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Nomenclature

CD = dimensionless mean drag coefficient,
2F�D=��fU2

meanD�
F�D = drag force per unit spanwise length on the cylinder

and plate, Nm�1

D = diameter of the cylinder, m
E = dimensionless Young’s modulus, E�=��fU2

mean�
f = dimensionless oscillation frequency of the plate,

f�D=Umean

Re = Reynolds number, �fUmeanD=�
Umean = mean velocity at the left boundary of the channel,

ms�1

V = dimensionless dilatational wave speed inside the
structure,

����������������������
E=��s=�f�

p

Ytip = maximum Y displacement of the tip, �Y�tip=D�
� = dynamic viscosity, Nm�2 s
�f = density of the fluid, kgm�3

�s=�f = solid-fluid density ratio

Superscripts

� = dimensional quantity

I. Introduction

L ARGE flow-induced deformation of soft structures with
complex material and structural properties as well as complex

geometries has numerous engineering applications such as in
microaerial vehicles, transport of fluids in elastic structures, energy-
harvesting devices, biomedical engineering, and bioinspired
systems. The modeling of the flow-induced deformation (FID) for
these problems generally involves complex three-dimensional
moving solid boundaries and large FID of the structure. The flow in
many of the preceding applications is highly unsteady, and the
modeling of the structure also involves geometric and material
nonlinearities. The coupling of the governing equations of the flow
and the structure can lead to complex phenomena such as modal
entrainment [1], lock-on, surface morphing, bifurcation, chaotic
vibrations, resonance, and stress concentration. Although modeling
of the flow and the structure are challenging in their own right, the

coupled fluid-structure interaction raises the challenge to an even
higher level.

Previous efforts in FID modeling by Dunne and Rannacher [2],
Tezduyar et al. [3]and Sahin andMohseni [4] have mostly employed
arbitrary Lagrangian–Eulerian (ALE) methods in which the simula-
tion is performed on a body-conformal mesh, which is modified via a
suitable remeshing algorithm at every time step. However, cases
involving large deformations and/or topological changes of the
boundary pose a severe challenge for the remeshing algorithm.
Oftentimes, the remeshing algorithm increases the computational
time, and numerical dissipation is needed to provide robustness in the
presence of the deformed grid; this can hide the effects of under-
resolution of the grid and degrade the solution accuracy. An alternate
approach is to employ an immersed boundary (IB) method for the
flow simulation. In this method, the governing equations are solved
on a fixed Cartesian grid for the flow domain, and the movement of
the immersed structure in the fluid is described in a Lagrangian
framework. The first IB method was developed by Peskin [5] to
simulate cardiovascular dynamics. This method and its variants (see,
for example, Zhao et al. [6]) have since been used for a variety offlow
problems in engineering and biomechanics [7]. IB-based flow
solvers enable the solution of flows with complex moving structure
boundaries on stationary Cartesian meshes, and these methods can
easily be incorporated in to existing flow solvers [8]. We note that,
although FID is a type of fluid-structure interaction (FSI), it is
distinguishable from problems that involve flow-induced motion of
otherwise rigid structures (such as in Vanella et al. [9] and Eldredge
and Pisani [10]) because these latter problems do not require
modeling of internal structural stresses. Modeling of these internal
structural stresses can introduce additional spatial and temporal
resolution requirements that are absent in problems involving FSI of
rigid structures.

A second issue in this arena is the limited availability of data sets
that can be used to verify the accuracy and fidelity of FID solvers,
especially those involving large-scale structural deformation. In
this note, we describe a method that couples a sharp-interface
IB-method-based flow solver with a finite-element-based structural
dynamics solver to construct a robust and versatile solver for FID
problems with large-scale deformation. We validate the FID solver
against published numerical results and discuss the influence of
material properties and geometric nonlinearity on the coupled
dynamics of the system. We also extend the benchmark by
simulating additional cases with different parameters and material
properties.

II. Fluid-Induced Deformation Modeling

The flow solver is a ghost-cell-based sharp-interface immersed
boundary method described by Mittal et al. [8]. In this solver, the
unsteady, incompressible Navier–Stokes equations are discretized in
space using a cell-centered, collocated (nonstaggered) arrangement
of primitive variables, i.e., velocity and pressure, and a second-order,
central-difference scheme is used for all spatial derivatives. The
unsteady Navier–Stokes equation is marched in time using a
fractional-step scheme that involves two steps: solving an advection-
diffusion equation followed by a pressure Poisson equation. During
the first step, both the convective and viscous terms are treated
implicitly using the Crank–Nicolson scheme to improve the stability.
In second step, the pressure Poisson equation is solved with the
constraint that the final velocity be divergence free. The flow solver
has been validated for problems such as flow past a circular cylinder,
sphere, airfoil, suddenly accelerated normal plate, and suddenly
accelerated circular cylinder [8] and is used to simulate a variety of
flows [11].
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An open-source, three-dimensional, finite-element solver, Tahoe
developed at Sandia National Laboratories, Livermore, CA‡, is
employed for the structural domain. This solver allows a variety of
constitutive models and can handle large deformations of multi-
layered, anisotropic, and heterogeneous structures. The flow compu-
tations are performed on an Eulerian grid, whereas the immersed
structural surfaces are tracked in a Lagrangian framework. A
partitioned (segregated) approach is used to couple the flow and the
structure solvers, and an implicit (two-way) coupling between the
flow and the structure solvers ensures that the FID solver is stable
even for low structure-fluid density ratios [11]. In implicit coupling,
outer iterations are performed at each time step until convergence of
the coupled system is achieved. In each outer iteration, both the flow
and the structure dynamics are solved while updating the boundary
conditions at the fluid-structure interface. The coupled system is
deemed to have converged when the residual (measured by the L2

norm of the displacement of the fluid-structure interface) over
successive outer iterations reduces below a defined threshold value.
The typical threshold value employed is about 4 orders of magnitude
lower than the initial residual. The implicit coupling reduces to
explicit coupling if only one outer iteration is used.

To enhance the stability to the solver in the face of dynamical
nonlinearities, underrelaxation of the displacement and the velocity
of the fluid-structure interface is employed. In this scheme, the
displacement and the velocity are updated by linearly weighted
values of current and previous outer-iteration values by an under-
relaxation parameter � [12]:

X

N

�k;newi � ��ki � �1 � ���k�1i (1)

where � is the displacement or velocity, k is the counter of the outer
iteration, N is the number of nodes on the fluid-structure interface,
and � is the under-relaxation parameter (0< � � 1). Typical values
of� used in the simulations range from0.2 to 0.4, and the final results
are found to be independent of the under-relaxation. Although there
is significant variation from case to case, 10–20 outer iterations
are needed to achieve convergence in the simulations reported in
this study.

III. Results and Discussion

A. Comparison with Benchmark

The FID solver is validated quantitatively as well as qualitatively
with the benchmark problem proposed by Turek and Hron [13] (TH).
The problem consists of a two-dimensional laminar channel flow past
a thin elastic plate attached to the lee side of a circular cylinder (Fig. 1).
The circular cylinder is rigid and stationary, whereas the elastic plate
is deformable. The fluid is considered to be incompressible and
Newtonian, whereas the structure is assumed to be elastic and
compressible. TH used an implicit, monolithic, ALE method finite-
element method (FEM) with a fully coupled multigrid solver [14] for
their simulations of both the flow and the structural dynamics.

A parabolic inflow velocity profile is prescribed at the left
boundary of the channel with a mean velocity equal toUmean, and an
outflow boundary condition is applied on the right boundary (Fig. 1).
The constitutive law for the structure is chosen as Saint Venant-
Kirchhoff material [15] in which the elasticity of the structure is
characterized by Poisson’s ratio (�s) and Young’s modulus (E�). We
also assume a condition of plane strain in the structure and allow full
geometric nonlinearity [15] in the structural model.

In addition to the Poisson’s ratio and density ratio �s=�f, the two
other nondimensional parameters for the problem are the Reynolds
number and the dimensionless Young’s modulus, which are defined
asRe� �fUmeanD=� andE� E�=��fU2

mean�, respectively, where�
is dynamic viscosity of the fluid, and �f is the fluid density. A
comparison of the flowfield, the pressure field, and the plate
dynamics with the benchmark is conducted for the following
parameters: D� 0:1m, Umean � 1m � s�1, �f � 103 kg �m�3,

�s=�f � 10, Re� 100, E� 1:4 	 103, and �s � 0:4. The domain
size in the current simulation is 0 � x � 11D and 0 � y � 4:1D, and
a 257 	 129, nonuniform Cartesian grid with �xmin � 0:023D and
�ymin � 0:018D is used, wherein high resolution is provided to the
region where the plate is expected to move. For the structural solver,
the plate is discretized with a total of 1611 quadrilateral finite-
elements with�xmin � 0:02D and�ymin � 0:02D. The FEMgrid in
the plate is shown in the Fig. 1 inset. The time step for the flow aswell
as the structural solver is set to �tf � 0:01D=Umean, which
corresponds to about 50 time steps/period of the plate oscillation. The
flow and the structural grid as well as the time step used here were
chosen after successive refinement until the computed results became
effectively independent of the grid.

Figure 2a shows the computed vorticity field and the deformation
of the plate at different time instances. The flow induces a wavelike
deformation in the plate, and the plate attains self-sustained periodic
oscillation with a constant amplitude after a short time. The time
evolution of the Y and X displacements of the plate’s tip is shown in
Fig. 2b. We note that the plate initially exhibits small deformations
and reaches a periodic self-sustained oscillation after a dimensionless
time of around 60. The time period and the maximum displacement
of the plate are estimated to be about 5:16D=Umean and 0:92D,
respectively.

Figure 3a compares the computed stationary-state results with the
published results of TH for the evolution of the displacement of the
plate. The values of the oscillation frequency and the maximum Y
displacement obtained from our simulation along with the input
parameters are given in Table 1 (Case 1a). The dimensionless
oscillation frequency (f� f�D=Umean) is found to be 0.19, which is
virtually identical to the value of TH. The differences between the
calculated and the published results for themaximumvalues ofY and
X displacement are estimated to be around 11 and 20%, respectively.
It should be noted that the larger relative difference in the X
displacement is due to the smaller overall magnitude of this quantity.
Figure 3b presents a qualitative comparison of the pressure contours
and the streamlines at the time when the plate’s displacement is at its
maximum. The agreement between the present results and those of
TH for the shape and magnitude of pressure contours and directions
of streamlines is very good.

We also compare the results of a case where �s=�f � 1 and
Re� 200 (Case 1b in Table 1) with the results of TH. In Table 1, the
calculated values of themaximumY displacement and the oscillation
frequency for this case are 0.41 and 0.28, respectively. These values
are around 14 and 8% larger than the corresponding values in TH,
respectively. We note that the system with �s=�f � 1 oscillates at a
higher frequency than the baseline case (�s=�f � 10), and as
discussed later in this note, this is consistent with the physics of wave
propagation in an elastic plate.

Included in Table 1 are the computed values of the mean drag
coefficient.We note that the current computed values for the baseline
case as well as Case 1b are 14 and 4% lower, respectively, than the
corresponding value of TH. This difference is in linewith the fact that
the current simulations predict a lower tip amplitude; this reduces the
unsteady component of fluctuating shear stresses as shown byMittal
and Balachandar [16] and leads to a lower drag.

Fig. 1 Schematic and boundary conditions (BC) of the benchmark
problem. All numbers shown are dimensionless with respect to the

cylinder diameter. The inset shows the finite-element mesh for the plate.

‡Data available online at http://sourceforge.net/projects/tahoe/ [retrieved
11 May 2012].
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The source of the 8–20% mismatch in the vibration amplitude
between the current simulations and those of TH is not readily
apparent; it could be due to resolution or modeling deficiencies in
either the current work or that of TH. In this regard, we note that we
have ensured that our results are reasonably grid independent; we have
also separately validated the flow solver [8] and the structural solver
against canonical problems.However,final assessment of the accuracy
of the current FID resultswill likely require computation of these cases
by other methods/simulation codes, and this is the motivation for the
rest of the studypresented here. The objective of the following sections
is twofold: first to understand the effect of key parameters, material
properties, and the modeling assumptions on the dynamics of this
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b)
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Fig. 3 a) Comparison between the present work and published results

of Turek andHron [13] for the stationary-state time-variation ofX andY

displacement of the tip of the plate. b) Qualitative comparison between

the present work and published results of Turek and Hron [13] for
pressure contours and streamlines at the timewhen theY displacement of

the tip of the plate is maximum.

Table 1 Different simulation cases considered along with corresponding values for cases

simulated by Turek and Hron [13]

Case �s=�f Re Geometric model E Ytip f CD

Turek and Hron [13] 10 100 Nonlinear 1:4 	 103 0.83 0.19 4.13
Turek and Hron [13] 1 200 Nonlinear 1:4 	 103 0.36 0.26 2.30
Case 1a (baseline) 10 100 Nonlinear 1:4 	 103 0.92 0.19 3.56
Case 1b 1 200 Nonlinear 1:4 	 103 0.41 0.28 2.20
Case 1c 10 300 Nonlinear 1:4 	 103 1.06 0.21 3.87
Case 2 10 100 Nonlinear 2:8 	 103 0.76 0.24 3.39
Case 3 10 100 Nonlinear 5:6 	 103 0.02 0.29 2.41
Case 4 100 100 Nonlinear 1:4 	 103 0.08 0.08 2.41
Case 5 10 100 Linear 1:4 	 103 1.37 0.19 4.73
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configuration and second to provide additional data for this case that
can be used by other groups for benchmarking studies in the future.

B. Effect of Reynolds Number

The Reynolds number is a key parameter in this flow, and to
quantify the influence of this parameter, we increase this parameter
by a factor of 3, keeping all other parameters the same as in the
baseline case The calculated values of the maximum Y displacement
and the oscillation frequency for this case (Case 1c in Table 1) are
1.06 and 0.21, respectively, which are around 15 and 10% larger,
respectively, than the corresponding baseline values.We note that the
plate reaches its maximum deformation at a dimensionless time of
around 30 for this case, whereas this time is around 60 for the baseline
case (Re� 100).

C. Effect of Material Properties and Geometric Nonlinearity

We have performed four additional simulations to explore the
effect of material properties on the dynamics; in the first two

simulations (Cases 2 and 3 in Table 1), the value of the dimensionless
Young’s modulus E is varied (E� 2:8 	 103 and 5:6 	 103) while
keeping all other parameters the same as in the baseline configuration
described in the preceding sections. In the third simulation (Case 4 in
Table 1), the density ratio �s=�f is increased by 1 order ofmagnitude,
keeping all other parameters the same as the baseline case. In thefinal
simulation (Case 5 in Table 1), we examine the effect of geometric
nonlinearity on the structural dynamics by recomputing the baseline
case with an assumption of a geometrically linear deformation. We
note that geometric linearity (or infinitesimal deformation theory)
neglects second-order or higher terms in the finite strain tensor [15].

Table 1 shows the salient features of all the calculations alongwith
the results of TH. The values of the Y displacement of the tip and the
oscillation frequency of the plate for these four cases are shown in
Table 1. It is found that the oscillation frequency obtained in
simulations (f) varies linearly with the dilatational wave speed (V)
inside the structure. The dimensionless expression for V is given by

V �
����������������������
E=��s=�f�

p
, where E is the dimensionless Young’s modulus

(E� E�=��fU2
mean�). The best-fit line between f andV for the values

in Table 1 is given by f� 0:011V � 0:052, with anR2 value of 0.98.
Figure 4a shows the comparison between the trajectories of the

plate tip computed for the baseline and the geometrically linear
modeling case. It is noted that the geometrically linear model
overestimates the deformation along the x axis. This is because in a
geometrically linear formulation, rotational strain is converted into
normal strain; consequently, the rotational strain is eliminated at the
expense of enhanced lengthening of the plate during its vibration. A
qualitative comparison between the flowfields and the plate
configuration at the instance of maximum deformation for the two
cases is shown in Fig. 4b, and it is noted that the vortex shedding for
the geometrically linear case is enhanced because of the larger
amplitude of the plate vibration. The figure also shows that for the
geometrically linear case, the downstream half of the plate becomes
thicker, and this spurious effect is also due to incorrect representation
of the rotation in the linear model. Thus, while the frequency of the
flapping, even for these cases with large deformation, seems to be
well predicted by the linear theory, the details of the deformation of
the plate and the motion of its tip are not correctly predicted by the
geometrically linear model.

IV. Conclusions

Wedemonstrate a versatile and robust FID solver, which couples a
sharp-interface IB method for the flow simulation with a finite-
element-based structural dynamics solver. The proposed high-
fidelity FID approach is designed to model relatively complex
configurations that involve large-scale FID and an implicit,
partitioned (or segregated) approach is implemented to ensure the
stability of the solver at low structure-fluid density ratios. A
comparison of our results with the corresponding results of TH for
the FIDof a thin elastic plate attached to a rigid cylinder indicates that
the current approach is able to model such configuration with
reasonable fidelity. We also assess the influence of the Reynolds
number, material properties, and geometric nonlinearity on the
plate’s deformation. This study provides additional data for
benchmarking of FID solvers and also shows clearly the limitations
of using geometrically linear deformation models for such cases.
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