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Abstract

An immersed boundary method for computing viscous, subsonic compressible flows with complex shaped stationary
immersed boundaries is presented. The method employs a ghost-cell technique for imposing the boundary conditions
on the immersed boundaries. The current approach leads to a sharp representation of the immersed boundaries, a property
that is especially useful for flow simulations at high Reynolds numbers. Another unique feature of the method is that it can
be applied on Cartesian as well as generalized body non-conformal curvilinear meshes. A mixed second-order central dif-
ference-QUICK scheme is used which allows a high degree of control over the numerical damping. A bilinear interpolation
scheme used in conjunction with the ghost-cell approach results in second-order global as well as local spatial accuracy.
The solver is parallelized for distributed memory platforms using domain decomposition and message passing interface
(MPI) and salient features of the parallel algorithm are presented. The accuracy, fidelity and efficiency of the solver are
examined by simulating flow past circular cylinders and airfoils and comparing against experimental data and other estab-
lished results. Finally, we present results from a simulation of wing-tip flow at a relatively high Reynolds number in order
to demonstrate the ability of the solver to model complex, non-canonical three-dimensional flows.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The conventional structured grid approach to simulating flows with complex immersed boundaries is to dis-
cretize the governing equations on a curvilinear grid that conforms to the boundaries. Since the boundary
itself becomes a grid line, the imposition of boundary conditions is greatly simplified and the solver can be
easily designed to maintain adequate accuracy and conservation properties. However, depending on the geo-
metrical complexity of the immersed boundary, grid generation and grid quality can be major issues and one
has to resort to multi-block or other such approaches in order to handle anything but the simplest geometries.
For complex boundaries, unstructured grid methods offer greater flexibility and are being widely used.
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However, due to the inapplicability of powerful line/block iterative and geometric multigrid techniques to
unstructured grids, these methods are in general slower on a per-grid-point basis than structured grid methods.
A different approach that retains most of the favorable properties of structured grids but also provides a high
level of flexibility in handling highly complex geometry is the so-called immersed boundary method (IBM).
This method, is usually employed in conjunction with a body non-conforming Cartesian grid. Thus, grid gen-
eration is greatly simplified and these methods can tackle flows with complex stationary or moving boundaries
with relative ease [1,2]. However, since the immersed boundary can cut through the underlying mesh in an
arbitrary manner, the main challenge is to treat the boundary in a way that does not adversely impact the
accuracy and conservation property of the underlying solver [7]. This is especially critical for viscous flows
where inadequate resolution of boundary layers, which form on the immersed boundaries, can reduce the
fidelity of the numerical solution.

Immersed boundary methods can broadly be categorized under two categories [2]; first are methods that
employ ‘‘continuous forcing’’ wherein a forcing term is added to the continuous Navier–Stokes equations
before they are discretized. The original method of Peskin [1] as well as other methods such as those of Gold-
stein et al. [3,4] and Saiki and Biringen [5] fall in this category. The second category consists of methods that
employ ‘‘discrete forcing’’ where the forcing is either explicitly or implicitly applied to the discretized Navier–
Stokes equations. These include methods of Udaykumar et al. [6], Ye et al. [7], Fadlun et al. [8], Balaras [9],
You et al. [10], Kim et al. [11], Gibou et al. [12], Almgren et al. [13] and others. The key advantage of the first
category of methods is that they are formulated relatively independent of the spatial discretization and can
therefore be implemented into an existing Navier–Stokes solver with relative ease. This is not the case with
the methods in the second category since the forcing scheme is very much dependent on the spatial discreti-
zation scheme. The advantage of the second category of methods however is that for certain formulations,
they allow for a ‘‘sharp’’ representation of the immersed boundary. In contrast, the first category of methods
produce a ‘‘diffuse’’ boundary in that the boundary condition on the immersed boundary is not precisely sat-
isfied at its actual location but within a localized region around the boundary.

One issue faced with Cartesian grid based immersed boundary methods is that the grid size can grow
much more rapidly with Reynolds number than a corresponding structured curvilinear body-conformal
mesh [2]. Generalization of the Cartesian grid approach to non-body-conformal curvilinear grids can
therefore significantly enhance the power of the Cartesian grid approach. On the other hand, by not
requiring the grid to conform precisely to the boundary, the grid generation requirements for complex
geometries can be eased significantly, and the use of a curvilinear mesh can allow more control over
the grid resolution in localized regions such as boundary layers. Consider for example the simulation
of the tip-flow of a wing. Such flows are typically simulated on relatively complex multi-block C–H type
of grids [14], which conform to the shape of the wing. However, the use of a body non-conformal cur-
vilinear grid can greatly simplify the grid topology and lead to a viable simulation approach. This has
been demonstrated by You et al. [10] who used an immersed boundary method in conjunction with an
incompressible flow solver to simulate high Reynolds number tip-clearance flow of an axial turbomachine.
Thus, for high Reynolds number flows, it is worthwhile to develop immersed boundary type methods that
can be employed in conjunction with curvilinear structured grids. Such methods allow us to provide local-
ized resolution to the boundary layers on the immersed boundary while still retaining the flexibility of a
body non-conformal grid.

In the current paper, we describe a finite-difference based method that allows us to simulate viscous, sub-
sonic compressible flows with complex immersed boundaries on Cartesian or curvilinear grids that do not con-
form to the immersed boundary. Although a number of different immersed boundary methods have been
developed for incompressible flows (see Mittal and Iaccarino [2] for an extensive list of many methods devel-
oped to date), there exists, to the author’s knowledge, no implementation of this approach for compressible,
viscous flows. As will become apparent in the following sections, the differences in the boundary conditions
between incompressible and compressible flows as well as the spatial discretization schemes used, requires
some additional considerations when developing an IBM method for compressible flows and these are
described in detail in the current paper. Furthermore, although the current solver is limited to subsonic flows,
inclusion of appropriate shock capturing schemes would in principle allow for the extension of the current
method to supersonic flows.
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It should be pointed out that finite-volume based Cartesian grid methods have been developed for inviscid
compressible flows by Collella and co-workers [15,16], and Legay et al. [17] have developed a method for sim-
ulating such flows with a body non-conformal finite-element method. A discussion of these methods, especially
[15] provides a useful context for the current work. First, all of the above methods have been designed for
inviscid flows whereas the current method is for viscous flows. This is significant not only because inclusion
of viscosity changes the character of the governing equations and consequently has implications for the tem-
poral and spatial discretization, but also because the presence of viscosity leads to the formation of boundary
layers as well as phenomenon such as transition and turbulence. Boundary layers are oftentimes the key fea-
tures in these flows and it is essential to ensure adequate spatial accuracy in these regions. Consequently we
have developed here an immersed boundary treatment which is globally and locally second-order accurate. In
contrast, the method of Collela [15] is globally second-order accurate but locally first-order accurate near the
immersed boundary. This is most likely adequate for inviscid flows which do not have boundary layers. Fur-
thermore, in the method of Collella and co-workers [15,16] one has to contend with the ‘‘small-cell’’ stability
problem. This problem is due to a combination of two factors: first, in their method, the cells intersected by the
immersed boundary can be arbitrarily small and second, the flow velocity in these cells can be quite high since
the flow is inviscid. This can lead to very small convective time-scales for these cells and consequently to severe
stability constraints, which have to be mitigated through appropriate methods [15]. In contrast, there is no
such issue in the current method since, as will be shown in a later section, the size of the cell is unchanged
by the presence of the immersed boundary and the interpolation scheme remains well behaved for all relative
positions and distances between the immersed boundary and adjoining nodes. An attractive feature of the
method of Collela et al. [15] is the use of adaptive mesh refinement (AMR) technique that allow for selective
mesh refinement in local regions.

The current method is based on the calculation of the variables on ‘‘ghost-cells’’ inside the body such that
the boundary conditions are satisfied precisely on the immersed boundary. This general approach has been
described by Majumdar et al. [31] who have also investigated various interpolation schemes within the con-
text of this method. The method also has some similarities to the ‘‘ghost-fluid method’’ of Gibou et al. [12]
and this is discussed in detail in Section 2.5 of the paper. There are no ad hoc constants introduced in the
current procedure and neither is any momentum forcing term employed in any of the fluid cells. Conse-
quently, the method results in a sharp representation of the immersed boundary. Here we focus on describing
the salient of the numerical methodology. The solver is validated by simulating two- and three-dimensional
flow past circular cylinders and comparing the computed results with established experiments and other
numerical simulations. We also verify the spatial and temporal accuracy of the solver through systematic
refinement studies. The IBM solver has been parallelized using MPI, and the domain decomposition meth-
odology and parallel performance of the solver are also discussed. Finally, in order to showcase the capability
of the method for handling general immersed boundaries, we present some computed results of flow past air-
foils and wings.
2. Numerical method

In this section, we begin by describing the governing equations, spatial and temporal discretization,
boundary conditions and the method used to solve the discretized equations. This is followed by a detailed
discussion of the method used for imposing the boundary condition on the immersed boundaries. Finally,
we provide a concise description of the method used to parallelize the solver for distributed memory
platforms.

2.1. Governing equations

The governing equations are unsteady, viscous, compressible Navier–Stokes equations written in terms of
conservative variables. The continuity, momentum and energy equations are as follows:
oq
ot
þ oðqukÞ

oxk
¼ 0 ð1Þ
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oðquiÞ
ot
þ oðquiuk þ pdik � rikÞ

oxk
¼ 0 ð2Þ

oEt

ot
þ o½ukðEt þ pÞ � rikui þ Qk�

oxk
¼ 0 ð3Þ
where the total energy per unit volume Et is related to the other variables through the equation-of-state for a
perfect gas as follows:
Et ¼
p

ðc� 1Þ þ
1

2
q ukukð Þ ð4Þ
Furthermore, the heat flux and stress tensor are given by
Qk ¼ �
c

ðc� 1ÞRePr
oT
oxk

ð5Þ
and
rik ¼
1

Re
oui

oxk
þ ouk

oxi

� �
� 2

3

1

Re
dik

ouj

oxj
ð6Þ
respectively, where Pr and Re are the Prandtl and Reynolds numbers, respectively.
The above set of equations are transformed to a 2D generalized curvilinear coordinate system ðy1; y2Þ by

applying chain-rule differentiation and the equations are written in the strong conservation law form [18].
Thus a generic convective term for the variable / of the form o

oxk
ðquk/Þ is transformed to 1

J
o

oyk
ðqU k/Þ where

J is the Jacobian of the transformation given by j oxi
oyk
j. Furthermore, Uk is a component of the contravariant

velocity which is equal to Uk ¼ ujb
jk where bjk ¼ Cofactor½oxj

oyk
�. Similarly, diffusive flux terms of the form

o
oxk
ðg o/

oxj
Þ where g is the diffusion coefficient, are transformed to
1

J
o

oyk

g
Bjk

J
o/
oyj

 !
: ð7Þ
where in the above expression, Bjk ¼ bmkbmj is the metric tensor.

2.2. Spatial discretization

The transformed equations are discretized in the computational domain with a non-staggered, cell-centered
arrangement as shown in Fig. 1. A second-order, central-difference scheme is used for the diffusion terms. In order
to minimize the effect of numerical dissipation, we would like to use the non-dissipative second-order central dif-
ference scheme for the convective term also. However, it has been found that such schemes are prone to accumu-
lation of aliasing errors [19] and especially within the context of compressible flows, some small level of numerical
dissipation is required in order to control the growth of these errors. In the past, various approaches to this have
been tried including the use of high-order upwind biased scheme [19,20] as well as flux limiters [21]. In the current
solver we employ a hybrid second-order central-difference-QUICK scheme [22] for the discretization of the con-
vective terms in conjunction with a flux-splitting method [23] which is expected to provide a high degree of control
over the numerical dissipation. In order to understand this discretization scheme consider for example the con-
vective flux term in the y1 direction of the form oF

oy1
which has to be evaluated at the cell center location denoted by P

in Fig. 1. Using a second-order central-difference scheme, the above derivative can be approximated as
oF
oy1

����
P

¼ 1

Dy1

ðF e � F wÞ ð8Þ
Following this, Fe and Fw, the fluxes on the east and west faces, respectively are estimated as follows:
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Fig. 1. Schematic shows the stencil is used in two-dimensional computational domain to discretize the equations.
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F e ¼ ð1� nÞ 1

2
ðF E þ F PÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Central difference

þ n
1

8
�F þW þ 6F þP þ 3F þE
� �

þ 1

8
3F �P þ 6F �E � F �EE

� �� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

QUICK

ð9Þ

F w ¼ ð1� nÞ 1
2
ðF W þ F PÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Central difference

þ n
1

8
�F þWW þ 6F þW þ 3F þP
� �

þ 1

8
3F �W þ 6F �P � F �E
� �� 	

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QUICK

ð10Þ
In the above equations F+ and F� denote the downstream and upstream split fluxes which are obtained
through a standard eigenvalue decomposition of the governing equations [23,24]. The key parameter in the
above discretization is the adjustable weight factor n, which allows us to adjust the relative contributions
of the central-difference and QUICK operators. Thus for n = 0 the scheme reverts to a pure second-order cen-
tral difference scheme and for n = 1.0 we obtain the pure QUICK scheme which is itself a second-order scheme
with a relatively low level of numerical dissipation [22]. Thus, by adjusting the weight factor, we get precise
control over the numerical dissipation and can therefore adjust it appropriately for a particular simulation.
There is no a priori method available for choosing the value of n for a given simulation. We essentially follow
the principle that a simulation be performed with the minimum possible value of n that leads to an acceptable
solution. For any given simulation, we start with a value of n equal to zero and successively increase it in incre-
ments of 0.03 after every thousand time-steps. Examination of the flow field at these stages allows us to deter-
mine a minimum value of n that leads to acceptable results. In all of the simulations presented in the current
paper, the final value of n is at most equal to 0.1 and this severely constrains the magnitude of the numerical
dissipation.

2.3. Temporal discretization

The diffusion terms can be broken up into diagonal terms (i.e. terms in Eq. (7) where j = k) which are anal-
ogous to terms that would appear on a Cartesian grid and cross-terms that appear due to grid non-orthogo-
nality. Cross-terms (i.e. terms in Eq. (7) where j 6¼ k) contain cross-derivatives as well as velocity components
in other directions. In the current approach, we employ an elliptic grid generator which produces meshes with
fairly limited skewness and therefore the cross-terms in diffusion are very small compared to the diagonal
terms. We treat the diagonal diffusion terms implicitly using a Crank–Nicolson scheme whereas all the other
terms including the convective terms and cross-terms in diffusion are treated explicitly using a low-storage,
third-order Runge–Kutta scheme [25,26]. The third-order Runge–Kutta scheme is attractive for time-accurate
high Reynolds numbers simulations since this scheme has a larger stability region than the second-order
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scheme and therefore allows larger time-steps. Equally important is the fact that the stability region of the
third-order Runge–Kutta scheme includes the imaginary axis [27] and it therefore guarantees conditional sta-
bility even for very high Reynolds numbers up to the limit of purely inviscid flows. The resulting solver has
overall second-order temporal accuracy and this will be demonstrated through a convergence study later in
the paper.

The key advantage of explicit treatment of the cross-terms and convective terms is that this completely
decouples the discretized momentum equations from each other thereby allowing us to solve them sequen-
tially. Furthermore, implicit treatment of just the diagonal diffusion terms virtually eliminates the viscous sta-
bility constraint. The local CFL number in the current simulations is therefore estimated as
CFL ¼ ju1j þ c
Dx1

þ ju2j þ c
Dx2

þ ju3j þ c
Dx3

� 	
Dt ð11Þ
where c is speed of sound. The use of the Runge–Kutta scheme allows us to run these simulations with a var-
iable time-step wherein the Dt in the simulations is chosen such that the maximum CFL number value in the
domain is equal to about 1.0. No stability problems are encountered while running simulations under this
scheme which indicates that the allowable time-step is not governed by the viscous time-scale thereby confirm-
ing that the viscous stability constraints have indeed been effectively eliminated by the temporal discretization
adopted here. It should be noted that a similar semi-implicit approach has also been used successfully for di-
rect and large-eddy simulation of incompressible turbulent flows on body-conformal curvilinear grids by Mit-
tal and Moin [20] and Choi et al. [28].

With the above temporal discretization, each transport equation in the set Eqs. (1)–(3) is solved sequentially
wherein we first solve the mass-conservation equation to get an updated density field. The inversion of the
mass-conservation equation is straightforward since this equation does not contain any diffusion terms. This
density is then used in the momentum equations to obtain updated momentum flux and velocity components
in each direction. Subsequently, the updated density and velocity fields are used in the energy equation to
update the temperature field. Finally, the pressure is updated by applying the equation-of-state. Thus, the
entire set of equations is solved in a loosely coupled manner. The momentum and energy equations resulting
from the discretization are solved by a Gauss–Siedel line successive over-relaxation (SOR) iterative method
[18] which requires the solution of tridiagonal systems. Due to the diagonally dominant nature of the resulting
discrete system of equations, the solver converges very rapidly and this results in a relatively fast solution
procedure.

2.4. Boundary conditions

In this section we describe the typical boundary conditions used in the current simulations. The solver is
currently designed for simulating external flows past immersed bodies and therefore we employ boundary con-
ditions that are appropriate for such flows. At the regions of the outer boundary designated as inflow, all
velocity components (and therefore the flow angle) as well as the temperature are specified, while the density
is extrapolated from the flow domain and pressure calculated by using the equation-of-state. At the outflow, a
non-reflecting Navier–Stokes characteristic boundary condition (NSCB) [29] is used which allows vortex
structures to exit the computational domain with minimal spurious reflections. If the flow being simulated
is unconfined then at the transverse boundaries we specify the free stream velocity and density, and temper-
ature is determined by assuming adiabatic condition at this boundary. Pressure is again determined using the
equation-of-state. Furthermore, lateral boundaries are located at a relatively large distance from the body in
order to minimize confinement effect.

For solid boundaries we employ the no-slip, no-penetration boundary conditions along with an adiabatic
boundary condition for temperature. Density is extrapolated from the interior of the flow onto the boundary
and the pressure is determined by applying the equation-of-state at the wall. These boundary conditions are
relatively easy to apply on a grid that conforms to the shape of the immersed body but the same is not true for
a body non-conformal grid. Implementing this boundary condition for an immersed body in a consistent, effi-
cient and accurate manner is the key issue that needs to be tackled and is the crux of any immersed boundary



534 R. Ghias et al. / Journal of Computational Physics 225 (2007) 528–553
method. In the following subsection we describe the method used to implement this boundary condition in the
current solver.

2.5. Inclusion of the immersed boundary

The basic idea in this method is to compute the flow variables for a layer of cells inside and adjacent to the
immersed boundary (the so called ‘‘ghost-cells’’) such that the boundary conditions on the immersed bound-
ary in the vicinity of the ghost-cell are satisfied. The first step in this procedure is to define the immersed
boundary and in the current solver we use closely spaced ‘‘body-markers’’ as shown in Fig. 2 to represent
the boundary. Linear segments are extended between neighboring body markers to complete the specification
of the immersed boundary. Next, a curvilinear body non-conformal grid is generated around this immersed
boundary and in many of the cases presented here, we employ an elliptic grid generator available in GridGen�

to create a smooth curvilinear grids. Following this, we identify ‘‘fluid cells’’ which are cells whose nodes lie
outside the body and ‘‘solid cells’’ which as the name suggests, are cells whose nodes lie inside the solid body.
There are a number of different ways of making this determination including ray-tracing [30] and we will not
go into the details of this process here.

The next step is to identify the ghost-cells and a simple rule for this identification is that any cell is a ghost-
cell if it lies within the computational stencil of a fluid cell. The stencil for the current spatial discretization
scheme is shown in Fig. 1 and involves cells that are as far away as two cells from the central node. This rel-
atively large stencil would lead to ghost-cells that, depending on the size and aspect-ratio, are embedded deep
inside the immersed body. Our experience has shown that this situation can create both accuracy as well as
convergence problems for the solver. Therefore we employ a simple remedy that alleviates this problem.
We first identify ‘‘boundary cells’’ which are cells in the fluid that have at least one neighbor in the solid.
For these cells we specify n = 0 which essentially forces the spatial discretization to revert to a pure cen-
tral-difference scheme and eliminates the outlying nodes in the computational stencil. This modification of
the discrete convective terms does not seem to have any deleterious effect on the solution since firstly the value
of n in the rest of the domain is relatively small (typically less than 0.1) and secondly, the momentum and
energy fluxes in these boundary cells are dominated by the diffusive components since they are located well
inside the boundary layer. With this strategy we can now identify ghost-cells as all cells that have a one imme-
diate neighbor in the fluid including even diagonal neighbors as shown in Fig. 2.

Following this, we need to devise a scheme that will allow us to compute the value of the variables at each
of these ghost-cell nodes such that the boundary condition on the immersed boundary in the vicinity of the
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Fig. 2. Schematic showing an immersed boundary on a generalized curvilinear mesh along with grid cells identified as fluid, ghost or solid
cells.
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Fig. 3. Schematic in the computational domain corresponding to Fig. 2. Indicated on the figure are three types of image-points that can be
encountered in the ghost-cell interpolation scheme.
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ghost-cell is satisfied. The procedure starts by determining a point on the immersed boundary that is closest to
the ghost-cell node in question. Obviously this point can be found by determining the normal ‘‘body-inter-
cept’’ from the ghost node onto the immersed boundary. This is the location where the boundary condition
will be satisfied and the key now is to determine a simple method for accomplishing this. It should be noted
that the boundary conditions that we need to apply are either Dirichlet type, i.e.
/BI ¼ U ð12Þ

where / is a generic variable and BI denotes body-intercept, or Neumann type of the form
ðn̂ � r/ÞBI ¼ W ð13Þ

In the current solver, we first start by extending the body-intercept out into the fluid to a distance equal to the
distance between the intercept point and the ghost-cell node. The tip of this segment is called the ‘‘image-
point’’ for convenience. The overall strategy now is to express the value of the variable at the image-point
in terms of the surrounding nodal values and then use this value and the boundary condition to extrapolate
along the normal and obtain a value for the ghost-cell node. In conventional immersed boundary methods of
this type that are implemented on Cartesian grids such as those of Majumdar et al. [31] and Bozkurttas et al.
[32], this procedure is relatively straightforward. However, the use of a curvilinear grid here leads to some
complexities that have to be addressed. In particular, the interpolation procedure can either be implemented
in real space or in computational space. We have found that implementation in computational space is espe-
cially convenient and allows us to maintain the expected accuracy. The essential features of this approach are
now explained. The discussion is based on Fig. 3, which is a representation in the computational domain of the
grid schematic in Fig. 2.

The interpolation procedure is initiated by determining the coordinates of the image-point in computa-
tional space. For this we identify the grid-point closest to the image-point. Denoting the coordinates of this
nearest grid point in the real and computational domains as ðX 1;X 2Þ and ðY 1; Y 2Þ, respectively, the coordi-
nates of the image-point in the computational domain ðy1IP

; y2IP
Þ are given by
y1IP

y2IP

( )
¼

Y 1

Y 2


 �
þ 1

J
b11 b12

b21 b22

" #
x1IP
� X 1

x2IP
� X 2


 �
ð14Þ
where ðx1IP
; x2IP
Þ are the coordinates of the image-point in real space and the matrix on the right-hand side

contains the transformations metrics evaluated at ðY 1; Y 2Þ. The above essentially amounts to a second-order
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accurate interpolation procedure and a similar procedure can be used to obtain the coordinates of the body-
intercept point in the computational domain.

Following this, the value of the variable at the image-point is expressed in computational domain in terms
of a bi-linear interpolant of the form:
/ ¼ C1y1IP
y2IP
þ C2y1IP

þ C3y2IP
þ C4 ð15Þ
In the above function, the four unknown coefficients Ci can be expressed or determined in terms of the values
of the variables at the four nodes surrounding the image-point. At this stage, three different situations shown
in Fig. 3 can be encountered for a given image-point and these have to be handled in a well-posed and con-
sistent manner. The simplest situation is when all four nodes surrounding the image-point are in the fluid. Of
the three image-points identified in the figure, the middle image-point corresponds to this first situation. In this
case, nothing special is needed and we use Eq. (15) to express the value at the image-point in terms of the val-
ues at these four surrounding nodes. Thus we can write the following equation:
f/g ¼ ½V �fCg ð16Þ

where
f/g ¼

/1

/2

/3

/4

8>>><>>>:
9>>>=>>>; ð17Þ
are the values of the variable at the four surrounding points and
V ¼

y1y2j1 y1j1 y2j1 1

y1y2j2 y1j2 y2j2 1

y1y2j3 y1j3 y2j3 1

y1y2j4 y1j4 y2j4 1

26664
37775 ð18Þ
is the Vandermonde matrix corresponding to the bilinear interpolation scheme. The subscripts in the above
equation are identifiers of the four surrounding nodes. Furthermore,
C ¼

C1

C2

C3

C4

8>>><>>>:
9>>>=>>>; ð19Þ
is the matrix containing the four unknown constants. These constants can be determined by inverting Eq. (16)
and finally by using Eq. (15), the value at the image-point can be expressed as
/IP ¼
X4

i¼1

ai/i ð20Þ
In the above equation, as depend on Cs as well as the coordinates of the image-point. Since all of these depend
only on the geometry of the immersed boundary and the grid, the as can be determined as soon as the im-
mersed boundary and grid are specified.

The second situation is more complicated and occurs when one of the four surrounding nodes is the ghost-
node itself. This situation is the one on the right in Fig. 3. Clearly use of the ghost-node value in the interpo-
lation scheme itself would not be well-posed. Instead we use the boundary conditions at the body-intercept
along with the nodal values at the three surrounding nodes to close the interpolation. In the case where we
are applying a Dirichlet boundary condition at the body-intercept point, the row in Eq. (16) which would have
corresponded to the ghost-node is simply replaced by the corresponding values at the body-intercept point. In
the case where a Neumann boundary condition Eq. (13) is being applied, we first transform the boundary con-
dition to the computational domain as follows
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bN � ry/
� 

BI
¼ W ð21Þ
where $y is the gradient operator in computational space and Ni ¼ 1
J njb

ij is the body-normal transformed to
computational space. Within the context of the current bilinear interpolation scheme, the above boundary
condition can be expressed as
N 1 C1y2BI
þ C2

� �
þ N 2 C1y1BI

þ C3

� �
¼ W ð22Þ
and the corresponding Vandermonde matrix for this case then becomes
V ¼

y1y2j1 y1j1 y2j1 1

y1y2j2 y1j2 y2j2 1

y1y2j3 y1j3 y2j3 1

N 1y2BI
þ N 2y1BI

N 1 N 2 0

26664
37775 ð23Þ
where we assume for the sake of discussion that it is the fourth node in the stencil that corresponds to the
ghost-node. Note also that the {/} matrix for this case would be modified to
f/g ¼

/1

/2

/3

W

8>>><>>>:
9>>>=>>>; ð24Þ
Following this the procedure for obtaining the corresponding discrete representation for /IP would be the
same as described for the first case and would lead to an expression similar to Eq. (20).

The third and final situation is where the interpolation stencil for an image-point contains ghost-nodes
other than those associated with the current image-point. This situation is also depicted in Fig. 3 on the left.
In this particular situation we find that the use of the value of the variable at this other ghost-node is well-
posed and consistent with the overall solution procedure and therefore no special treatment is needed for this
node. It should also be pointed out that since the values of the fluid as well as the ghost-nodes are updated
simultaneously during the SOR iterative process, there is no issue regarding the initialization of the ghost-node
values or the order in which they are solved for.

With the value at the image-point expressed in terms of the surrounding nodes and boundary values, we can
now evaluate the variable value at the ghost node. For this we employ linear interpolation along the normal
and obtain the value at the ghost-cell node as
/GC ¼ f/IP þ C ð25Þ
For Dirichlet boundary condition C ¼ 2U and f ¼ �1. For the Neumann boundary condition C ¼ W � Dl and
f ¼ 1 where Dl is the length of the normal segment in computational domain. It should be noted that the above
is a second-order accurate interpolation scheme which is consistent with the overall accuracy of the flow sol-
ver. By combining Eq. (25) with Eq. (20) the final expression for the ghost-cell node can be written as
/GC ¼ f
X4

i¼1

ai/i þ C ð26Þ
Thus the value at the ghost-cell node is written completely in terms of the nodal values of the nodes surround-
ing the corresponding image-point and the boundary condition at the corresponding body-intercept point.
This equation can be solved in a coupled manner with the discretized fluid equations for the fluid-nodes
and the trivial / = 0 equation for the solid-nodes. As noted before, the entire system is solved in a loosely
coupled manner using a Gauss–Siedel line-SOR iterative method and converges quite rapidly.

It is useful to compare and contrast the current approach with the ‘‘ghost-fluid method’’ of Fedkiw and
coworkers [35,12], since this method also employs ghost-nodes in order to close the discretized system of equa-
tions. The work of Gibou et al. [12] is particularly relevant here since there the authors introduced a second-
order accurate version of their method. In this method, ghost-nodes are identified in a manner similar to the
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current work, however, the interpolation scheme adopted in order to determine the value at the ghost-nodes is
quite different. In this earlier work, values at the ghost-nodes are computed through one-dimensional extrap-
olations schemes along the Cartesian grid lines. Thus considering for example the middle ghost-cell shown in
Fig. 3, the linear interpolation scheme adopted by Gibou et al. [12] would employ the nodal value to the north
of the ghost-cell as well as the boundary value on the interface at the location where the immersed boundary
cuts the vertical line joining the ghost-cell and the north-cell. Thus for a Dirichlet boundary condition, the
method of Gibou et al. [12] would construct the following extrapolation scheme for the ghost-cell:
/GC ¼
/BI þ ðh� 1Þ/N

h
ð27Þ
where subscript BI corresponds here to the point where the immersed boundary intersects the vertical line be-
tween the ghost-cell and north node, and subscript N corresponds to the node to the north of the ghost-cell.
Furthermore, h is the weight-factor of the linear interpolation scheme and would be given here by
h ¼ ðy2N � y2BIÞ=ðy2N � y2GCÞ. Gibou et al. [12] point out that the above interpolation scheme is poorly be-
haved for small h and for such situations, they resort to imposing /N ¼ /BI which is locally first-order accu-
rate. In contrast, in the current interpolation scheme, we ensure that the body-intercept is always exactly
midway between the ghost and image-point and this guarantees that the interpolation scheme in Eq. (25) re-
mains well behaved even in the limit of vanishing probe length. In fact, in this limiting case, Eqs. (20) and (25)
automatically result in /IP and /GC both approaching /BI in a smooth manner for a Dirichlet boundary con-
dition whereas for a Neumann boundary condition, /GC smoothly approaches /IP. Nothing special therefore
needs to be done to handle such cases in the current approach. It should also be pointed out that Neumann
boundary conditions are quite easy to implement in the current method since the interpolation is performed
normal to the immersed boundary. In the ghost-fluid method, the interpolation is along the principle direction
which would tend to complicate the imposition of Neumann boundary conditions. An advantage of the ghost-
fluid method is that at least for the linear interpolation in Eq. (27), the stencil for the ghost-cell is limited at
most to the usual five-point stencil (in 2D) for the Laplacian operator. In contrast in the current method, the
stencil for the ghost-cell can contain points outside the usual five-point stencil. However, this has no significant
deleterious effect on the convergence of the momentum equation since these equations are diagonally
dominant.

It should also be noted that the current method does not encounter any ‘‘small-cell’’ stability problems [15].
The effective size of a cell remains unaltered despite being cut by the immersed boundary and is not dependent
in any way on the size of the intercept used for the interpolation or the relative distance between the points
used in the interpolation scheme. On the other hand, the current method does not enforce strict conservation
of fluxes for the cells that are cut by the immersed boundary, a property that is built into the embedded bound-
ary methodology of [15]. It seems that all finite-difference based immersed/embedded boundary methods such
as the current one as well as others [8,9,12], have to choose between higher (second in most cases) local accu-
racy or strict discrete conservation. In the method of [15], local accuracy is reduced to first-order while main-
taining strict discrete conservation and this might be especially appropriate for high Mach number, inviscid
flows where the flow is dominated by strong shocks and discontinuities, and resolution of boundary layers
is not important. In the current study, we are primarily interested in subsonic, viscous flows at moderate to
high Reynolds numbers where local accuracy in the vicinity of the immersed boundary is extremely important.
As our results will confirm, the current method provides stable and accurate prediction of the global as well as
local characteristics for a variety of such flows. It seems that only with a finite-volume based immersed-boundary
method such as that of [7] which employs ‘‘cut-cells’’, is it possible to simultaneously maintain high local accu-
racy and strict discrete conservation. Note also that similar to the current method, the method of [7] does not
suffer from the ‘‘small-cell’’ stability problem. However, extension of the cut-cell methodology to general 3D
problems remains a highly challenging proposition [2].

2.6. Parallelization on distributed memory multiprocessing systems

The solver which was written in FORTRAN-90, has been modified so that it can run efficiently on distrib-
uted memory as well as shared memory multiprocessing systems. In the current solver we employed message
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passing interface (MPI) in conjunction with a domain-decomposition strategy in order to implement the par-
allelization. As will be shown, the simple, single-block structured curvilinear grid makes the parallelization of
the solver relatively straightforward and demonstrates yet another advantage of the immersed boundary
approach.

Most of the CPU time in the numerical solution is consumed by the Gauss–Siedel line-SOR solution pro-
cedure that is used for the solution of the discretized mass, momentum and energy equations. Therefore, the
parallelization strategy has to be designed around this module. The line-SOR scheme involves successive tri-
diagonal matrix solutions along the y1 direction followed by the y2 direction and in the current solver we
employ the well known Thomas algorithm [33] for this purpose.

In the current solver we employ a one-dimensional domain decomposition wherein the streamwise (y1)
direction is divided into M domains, where M is the number of processors. The streamwise direction is chosen
for decomposition since in most of the current applications, the number of grid points along the streamwise
direction is significantly larger than the other directions. It should be pointed out that although the current
decomposition is one-dimensional, it can in principle be extended to multi-dimensional domain decomposition
as well.

Consider now the solution of tri-diagonal systems along the streamwise (y1) direction. Due to the
domain decomposition along this direction, the tridiagonal matrix solution procedure has to be modified.
Here we adopt a simple strategy of using an explicit update at the internal boundaries of the domain. The
strategy is best demonstrated by considering an example. Consider a tri-diagonal matrix system given
below:
a1 b1 0 0 0 0 � � � 0

c2 a2 b2 0 0 0 � � � 0

0 c3 a3 b3 0 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � 0 cp ap bp 0 � � � 0

� � � 0 0 cpþ1 apþ1 bpþ1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � 0 0 0 0 0 cN1
aN1

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

/k
1

/k
2

/k
3

..

.

/k
p

/k
pþ1

..

.

/k
N1

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

¼

r1

r2

r3

..

.

rp

rpþ1

..

.

rN1

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð28Þ
where k corresponds to the iteration index, N1 is the number of grid points in the x1 direction and r contains
the right-hand side vector. Let us assume that the first domain contains ‘p’ number of grid points. Then, as per
the current procedure adopted here, we obtain an approximate solution /0 of this tri-diagonal system by solv-
ing the following system of equations:
a1 b1 0 0 0 0 � � � 0

c2 a2 b2 0 0 0 � � � 0

0 c3 a3 b3 0 0 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � 0 cp ap 0 0 � � � 0

� � � 0 0 0 apþ1 bpþ1 � � � 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

� � � 0 0 0 0 0 cN1
aN1

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA

/0k1
/0k2
/0k3

..

.

/0kp

/0kpþ1

..

.

/0kN1

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

¼

r1

r2

r3

..

.

rp � bp/
0k�1
pþ1

rpþ1 � cpþ1/
0k�1
p

..

.

rN1

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð29Þ
where k � 1 corresponds to the previous iteration. The above procedure temporarily decouples the solution in
one domain from the solution in the adjacent domains and the solution procedure can therefore proceed inde-
pendently in each domain.
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At this point there are two strategies that can be adopted: first, one could perform sub-iterations for a given
tridiagonal system and exchange information at the boundaries of the domains after each sub-iteration until
the exact solution of Eq. (28) is obtained to certain accuracy. Subsequently, we would move to the next line-
solve in the sequence. The second strategy would be to proceed to the next line-solve in the sequence
immediately after obtaining the approximate solution / 0. Clearly the first strategy requires more CPU time
per line-solve whereas the second strategy introduces additional error into the iterative solution and could
potentially require a larger number of iterations for convergence. The strategy that leads to the lower overall
CPU time is the one that should be adopted.

In order to better understand the CPU costs of each strategy, consider the extreme situation where each
domain has only one point, i.e. M is equal to N1. In this case, the second strategy effectively reduces the
Gauss–Siedel line-SOR to a Jacobi point-SOR iteration. Now, theoretical estimates of asymptotic conver-
gence rates indicate that the line Gauss–Siedel line method converges approximately four times faster than
point-Jacobi [34]. This implies that even in this limiting case, the first strategy would be competitive with
the second only if it took less than about four sub-iterations to solve the tri-diagonal system. However, in this
limiting case, the first strategy also implies the solution of the tri-diagonal system using a point Jacobi iterative
method. Since this is a slowly converging method, it is expected to take considerably larger number of itera-
tions to converge. Thus even in this limiting case, the second strategy is expected to be more efficient than the
first one. In realistic situations where N 1 � M we would expect the second strategy to be even more effective
than the first. Consequently, we employ the second strategy in our domain decomposition algorithm.

A key aspect of any distributed memory parallelization algorithm based on domain decomposition is the
use of overlap regions at the boundaries of the domains. The size of the overlap region is usually determined
by the size of the computational stencil used in the spatial discretization scheme. However, for the current sol-
ver, in addition to the discretization scheme which is shown in Fig. 1 we also need to consider the extent of the
interpolation stencil for the ghost-cells in determining the size of the overlap region. For non-isotropic grids,
nonuniform grids such as the ones used in the current study, the size of this interpolation stencil can vary over
a large range. This is yet another feature that differentiates the current immersed boundary method from
methods developed for Cartesian grids. In the current solver, we have allowed for a variable size overlap
region and the overlap region for a given simulation is determined as a preprocessing step. For all the simu-
lations presented in the current study, the overlap region is found to vary from two to five cells. Results on the
parallel performance of the solver are presented in the following section.

3. Results and discussion

In order to assess the accuracy and validate our methodology, we simulate two- and three-dimensional flow
past circular cylinders over a wide range of Reynolds numbers. The method is then applied to two-dimensional
flow around an airfoil and three-dimensional wing-tip flow to demonstrate the ability and performance of the
method for simulating flows with complex geometries.

3.1. Spatial and temporal accuracy study

In this section we describe the results of grid and time-step convergence studies carried out with the current
solver. In addition to the second-order accurate spatial discretization used for the regular fluid cells, care has
been taken to maintain a second-order accurate treatment in the imposition of the boundary condition on the
immersed boundary. Thus, we expect the solver to exhibit second-order global and local accuracy. The sec-
ond-order accuracy for the cells in the vicinity of the immersed boundary is especially important for the res-
olution of thin boundary layers that develop on the immersed boundary for moderate to high Reynolds
number flows. Here we examine the spatial accuracy of the solver for flow past a circular cylinder at
Red ¼ 45 and M ¼ 0:2. For this test, we employ a uniform Cartesian grid on a domain size of 4d � 4d. Since
an exact solution for this case does not exist, we use the solution computed on a highly resolved 1260 · 1260
mesh as a baseline for computing the numerical error. A uniform time-step of 1� 10�4d=U1 is used and we
integrate the solution for 1� 104 time-steps. The resulting solution is denoted by /1260�1260 and is shown in
Fig. 4. The same flow is then computed on a 420 · 420, a 252 · 252, a 180 · 180, and a 84 · 84 grid with



Fig. 4. Streamlines and spanwise vorticity contours for computed flow past a circular cylinder at Red ¼ 45.
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the same time-step size. The residual criterion for the SOR iteration is kept below 10�6 in order to ensure that
iterative convergence does not contaminate the spatial errors. The L2 and L1 norms of the error for a solution
on a N · N grid can now be computed as
Fig. 5.
grid si
e2 ¼
1

N 2

XN

i¼1

XN

j¼1

/N�N
i;j � /1260�1260

i;j

� 2
" #1=2

ð30Þ
and
e1 ¼ max /N�N
i;j � /1260�1260

i;j

��� ���; i; j ¼ 1;N ð31Þ
respectively. It should be pointed out that the L2 error-norm is a good measure of the global error whereas the
L1 error-norm effectively captures the local error around the immersed boundary.

Fig. 5 shows the variation of the L2 and L1 error norms in the two velocity components plotted versus 1/N
where N is the number of grid points in each direction. Also included in the log–log plot is a line denoting
second-order convergence. Both error norms show nearly second-order convergence thereby confirming that
the current immersed boundary solver is globally and locally second-order accurate.
1/N

-3 -2 -1

-4

-3

-2

-1

10

10

10

10

10
10 10 10

0

Slope=2

L2 and L1 norms of the error for the streamwise velocity (u1) and transverse velocity (u2) components versus the computational
ze. j: L2 � u1, s: L2 � u2, 4: L1 � u1, }: L1 � u2.



542 R. Ghias et al. / Journal of Computational Physics 225 (2007) 528–553
We have used this same configuration to establish the temporal accuracy of the solver. Note that we are
employing a semi-implicit temporal discretization scheme which combines a second-order Crank–Nicolson
scheme with a third-order Runge–Kutta scheme. The overall temporal accuracy of the solver is therefore
expected to be second-order. We confirm this by performing a time-step convergence study. Flow past the cir-
cular cylinder was simulated on a fixed grid with a very small time-step of 1� 10�4d=U1 for 320 time-steps
and this was designated as the baseline solution for computing the temporal error. Subsequently the flow was
computed to the same time-instant on the same grid in four additional simulations that employed larger time-
steps ranging from 4� 10�4 to 3:2� 10�3. The L2 norm of the error in the solution was then computed with
respect to the baseline solution and this is plotted in Fig. 6. The plot shows a slope that very nearly matches
the second-order line thereby confirming the expected temporal accuracy of the solver.

3.2. Parallel performance

The parallel code has been successfully tested on our in-house parallel computers. The test case chosen cor-
responds to a 3D simulation of flow past a circular cylinder with a 548� 385� 10 grid. The first test was car-
ried out on a 24-CPU Beowulf cluster which consists of 12, dual 2.8 GHz Pentium-4 processors and employs a
gigabit ethernet between the nodes. Each dual processor node has four Gigabytes of core memory. The com-
puter employs RedHat 9.2 Linux operating system and PGI Fortran compiler. It should be pointed out that
the gigabit ethernet interconnect used here has a documented 80 MBps bandwidth and 170 ms latency. In con-
trast, Myrinet, which is a popular interconnect used in high performance Beowulf clusters, has a 225 MBps
bandwidth and 7 ms latency. Thus the network employed here has almost a three times lower bandwidth
and 24 times higher latency than Myrinet. This difference in network performance needs to be kept in mind
while assessing the parallel performance of the solver on this platform. It should also be noted that the grid
chosen for the parallel speedup study is practically the largest grid on which a simulation can be performed on
a single node of this computer. Larger grids exhaust the available core memory of the node leading to exces-
sive disk swapping and such cases do not provide a realistic assessment of the parallel performance.

Simulations have been performed on up to 22 processors and the parallel speedup of the solver estimated by
comparing the execution time for each simulation with the corresponding simulation on one processor. Fig. 7
shows the parallel speedup obtained from these tests. It is noted that the solver exhibits reasonably good
speedup over the range of processors tested with a speedup factor of about 64% obtained for 22 processors.
Also worth noting is the fact that that at least up to 22 processors, the speedup curve does not seem to show an
asymptotic limiting behavior which indicates that even for the relatively small mesh chosen, the parallel per-
formance would be maintained even on larger number of processors.
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The second set of tests have been carried out on a 24-processor HP Alphaserver GS320 computer which is a
ccNUMA (cache-coherent Non-Uniform Memory Access) platform with 731 MHz Alpha EV67 processors
and 128 gigabytes of total memory. The computer is partitioned into a 16 and an 8 CPU partition and each
partition essentially shares memory. Communication across the partition occurs over a high bandwidth
switch. The computer uses the TRU64 UNIX operating system and COMPAQ FORTRAN-90 compiler.
Since this is a shared memory platform we expect better speedup performance on this platform and as can
be seen in Fig. 7, this is indeed found to be the case. The plot shows that up to about 16-processors we
get almost perfect speedup. Beyond that, there is some drop in the parallel performance but despite that a rea-
sonably good speedup factor of about 82% is obtained on 22 processors. The nearly perfect speedup up to 16
processor also provides indirect proof that the domain decomposition strategy and the associated modifica-
tions in the line-SOR iterative procedure do not increase the computational cost of the solution process to
any appreciable extent.

The final set of tests have been carried out on a 4-CPU, 844 MHz AMD Opteron cluster which has a
64-bit operating system. The four CPUs share a total of 16 gigabytes of memory and therefore this is also a
shared-memory system. The computer uses the SuSe Linux operating system and a 64-bit PGI Fortran-90
compiler. The current test case is run on one, two and four processors and the results shown in Fig. 7
again indicate an almost perfect speedup. This is inline with the speedup observed on the shared memory
HP Alphaserver GS320 system and confirms the effectiveness of the current domain decomposition
strategy.

3.3. Circular cylinder flow simulations

The flow past a circular cylinder depends on the Reynolds number which is defined as Red ¼ U1d=m where
d is the cylinder diameter, U1 is the free stream velocity and m is the kinematic viscosity. At Reynolds numbers
up to around Red ¼ 47, the flow is steady and symmetrical about the wake-centerline. At Reynolds numbers
higher than this value, the flow become unstable to perturbations and leads to periodic shedding of vortices
and the formation of the Karman vortex street. However, the flow remains two-dimensional up to a Reynolds
number of about 180 [36]. Beyond this the flow becomes susceptible to a secondary instability mechanism that
leads to intrinsic three-dimensionality in the wake [37,36]. Due to extensive numerical and experimental inves-
tigations of this flow, it is an excellent case for validating a numerical solver. We have performed 2D and 3D
simulations for Reynolds numbers ranging from 20 to 3900 and compared the computed results with available
numerical and experimental results. The free stream Mach number for all these simulations is kept at a rela-
tively low value of 0.2. However, one case at Red ¼ 80 has been performed with free stream Mach number of
0.4 and this is intended to demonstrate the performance of the solver for a case where compressibility effects
are not negligible.
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A curvilinear grid with 459 · 261 grid points shown in Fig. 8 was employed for all cases except the
Red ¼ 3900 for which a 549 · 385 curvilinear grid of similar topology was used. As can been seen in Fig. 8,
the grid around the cylinder although not exactly body-conformal, does provide enhanced resolution to the
boundary layer on the cylinder surface. Fig. 9 shows computed spanwise vorticity contour plots over a wide
range of Reynolds numbers. As expected, all plots show distinct vortices associated with the Karman vortex
street which extend up to 10 diameters downstream and beyond in the wake. It should further be noted that
for simulations up to Red ¼ 590 we employed a weight factor (n) of 0.05 whereas for the higher Reynolds num-
bers, a value of 0.1 was used. Attention needs to be drawn to the absence of excessive dissipation or dispersion
errors in these vorticity contour plots which is indicative of the favorable resolution characteristics of the cur-
rent hybrid spatial discretization scheme.
Fig. 8. The 459 · 261 curvilinear grid used for the circular cylinder simulations. Inset shows a close-up view of the grid around the
cylinder.

Fig. 9. Instantaneous vorticity contour plots in the wake of a circular cylinder at (a) Red ¼ 100, (b) Red ¼ 300, (c) Red ¼ 590,
(d) Red ¼ 1000 and (e) Red ¼ 3900.
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Next we examine the computed surface pressure, drag and lift coefficients and compare them to established
data. These quantities are based on the evaluation of surface pressure and/or shear stress and the procedure
used to compute these surface quantities needs some explanation. In the current solver, we identify four nodes
surrounding a body-marker (see Fig. 3) and then use a bilinear interpolation to estimate the pressure on this
body marker. Shear stress at the body-intercept points (sBI) is also computed in a straightforward manner by
using the values at body-intercept point and corresponding image-points via
Fig. 10
compu
Balach
sBI �
l

DL
~uIP �~uBI½ � � t̂BI ð32Þ
where~u is the flow velocity, l is the fluid viscosity, DL is the length of the normal segment in real space and t̂ is
the surface tangent at the body-intercept point. Fig. 10 shows the mean pressure coefficient on the surface of
the cylinder the instantaneous value of which at a point is defined as Cp ¼ ðp � p1Þ=ð12 q1U 2

1Þ. The key point
to note is the smoothness of the surface pressure over the entire range of Reynolds numbers which indicates
that the flow and pressure field in the vicinity of the immersed boundary are well resolved and do not suffer
from any spurious effects. The computed mean based pressure coefficient (Cpb) is compared to the well estab-
lished experimental data of Williamson and Roshko [38]. Note that for Reynolds number greater than about
180, the flow past a circular cylinder is intrinsically three-dimensional and therefore 2D simulations at these
Reynolds are not expected to produce flow fields and pressure distributions that would match with corre-
sponding experiments. As shown by Mittal and Balachandar [37], base suction pressure and drag are typically
over predicted in 2D simulations. Thus the current 2D simulation results match the experimental data of Wil-
liamson and Roshko [38] quite well up to about Red ¼ 180 although beyond that there is a significant devia-
tion between the two data sets. However, the current data does match well with the results of other 2D
simulations in the entire range [19,37,39] thereby validating the accuracy of the current 2D simulations.

Next, we compare computed lift and drag with established results. The drag and lift coefficients are defined
as CD ¼ F D=

1
2
q1U 2

1d
� �

and CL ¼ F L=
1
2
q1U 2

1d
� �

. In these expressions, FD and FL are the drag and lift forces,
respectively that are computed by integrating the pressure and shear stress on the cylinder surface. In Fig. 11 is
plotted the variation of drag and lift coefficients with time for Red ¼ 300, and 3900 and the plots show a quasi-
periodic variation in these quantities which is inline with the simulations of Mittal and Balachandar [20] and
Beaudan [19]. Past simulations of compressible bluff-body wake flows have shown that spurious reflections
from the outflow boundary can lead to the appearance of distinct and strong low-frequencies in the wake
[41] even at Reynolds numbers as low as 80. No such low frequency phenomenon is observed in the current
simulations even for relatively high Reynolds numbers and this is indicative of the effectiveness of the non-
reflective boundary condition used in the current simulations.
. (a) Pressure coefficient distribution on the surface of the circular cylinder at different Reynolds numbers. (b) Comparison of
ted base pressure coefficients with other data; r: present work, X: Willamson and Roshko [38], h: Henderson [39], n: Mittal and
andar [37], ,: Beaudan [19], /: Norberg [40].



Fig. 11. Temporal variation of drag and lift coefficients: (a) Red ¼ 300 and (b) Red ¼ 3900.
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The pressure and shear components of the drag force on the cylinder has been time-averaged over a number
of shedding cycles for all the cases simulated here and Fig. 12(a) shows a comparison of these two components
with the 2D simulations of Henderson [39] which were carried out using a spectral element method. It can be
seen that over the entire range of Reynolds numbers simulated here, the results are in excellent agreement with
the results of Henderson. This provides further verification of the accuracy and fidelity of the solver. Finally,
the lift variation is used to estimate the vortex shedding Strouhal number and this is compared to established
experimental and numerical data in Fig. 12(b). Here too, the match up to a Reynolds number of about 200 is
quite good. Beyond that the 2D simulations deviate from the experimental results which are intrinsically three-
dimensional. However the match at Red ¼ 3900 with the 2D simulations of Beaudan [19] is reasonably good.

All of the previous cases have been simulated at low Mach numbers corresponding to essentially incom-
pressible flow. This was done deliberately since all experimental and most numerical data available for com-
parison is in the incompressible regime. However, in order to demonstrate that the current solver can
adequately handle compressibility effects we have performed one circular cylinder simulation at a higher free-
stream Mach number of 0.4. The Reynolds number for this simulation is 80. Fig. 13 shows the instantaneous
Mach number and normalized temperature contours computed for this flow. As the flow goes over the cylin-
der it accelerates and consequently the local Mach number goes up to about 0.55 which is clearly in the
Fig. 12. Comparison of computed 2D results with established experimental and numerical data for 20 6 Red 6 3900: (a) pressure and
viscous drag coefficients versus Reynolds number for two-dimensional flow past a circular cylinder. r: present results, s: Henderson [39].
(b) Strouhal number versus Reynolds number. r: present work, ·: Braza [42], h: Willamson [43], n: Mittal and Balachandar [37],
,: Beaudan [19], +: Roshko [44]. Inset figure shows the details of the curve for the range 100 6 Red 6 300.



Fig. 13. (a) Instantaneous iso-Mach contour lines and (b) instantaneous iso-temperature lines at Red ¼ 80 and M1 ¼ 0:4.
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compressible regime. Also as indicated in the figure, temperature variations in the flow are limited to about
10% of the freestream value. It should be noted that the solver in its current form is not designed for super-
sonic compressible flow. However, it could in principle be modified for such flows by including appropriate
shock capturing schemes since the immersed boundary treatment employed here does not preclude the use
of such schemes.

The final cylinder simulation presented here is a 3D simulation at Red ¼ 300 which has been carried out on
a 143 · 97 · 49 Cartesian grid. The spanwise domain size was chosen to be 3d for this simulation and periodic
boundary conditions employed in the span. The 3D simulation was initiated by using a corresponding 2D flow
field and introducing a small amplitude spanwise perturbation in the flow field for a very short time. The 3D
perturbations evolved naturally until a saturated three-dimensional state was reached. Fig. 14 shows iso-
surfaces of transverse vorticity magnitude in the wake at one time instant and flow structures similar to those
in the DNS by Mittal and Balachandar [45] are observed. As was mentioned before, flow at Red ¼ 300 is
intrinsically three-dimensional, and the results from 3D simulation are expected to match the corresponding
experimental values. In Table 1, the mean drag coefficient, vortex shedding Strouhal number and base pressure
coefficient are compared with other numerical and experimental results and the match is found to be reason-
ably good.
Fig. 14. Isosurface of transverse vorticity magnitude at one time instant for Red ¼ 300 circular cylinder 3D simulation with periodic
boundary conditions in the span.



Table 1
Comparison of computed CD, St, and Cpb for 3D cylinder flow at Red ¼ 300 with available numerical and experimental data

Study CD St Cpb

Current 3D simulation 1.23 0.21 �1.00
Simulation [45] 1.27 0.21 �1.04
Experiment [46] 1.22 0.20 �0.96
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3.4. Airfoil and wing-tip flow simulations

One of the primary applications to be targeted with this solver is wing and rotor-tip flows. It is therefore
important to assess the performance of this method for airfoil-type geometries. Simulations of such flows also
allows us to demonstrate the capabilities of the solver for non-canonical geometries. We have performed 2D
simulations at different angles-of-attack over the Eppler-211 airfoil at a chord-based Reynolds number (Rec)
of 60,000 and freestream Mach number of 0.2. Numerical simulations of a similar flow configuration have
been carried out previously by Monttinen et al. [47] and experimental data of Althaus [48] is also available
for comparison. Comparison with these data sets is used to evaluate the accuracy of the current simulations.
It is useful to point out that the simulations of Mottinen et al. [47] were carried out using conventional, body-
conformal structured grids.

A curvilinear 389 · 145 grid is used in the current simulations and we employ a weight factor (n) of 0.05.
A relatively large domain size of 7c� 6c, where c is the chord length of the airfoil, is employed in order to
minimize the domain confinement effects. Simulations are carried out for angles-of-attack ranging from 2�
to 6� and Fig. 15(a) shows the computed flow for the 6� angle-of-attack case. The contours indicate the pres-
ence of Karman vortex shedding in the wake in addition to an incipient unsteady separation on the suction
surface of the airfoil. The computed lift and drag coefficients are compared with available data of Althaus
[48] and Mottinen et al. [47] in Fig. 15(b). As the plot shows there is a very good match with these two separate
data sets. This favorable comparison for a non-canonical geometry at a relatively high Reynolds number fur-
ther bolsters our confidence in the fidelity of the solution technique.

Finally we present results from a simulation of a wing-tip flow. The simulations have been performed for a
rectangular NACA 2415 wing at 4.5� angle-of-attack, a chord-based Reynolds number of 105 and freestream
Mach number of 0.26. We have used a QUICK weight factor (n) of 0.1 to control the dispersion errors at this
Fig. 15. Computed results for flow past Eppler-211 airfoil at Rec ¼ 60; 000 and M = 0.2: (a) Streamwise velocity contours and streamlines
for angle-of-attack of 6o. (b) The lift and drag coefficients at different angles-of-attack. r: present results, n: Althaus [48], h: Monttinen
et al. [47].
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relatively high Reynolds number. Overall the configuration chosen is based on the experiments of Martin [49]
who have examined the tip-flow of a rotor in hover using particle image velocimetry (PIV). The tip Reynolds
number in these experiments was 2.72 · 105 which is significantly higher than the current simulation. Further-
more, the current simulation also does not include rotational effects. The intention here is to qualitatively dem-
onstrate the capability of the solver to simulate a realistic tip-flow and to assess its ability to resolve the
vortical features of the flow. At the lower Reynolds number of 105, the flow in the tip-region and near wake
is essentially laminar and we therefore do not need to account for turbulence effects. In an ongoing effort we
are carrying out a large-eddy simulation that precisely matches the experimental conditions and we expect to
validate the simulations by comparing against the experiments.

Since the airfoil does not vary in shape across the span, we use a grid that is curvilinear in the x1 � x2 plane
and planar in the spanwise (x3) direction. The overall grid employed is 460� 179� 152 and a 2D view of the
grid is shown in Fig. 16. The use of a curvilinear mesh allows better control over the grid resolution in local-
ized regions such as boundary layers. It should be noted for instance that as shown in Fig. 16, the surface of
the airfoil is nearly parallel to one set of grid lines and this allows us to provide a higher resolution selectively
in the boundary layer region.

The grid in the spanwise direction although planar, is highly non-uniform with high resolution provided to
the wing-tip region. In order to handle the boundary conditions over the spanwise wing-tip surface this surface
is made to coincide exactly with a spanwise grid line. Subsequently we employ a simple one-dimensional ghost-
cell methodology to impose the boundary conditions in the spanwise direction. This procedure is shown sche-
matically in Fig. 17.

The simulations have been carried out on ten processors of the Pentium-4 Beowulf cluster and the results
presented correspond to a non-dimensional time C=U1 of 1.5. The integration of the flow to this time-instant
takes about 300 h on this platform. Fig. 18(a) shows an iso-surface of streamwise vorticity at one time instant
and this gives a clear view of the three-dimensional vortex topology in the formation region. The plot clearly
shows the presence of at least two strong vortex systems, one associated with the suction side of the wing and
the other with the pressure side of the wing-tip. The tip-vortex is highly compact and extends over one chord
length downstream of the trailing edge.

In order to examine the vortex structure in more detail, in Fig. 18(b) we have plotted contours of stream-
wise vorticity at a number of streamwise stations along the wingtip. Near the leading edge we observe the
formation of two counter rotating vortices which are formed due to the leakage of flow from the wing sur-
Fig. 16. 2D view of the grid employed in the NACA 2415 wing-tip simulations. The inset figure shows the grid in the vicinity of the airfoil
leading-edge.
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Fig. 17. Schematic showing the ghost-cell methodology employed in order to impose the boundary conditions on the spanwise wing-tip
surface.

Fig. 18. Axial component of vorticity at various x/c for Re ¼ 100000, M ¼ 0:26, and AOA ¼ 4:5�. (a) Isosurfaces. (b) Contours in the
wing-tip region and (c) near-wake region.

550 R. Ghias et al. / Journal of Computational Physics 225 (2007) 528–553



R. Ghias et al. / Journal of Computational Physics 225 (2007) 528–553 551
face to the tip region. This is due to the strong spanwise pressure gradient that is known to be present in this
region. [50–53]. We denote the vortex from the suction surface as vortex-A and that from the pressure sur-
face as vortex-B. At x=c ¼ 0:1–0:2, these two vortices are observed to be of almost equal strength and have
nearly circular vortex cores. At x=c ¼ 0:3 we observe the development of a new vortex feature on the suction
surface. This station is located where the pressure on the suction side wing surface is lower than that in the
tip region. This results in the flow turning from the wing tip region back onto the suction surface. This has
two consequences; first vortex-A also convects toward the suction surface and second, a new vortex (vortex-
C) is created due to the roll up of the shear layer that forms as a result of the flow moving from the tip to the
suction surface. Vortex-C has a rotation opposite to that of vortex-A and in fact, vortex-C is the incipient,
primary wing-tip vortex. At x=c ¼ 0:4, as vortex-C grows, it tends to wrap vortex-A around itself. At the
same time, vortex-A starts to lose strength due to cross diffusion of vorticity with vortex-C. At this station
we also see that due to the bulk flow from the wing-tip to the suction surface, vortex-B also starts to convect
upwards. By the time the vortices reach at x=c ¼ 0:9, vortex-C has gained significantly in strength whereas
vortex-A has all but disappeared. Furthermore, vortex-B has reached the suction surface and is beginning to
interact with the wing-tip vortex-C. In fact, we observe that on this plane, vortex-B creates a set of small
tertiary vortex structures on the suction surface. At x=c ¼ 1:0 which is at the trailing edge, the wing tip vor-
tex-C is the dominant feature in the flow and moved significantly inwards away from the tip region. Thus, at
this relatively low Reynolds number, secondary vortices play a significantly role in the formation of the
wing-tip vortex. It is known that the effect of these secondary vortices diminishes at higher Reynolds num-
bers [54].

Fig. 18(c) shows streamwise vorticity at a number of streamwise planes in the near wake. It can be observed
that in very near wake, secondary and tertiary vortices continue to interact with the primary wing-tip vortex
and modify its structure. The current solver therefore allows us to examine the details of the tip-vortex for-
mation and evolution and as mentioned before, we are currently using this solver to examine the tip-flow
of a rotor in hover at a higher Reynolds number.
4. Conclusions

We have described a new finite-difference based method that allows us to simulate compressible, viscous
flows with complex stationary immersed boundaries on body non-conformal grids. The method is based on
the calculation of the variables on ghost-cells inside the body such that the boundary conditions are satisfied
on the immersed boundary. There were no ad hoc constants introduced in this procedure and neither is any
momentum forcing employed in any of the fluid cells. Consequently the method leads to a sharp representa-
tion of the immersed boundary. This method is also not subject to any stability problems associated with the
interpolation scheme employed at the immersed boundary. The method is implemented on 2D, generalized
curvilinear grids which provides more flexibility than Cartesian grids and allows us to apply this method to
relatively high Reynolds number flows. A hybrid implicit-explicit scheme is used for temporal discretization
and we also employ a novel hybrid, second-order central difference-QUICK scheme which allows us to pre-
cisely control the numerical damping.

A flexible MPI based parallel version of the solver has been developed for performing flow simulations
on shared as well as distributed memory computers. The simple mesh topology and the structured nature of
the underlying grid is used to develop a simple, yet effective domain decomposition strategy. The parallel
performance of the solver is tested on available platforms and found to be quite good. Details of the
domain decomposition strategy and some issues specific to the immersed boundary technique are described
in detail.

Two and three-dimensional flow past a circular cylinder has been simulated over a range of Reynolds num-
bers in order to validate the approach and numerical procedure. Computed parameters such as drag coeffi-
cients, vortex shedding Strouhal numbers and base pressure coefficients are found to be in good agreement
with previous experiments and simulations. A grid refinement study confirms that the current approach yields
second-order global and local spatial accuracy. Also, in order to show the capability of the method for non-
canonical shapes, we present some results of flow past airfoils and wings at relatively high Reynolds numbers.
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Simulations of the wing-tip flow yield a number of interesting insights into the wing-tip vortex topology and
these are being examined in detail in the context of a rotor-tip flow in hover.
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