape
and pectoral fin locomotor mode very similar to the sunfish modelled in this paper.
For these fish, increases in swimming speed with the pectoral fins are accomplished
primarily through changes in frequency of pectoral fin beats (Gibb, Jayne & Lauder
1994; Drucker 1996; Drucker & Jensen 1996). Thus, changing the Strouhal number
while maintaining the same fin kinematics allows us to examine the effect of change
in fin frequency and speed for these fish as well as for underwater vehicles inspired
by such fish.

Freymuth (1990) and Triantafyllou, Triantafyllou & Gopalkrishnan (1991) have
also shown that pitching–heaving foils operating at Strouhal numbers in the vicinity
of about 0.25 produce the so-called inverse Kármán vortex street and that the
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St CT CL CZ η

0.41 0.59 0.30 −0.23 0.37
0.54 0.74 0.32 −0.26 0.48
0.70 0.92 0.33 −0.27 0.29

Table 4. Effect of Strouhal number on fin propulsive performance for the POD
Mode 1 + 2 + 3 gait at Re = 1440.

propulsive efficiency is highest at these Strouhal numbers. For pitching–heaving foils
of finite aspect ratio, the wake shows a vortex structure that is characterized by
interlinked vortex loops and oblique wakes (Dong et al. 2006). Furthermore, the
optimal Strouhal number is found to be a function of both the foil aspect ratio and
Reynolds number (Dong et al. 2006). Studies by Triantafyllou, Hover & Licht (2003)
have shown that fish and mammals that use caudal fin propulsion generally swim in
a range of Strouhal numbers from about 0.25 to 0.35, and this tends to confirm the
optimality of this Strouhal number for caudal-fin-based propulsion. A more recent
study of propulsion in odontocete cetaceans (Rohr & Fish 2004) suggests a Strouhal
number range of 0.2–0.3.

To our knowledge, the correlation of Strouhal number with propulsive performance
for pectoral-fin-based (labriform) propulsion has not yet been explored extensively.
Pectoral fins of fish that employ them in a labriform mode of propulsion are highly
complex and varied in shape and also undergo varying degrees of deformation. It
is therefore more difficult to parameterize the kinematics for this mode, and this is
perhaps one reason why the such investigations of labriform propulsion have not
been carried out. The only work on this topic is by Walker & Westneat (2000) who
examined labriform propulsion for a model based on the bird wrasse (Gomphosus
varius) pectoral fin. Their study, which employed a relatively elaborate blade-element
model, indicated a maximum efficiency for a ‘flapping stroke’ of about 58 %, and this
occurred at a Strouhal number (based on fin-tip amplitude at 70 % span) of about
0.16.

In the current study, we simulate two additional cases that cover a relatively
wide range of Strouhal numbers around the nominal value of 0.54. In particular,
we simulate two cases with Strouhal numbers of 0.41 and 0.70 while keeping the
Reynolds number constant at 1140. These represent a +30 % and −24 % variation
over the nominal value of the Strouhal number. Note also that all these cases are for
the Mode 1+2+3 case which we have identified as a case of interest for a biorobotic
pectoral fin. Table 4 shows the parameters for the various cases in described in this
section.

The wake structure at the end of the fin-beat cycle for the St = 0.41 and 0.70
cases are shown in figure 17, and these can be compared with the corresponding
plot for the nominal St = 0.54 case in figure 15(b). Similarities can be seen in the
wake structures for all cases, although we note that the abduction tip vortex gets
stronger as the Strouhal number is increased. It is also noted that this vortex detaches
from the fin at the end of the cycle for the lower-Strouhal-number case. A decrease
(increase) in Strouhal number implies a decrease (increase) in the fin-tip velocity
relative to the flow velocity, and this explains the increase in the strength of the tip
vortex with increasing Strouhal number. Viewing the Strouhal number as a ratio of
the convective time scale to the fin flapping time scale, a decrease in Strouhal number
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(a) St = 0.41 (b) St = 0.70
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Figure 17. Wake structures for the Mode 1+2+3 gait at Re = 1440 at two different Strouhal
numbers.

implies an increase in the flapping time scale, which allows vortex structures such
as the abduction tip vortex to convect farther downstream during the fin stroke and
detach from the adduction vortices.

Figure 18 shows the time variation of the force coefficient on the fin. The key
point to note is that the hydrodynamic performance of the fin is found to be quite
sensitive to the Strouhal number, and the magnitudes of all the force components
increase with increasing Strouhal number. It is however interesting to note that of
all the force components, the thrust component is the most sensitive to changes in
Strouhal number. As expected, the high-frequency case produces more thrust, and
the time-averaged values in table 4 show that 24 % more thrust is produced when
the Strouhal number is increased from 0.54 to 0.7. On the other hand, there is about
a 20 % reduction in the mean thrust when the Strouhal number is decreased to 0.41.
The time-averaged values of lift and spanwise forces do not show similar changes,
firstly since they exhibit lower sensitivity to St and secondly due to the fact that
negative and positive values during the two phases of the cycle effectively cancel out
the net forces in all the cases. The general trend of increase in the thrust coefficient
with Strouhal number is in line with data on rigid flapping foils (Anderson et al.
1998; Dong et al. 2006).

Table 4 also shows the computed propulsive efficiency for all the cases, and these
reveal a very interesting result. The simulations indicate that the St = 0.54 case is
indeed the most efficient case with an efficiency of 48 %. As the Strouhal number is
increased to 0.70, there is a significant decline in efficiency to 29 %. Thus, although
the higher-Strouhal-number case produces more thrust, it does so with a significantly
reduced propulsive efficiency. There is also a reduction in the efficiency to 37 % as the
Strouhal number is reduced to 0.41, but this decrease is clearly not as precipitous as
that seen at the higher Strouhal number. The current simulations therefore suggest that
there is an optimal Strouhal number range for this highly deformable pectoral fin and
that the fish indeed operates in this optimal range. The fact that the optimal Strouhal
value of 0.54 is higher than the 0.25 value predicted in previous studies (Triantafyllou,
Triantafyllou & Grosenbaugh 1993; Rohr & Fish 2004) is not surprising, since
pectoral fin propulsion is expected to have significantly different fluid dynamics than
caudal fin propulsion which was the focus of these previous studies. Furthermore, the
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Figure 18. Time variation of force coefficients at three different Strouhal numbers for
Re = 1440.

so-called optimal range depends very much on the precise definition of the Strouhal
number. In fact, as pointed out above, if we choose a definition of the Strouhal
number that is in line with that used for pitching–rolling foils (Techet et al. 2005),
then the Strouhal number of the current fin is about 0.36 which is close to the upper
end of the optimal range indicated by Triantafyllou et al. (1993).

8. Fin performance for a starting manoeuvre
In addition to the above two cases, we simulate a case of the fin operating in a

stationary flow. From a practical point of view, this simulation models the situation
of a fish (or a biorobotic vehicle with similar fins), employing this fin stroke for a
‘starting’ manoeuvre. Such a case is characterized by the Stokes (or reduced) frequency
defined as S = f L2

fin/ν. Note that for cases with crossflow, S = St ×Re, and therefore
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Figure 19. Wake structures for the Mode 1+2+3 gait for the stationary (St = ∞) case.

S is not an independent non-dimensional parameter. In fact, although we have chosen
Strouhal and Reynolds numbers as the primary non-dimensional parameters in the
current study, we could equally well have chosen the Strouhal and Stokes numbers
as the two independent non-dimensional parameters. For the nominal case with
St = 0.54 and Re = 1140, the Stokes frequency is equal to 616, and we keep the same
value of Stokes frequency for the stationary flow case in order to ensure that only
one parameter is different from the nominal case. Note that for this stationary flow
case, the Strouhal number tends to infinity and the Reynolds number to zero.

Figure 19 shows the vortex structures for the starting manoeuvre case at the end
of the fin stroke. Not surprisingly, the absence of the crossflow results in a vortex
topology which is markedly different from the other case. The flow at the end of the
stroke is characterized by a single vortex structure that tracks the trajectory of the
fin tip and is made up of the adduction tip vortex and a vortex shed from the dorsal
edge during adduction.

Finally, we examine the force production for the starting manoeuvre case. In order
to compare the performance of this case with the nominal case, we redefine the
force coefficients using the fin-tip velocity (Vtip) as the velocity scale. Note that this
is necessitated by the fact that U∞ is zero for the starting manoeuvre case. Thus, we
define a new thrust coefficient as

C ′
T =

T
1
2
ρV 2

tipAfin

, (8.1)

where Vtip is estimated simply as πf Dtip . For the nominal case, this implies that
Vtip/U∞ = πSt(Dtip/Lfin) and, furthermore, C ′

T = CT × (U 2
∞/V 2

tip).
In figure 20, we have plotted the thrust force coefficients for the nominal case as

well as the starting manoeuvre case. We focus here on the pressure thrust in order
to eliminate from consideration the effect of viscous drag which is significant for
the starting manoeuvre. As can be seen from this plot, the fin fails to produce any
significant magnitude of pressure thrust during the starting manoeuvre. The mean
value of thrust coefficient C ′

Tp for the starting manoeuvre case is 0.05 which is about
16 % of value for the nominal case, which is 0.33. Force production in the lateral
directions is similarly small.

The inability of the fin to produce any appreciable force during this starting
manoeuvre is quite striking. The implication of this for both the fish locomotion and
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Figure 20. Time variation of force coefficients due to pressure for the nominal and starting
manoeuvre cases.

a biorobotic fin design is that the fin kinematics that are the basis of the current
study are appropriate only for a cruise-type condition, where the fish/vehicle is moving
forward at some appreciable speed. In particular, this fin stroke is inappropriate for
use in starting manoeuvres in which the fish/vehicle attempts to accelerate from zero
initial speed, since this fin stroke will produce very little thrust when the forward
speed is zero (or very small). In fact, it is well known that many labrids employ a
very different ‘paddling-type’ stroke (Walker & Westneat 2002a ,b) to initiate forward
motion and then transition to a ‘flapping” stroke as the forward speed increases.
The current simulations would seem to provide a clear and quantitative reason as to
why this behaviour is well justified. Our results also indicate that for an underwater
vehicle that would use similar fin-inspired propulsors, starting manoeuvres using this
kind of a fin stroke would be very slow and inefficient.

9. Conclusions
POD has been used to study the kinematics and fluid dynamics of pectoral fin

propulsion in a bluegill sunfish. The pectoral fin of this fish exhibits complex
kinematics coupled with a high degree of deformation, and POD allows us to separate
the motion into distinct components that are amenable to further study. The POD
analysis shows that despite the seeming complexity of the fin kinematics, the fin
motion is dominated by a relatively small number of orthogonal modes. The first
three modes capture about 67 % of the total motion, whereas the first five modes
account for 80 % of the fin gait. The first three modes are found to have very distinct
and identifiable characteristics: Mode 1 involves considerable movement away from
the body in what we call the ‘cupping’ motion, where the fin cups forward as it is
abducted. It leads to a rapid acceleration of the fin dorsal and ventral edges, forming
two leading edges from them. Mode 2 is named an ‘expansion’ mode in which the
fin expands to present a larger surface area during adduction. Mode 3 is a wave-like
motion in the spanwise direction, which occurs along the dorsal edge of the fin. It
involves a rapid spanwise ‘flick’ of the fin tip along the dorsal edge of the fin during
the abduction phase. In contrast to Modes 1 and 2, which result from active angular
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motion of the fin rays by the fish, Mode 3 is primarily a result of flow-induced
deformation.

In order to understand the role that each of the dominant modes plays in
determining the propulsive performance of the fin, we synthesize low-dimensional
gaits from the POD modes and subject them to flow simulations using a sharp-
interface immersed-boundary Navier–Stokes solver. These simulations indicate that
a gait synthesized from just the first three modes recovers 92 % of the thrust of the
pectoral fin. Thus, from the point of view of bio-inspired design, a fin propulsor that
produces these three modes would lead to an effective design.

We have also used numerical simulations to examine how the performance of the
fin scales with the Reynolds and Strouhal numbers. Simulations indicate that as the
Reynolds number is reduced by about an order of magnitude from the nominal value
of 6300, the mean thrust due to pressure reduces by about 40 %. The propulsive
efficiency also reduces monotonically with Reynolds number and drops by about
15 % as the Reynolds number is reduced about an order of magnitude. However, the
simulations indicate that there is no distinct change in the flow mechanisms or the
vortex topology despite this large decrease in Reynolds number. This indicates that
the pectoral fin kinematics adopted by the fish would be effective over a relatively
large range of spatial scales.

The performance of the fin is found to be much more sensitive to the Strouhal
number. The thrust coefficient is found to increase monotonically with Strouhal
number and shows about a 21 % increase as the Strouhal number is increased from
0.54 to 0.71 and about an 18 % decrease as the Strouhal number is decreased to 0.41.
Interestingly, the current simulations suggest that a Strouhal number of 0.54, which
is the nominal value for the fish in the current study, results in the highest propulsive
efficiency. This suggests that the fish swims in an optimal range of this parameter.
The presence of an optimal range, although well-known for caudal fin propulsion
and engineered flapping foils, is not well-established for pectoral fin propulsion. The
current simulations indicate that such a range does exist. Finally, a simulation of
a ‘starting’ manoeuvre in which the free stream velocity is reduced to zero while
keeping the same fin kinematics shows that the fin kinematics adopted by the fish
during cruise is not well suited for accelerating from a stationary position.

The current POD approach coupled with computational fluid modelling therefore
provides a useful means of gaining insight into the fluid dynamics of pectoral fin
motion, where the pectoral fin undergoes large changes in shape due to passive
and active deformation. These insights help us better understand the functional
morphology of pectoral fins and are also helping us design biomimetic flapping fin
propulsors (Tangorra et al. 2007).

This research was funded by the ONR MURI grant N00014-03-1-0897. Detailed
comments from one of the anonymous reviewers were very helpful.
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