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Computation of Aerodynamic Sound around Complex 
Stationary and Moving Bodies 

J. H. Seo* and R. Mittal† 
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218 

Aerodynamic sound generation at low Mach numbers around complex stationary and 
moving bodies is computed directly with an immersed-boundary method-based hybrid 
approach. The complex flow field is solved by the immersed-boundary incompressible 
Navier-Stokes flow solver and the sound generation and propagation are computed by the 
linearized perturbed compressible equations with a high-order immersed boundary method, 
on a non-body conformal Cartesian grid. The present method is applied to the prediction of 
noise generated by turbulent flow over a tandem cylinder arrangement as well as a 
rudimentary landing gear noise. For a moving body problem, the aerodynamic sound 
generated by modeled flapping wings is computed. 

I. Introduction 
OMPUTATIONAL aeroacoustics (CAA) has been applied successfully to various aerodynamic noise problems. 
For example, noise generated by high-speed jet flow1 has been been successfully tackled via the direct noise 

computation approach1,2 (i.e. direct computation of full compressible Navier-Stokes equations with high-resolution 
numerical methods). Airframe noise3 wherein noise is generated by the interaction between air flow and solid 
boundaries is a major consideration in the design of commercial aircraft. Fundamental airframe noise problems for 
canonical geometries and airfoils have therefore been studied by many researchers3-9, especially employing hybrid 
approaches. Some practical airframe noise problems such as noise generation by the landing gear10,11 and high-lift 
wing12,13 is however still challenging, since the flow Mach number is relatively low (M<0.3) and the geometry of 
solid body is extremely complex. These factors make it hard to apply direct noise computation approach to those 
problems. The geometric complexity in particular is a major concern in the computation of the acoustic field. There 
have been several approaches to deal with complex geometries in CAA: a multi-block, structured grid approach14, 
an overset structured grid method15,16 and a finite-volume approach with a high-order discontinuity Galerkin method 
(DGM)17-20, and an immersed boundary method (IBM)21-25. The first two approaches have limitations in tackling 
complex geometries and DGM suffers from the high computational cost. The IBM (see review26) is highly versatile 
approach to deal with complex geometries. With IBM, problems with very complex geometries can be solved on a 
body non-conformal Cartesian grid. Also, since it is based on the Cartesian grid, the well-established, efficient 
finite-difference techniques can be used.   
 Recently, the authors have proposed a computational methodology to solve aeroacoustic problems at low Mach 
numbers in complex geometry using a sharp-interface, higher-order immersed boundary method25. The method 
employs a two-step hybrid approach based on the hydrodynamic/acoustic splitting technique27-29 for efficient 
computation of low Mach number aeroacoustics. In this approach, the flow field is obtained by solving the 
incompressible Navier-Stokes equations (INS), and the acoustic field is predicted by the linearized perturbed 
compressible equations (LPCE) proposed by Seo & Moon29. The INS/LPCE hybrid method is a two-step/one-way 
coupled approach to direct simulation of flow-induced noise. In the proposed method, an immersed boundary solver 
for incompressible flows is coupled with a new high-order IBM for solving the LPCE equations with complex 
immersed boundaries. This high-order IBM employs ghost-cells as in Mittal et al.30,31 but the method is extended to 
higher-orders by using an approximating polynomial method originally proposed by Luo et al.32 Dirichlet as well as 
Neumann boundary conditions can be applied with a high order of accuracy on the solid surface using the method. 
Thus dispersion/dissipation errors caused by the boundary condition formulation can be minimized, thereby 
ensuring highly accurate representation of wave reflection on the solid walls. As described in this paper, the method 
can handle stationary as well as moving bodies.  In the present study, we apply this method to the computation of 
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aerodynamic sound in complex geometries associated with airframe noise for stationary as well as moving bodies. 
Computational methodology and procedure are described in Sec. II and several fundamental and application 
aerodynamic sound problems are considered in Sec. III. 

II. Computational Methods 

A.  Governing Equations 
In the present study, aerodynamic sound at low Mach numbers is directly computed by a hybrid method based on 

the hydrodynamic/acoustic splitting27,28. In this approach, the total flow variables are decomposed into the 
incompressible variables and the perturbed compressible ones as, 
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The incompressible variables predicted by the incompressible Navier-Stokes (INS) equations represent the 
hydrodynamic flow field, while the acoustic fluctuations and other compressibility effects are resolved by the 
perturbed quantities denoted by () . The incompressible Navier-Stokes equations are written as 
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The perturbed quantities are obtained by solving the linearized perturbed compressible equations (LPCE)29 with the 
incompressible flow solutions. A set of LPCE can be written in a vector form as, 
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The INS/LPCE hybrid method have well been validated for fundamental dipole/quadruple noise problems29 and also 
for the turbulent noise problems7,9. The left hand sides of LPCE represent the effects of acoustic wave propagation 
and refraction in the unsteady, inhomogeneous flows, while the right hand side only contains the acoustic source 
term, which will be projected from the incompressible flow solution.  

B. Numerical Methods 
The incompressible Navier-Stokes equations (Eq. 2-3) are solved with a fractional step based method. A second-

order central difference is used for all spatial derivatives and time integration is performed with the second-order 
Adams-Bashforth method for convection terms and Crank-Nicolson method for diffusion terms30. The pressure 
Poisson equation is solved with a multi-grid method based on a line-Gauss-Seidel (LGS) matrix solver. The LPCE 
are spatially discretized with a sixth-order central compact finite difference scheme33 and integrated in time using a 
four-stage Runge-Kutta method. Near the immersed solid boundary and domain boundaries, third-order and fourth-
order boundary schemes33 are used. Since a central compact scheme has no dissipation error, an implicit spatial 
filtering proposed by Gaitnode et al.34 is applied to suppress high frequency errors and ensure numerical stability. In 
this study, we applied tenth-order filtering in the interior region. Near the boundaries, successively reduced order: 
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from 8th to 2nd-order; filters are used. Compact finite-difference and implicit spatial filtering are solved with a tri-
diagonal matrix solver. 

C. Immersed Boundary Formulation  
The incompressible Navier-Stokes equations for the base flow with complex immersed boundaries are solved 

using the sharp-interface immersed boundary method of Mittal et al.30. In this method, the surface of the immersed 
body is represented by an unstructured surface mesh which consists of triangular elements. At the pre-processing 
stage before integrating governing equations, all cells whose centers are located inside the solid body are identified 
and tagged as “body” cells and the other points outside the body are “fluid” cells. Any body-cell which has at least 
one fluid-cell neighbor is tagged as a “ghost-cell” (see Fig. 1a), and the wall boundary condition is imposed by 
specifying an appropriate value at this ghost point.  In the method of Mittal et al.30 a “normal probe” is extended 
from the ghost point to intersect with the immersed boundary (at a body denoted as the “body intercept”). The probe 
is extended into the fluid to the “image point” such that the body-intercept lies midway between the image and ghost 
points. A linear interpolation is used along the normal probe to compute the value at the ghost-cell based on the 
boundary-intercept value and the value estimated at the image-point. The value at the image-point itself is computed 
through a tri-linear (in 3D) interpolation from the surrounding fluid nodes. This procedure leads to a nominally 
second-order accurate specification of the boundary condition of the immersed boundary. 
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Figure 1. Schematic of ghost cell method (a) and boundary condition formulation (b). 

 
 Higher-order immersed boundary method for acoustic solver25 is proposed using a high-order polynomial 
interpolation combined with a weighted-least square error minimization. In this approach, the value at the ghost 
point is determined by satisfying the boundary condition at the body-intercept (BI) point using high-order 
polynomials. Specifically, a generic variable   is approximated in the vicinity of the body-intercept point (xBI,yBI,zBI) 
in terms of a Nth-degree polynomial   as follows: 
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ijkc are unknown coefficients. The coefficients, 

ijkc can be expressed as 
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The number of coefficient for third-order polynomial (N=3) is 10 for 2D and 20 for 3D. (For the full list of number 
of coefficient for different polynomial order, see Ref25). In order to determine these coefficients, we need values of  
from fluid data points around the body-intercept point. Following Luo et al.32, a convenient and logical method for 
selected these data points is to search a circular (spherical in 3D) region (of radius R) around the body-intercept 



 
American Institute of Aeronautics and Astronautics 

 

4

point. (see Fig. 1b).  With M such data points, the coefficients cijk can be determined by minimizing the weighted 
error estimated as: 

  22
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where (xm,ym,zm) is the m-th data point, and wm is the weight function. In this study, we used a cosine weight 
function suggested in the previous study32. To make the least-square problem well-posed, the number of data point 
should be larger than the number of coefficients, and the radial range R is adaptively chosen so as to ensure the 
satisfaction of this well-posedness condition. Since we need to find the value at the ghost point in conjunction with 
the body point, the first data point is replaced by the ghost point, and (M-1) data points are found in fluid region (see 
Fig. 1b).  The exact solution of the least-square problem, Eq. (9) is given by 

 = +c (WV) W , (10) 

where superscript + denotes the pseudo-inverse of a matrix, vector c and  contain coefficients cijk and the data 
(xm,ym,zm)  respectively, and W and V are the weight and Vandermonde matrices. Note that (x1,y1,z1) is the 
ghost-point. After solving Eq. (10), the coefficients cijk can be written as a linear combination of (xm,ym,zm). 
According to Eq. (8), coefficients cijk represent the value and derivatives at the body-intercept point (xBI,yBI,zBI)  : 
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Therefore, for given Dirichlet or Neumann type boundary condition at the body wall, the value at the ghost point can 
be evaluated with Eq. (10) & (11). The more details about immersed boundary formulation can be found in the Ref25.  
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Figure 2. Schematic of moving boundary (a) and fresh cell treatment (b). 

D. Freshly Cleared Cell Treatment 
In the present method, the arbitrary body motion is accomplished by the displacement of each node (body-

marker) of triangular surface mesh which describes the immersed body. Dealing with the moving body on the fixed 
grid leads the presence of ‘freshly cleared cell’35(fresh cell, hereafter) (see Fig. 2a). Since those fresh cells have no 
time histories of variables required to integrate the governing equations, the variable values at the fresh cell need to 
be obtained by the interpolation with the values at nearby cells35. In the present incompressible flow solver, the 
variable value at the new time level is evaluated by a tri-linear interpolation iteratively along with the solution of 
momentum equations30. For the acoustic solver, the value at the fresh cell is obtained by interpolation using the 
high-order, approximating polynomial, Eq. (7).  Overall procedure is similar to the ghost cell treatment described in 
the section II.C, but in this case, the center for the data-point earch is the fresh cell center, (xFC,yFC,zFC), and x=x-xFC, 
y=y-yFC, z-zFC (see Fig. 2b). In order to avoid iterative procedure, only non-fresh, fluid cells are considered as data 
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points for the least square error minimization. Once the coefficients of the approximating polynomial are obtained 
by solving, Eq. (10), the value at the fresh cell is directly given by the first coefficient, i.e. 

  000( , , )FC FC FCx y z c  . (12) 

III. Result and Discussion 
The present method has been well validated for sound generated by laminar flow over a single circular cylinder 

by comparing the results with the direct simulation of full compressible Navier-Stokes equations performed on a 
body-fitted grid25. In the present paper, the method is applied to the prediction of noise generated by turbulent flow 
over tandem cylinders, a configuration of interest to the problem of airframe noise. A rudimentary landing gear 
configuration is also considered in order to demonstrate the capability of the present method for very complex 
geometries. Finally, the aerodynamic sound by modeled flapping wing motion is considered as a moving body 
problem with relatively complex geometrical configuration. 

3.7D

x
D

y

U0

 
Figure 3. Schematic of two cylinders in tandem configuration. 

A. Sound Generated by Turbulent Flow over Two cylinders in Tandem Configuration 
The present method is applied to the sound generated by the flow over a tandem cylinder configuration shown in 

Fig. 3. This problem has been considered as a canonical case for airframe noise especially for the noise generated by 
bluff body wake interference. In this study, we perform the simulation for the case considered in the recent 
workshop on Benchmark Problems for Airframe Noise Computations (BANC-I, Prob. 2, Tandem Cylinders 
Benchmark Problem36). The schematic is shown in Fig. 3. The free stream velocity is U0=44 m/s which corresponds 
to a Reynolds number of ReD=1.66105. The Mach number is M=0.128, which is appropriate for the the present 
hybrid method. In the present computation, however, we reduce the Reynolds number to 4000. The domain size is -
30Dx40D, -40Dy40D, and the span-wise extent Lz=3D is used and the periodic boundary condition is applied 
in the span-wise (z) direction. A non-uniform Cartesian grid with total 76838432 (9.4 million) grid points is used. 
The flow field is computed by the IBM incompressible flow solver and Fig. 4 shows the instantaneous vortical 
structure visualized by an iso-surface of the second invariant of the velocity gradient tensor  

  1

2 ij ij ij ijQ S S    , (13) 

where  and S are vorticity and strain rate tensors, respectively. At the current Reynolds number (ReD=4000) and 
separation distance between the cylinders, s=3.7D, the wake of upstream cylinder rolls up before it reaches the 
downstream cylinder and the vortex shedding of the upstream cylinder interacts with the downstream one. This 
overall flow behavior is similar with that reported for the higher Reynolds number37. Time histories of aerodynamic 
force coefficients are shown in Fig. 5 and the average and rms(root-mean-squared) values are tabulated in Table 1. 
As one can see on those data, aerodynamic force fluctuation is much stronger for the downstream cylinder due to the 
interaction with vortices shed from the upstream cylinder wake. The dominant vortex shedding frequency is found at 
St=0.196. It should be noted that the aerodynamic forces for the present Reynolds number (ReD=4000) are higher 
than that observed in the experiment at the higher Reynolds number (ReD=1.66105)36-38.  The dominant shedding 
frequency of the present case (St=0.196) is lower than the value measured in the NASA experiments36-38 (St=0.234), 
but it is close to the direct numerical simulation result of Papaioannou et al.39(St~0.18, ReD=1000) and the 
experimental measurement of Igarashi40(St~0.19, ReD=22000). 



 
American Institute of Aeronautics and Astronautics 

 

6

 
Figure 4. Vortical structure of flow over tandem cylinders. Iso-surface of Q colored by span-wise vorticity. 
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Figure 5. Time histories of aerodynamic coefficients; a) upstream cylinder, b) downstream cylinder. 

 
Table 1. Aerodynamic coefficients 

 Upstream Cylinder Downstream Cylinder 

DC  0.849 0.4948 

'D rmsC  0.066 0.1206 

'L rmsC  0.364 0.8158 

 
 The acoustic field is computed by the LPCE with the incompressible flow solutions. Although the flow 
computation is carried out assuming span-wise periodicity with the span-wise extent, Lz=3D, this span-wise domain 
size is too small for the 3D acoustic field computation, since the acoustic length scale is larger than the flow length 
scale at the present Mach number (M=0.128). The acoustic field computation is, therefore, performed two-
dimensionally for the zero span-wise wave number component (kz=0) which is directly related to the three-
dimensional acoustic field at the span-wise center (symmetry) plane, following the approach used in the work of Seo 
and Moon7. The predicted result is then corrected for three-dimensionally using the Oberai’s formulation41. The 
domain size in the x-y plane for the acoustic field computation is the same as the flow field, but a different Cartesian 
grid with 500400 grid points is used. The acoustic grid resolution is about two-times coarser than the flow one at 
the near field, while it is little bit finer at the far field in order to resolve acoustic waves of higher frequencies 
accurately. The 3D flow field result averaged in span-wise direction is interpolated onto the acoustic grid. The 
instantaneous acoustic field is shown in Fig. 6a. The wave length corresponding to the dominant frequency is about 
40.5D, and the high frequency components caused by turbulent fluctuation are also visible in the dilatation rate 
contours. The acoustic pressure is monitored at three locations: A(-8.33D,27.815D), B(9.11D,32.49D), and 
C(26.55D,27.815D), which were the microphone positions in the NASA tandem cylinder experiment. Power 
spectral densities (PSD) of acoustic pressure fluctuation at these three locations are plotted in Fig. 6b. The spectrum 
is corrected to the three dimensional one at the center plane7. The spectra can be characterized with broadened tones 
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and the significant peaks at the harmonics of the dominant frequency, which is in the qualitative agreement with the 
measured data38. 
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Figure 6. a) Instantaneous acoustic field (dilatation rate, 'u


contour). b) Power spectral densities (PSD) of acoustic 

pressure monitored at three locations : A(-8.33D,27.815D), B(9.11D,32.49D), and C(26.55D,27.815D). 
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Figure 7. PSDs corrected for actual long span (16D) at three locations: A(-8.33D,27.815D), B(9.11D,32.49D), and 
C(26.55D,27.815D). Solid lines: Present (Re=4000). Dash-dot lines with symbols: NASA QFF experiment36,38 
(Re=1.66105) . 
 
 Although the flow Reynolds number of the present computation is much lower than the experiment, we try to 
compare the acoustic result with the available experimental measurement36,38. Since the present prediction is 
performed for the small span width (Lz=3D), it should be corrected for actual long span (L=16D) for the comparison, 
and this requires the span-wise coherent length scale information. We adapt the span-wise coherent length data 
provided with the experiment36, and it is found that the span-wise coherent length is longer than the simulated span 
width only at the dominant shedding frequency. Based on the correction formulation proposed by Seo and Moon7, it 
results in a +9.4 [dB] correction at the dominant shedding frequency and a +7.2 [dB] correction for other frequencies. 
The corrected PSDs are plotted with the experimental data in Fig. 7. Because of different Reynolds number in the 
present simulation and the experiment, the spectra do not match with each other well, especially for the peak 
frequency and overall amplitude. However, some qualitative agreement is notable. For example, at point A, there are 
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notable peaks at the both second and third harmonics, but at point B, the peak at the third harmonics is only well 
exhibited, and at point C, the peak at the second harmonics is only well represented. A better agreement with the 
measured frequency and amplitude is expected for simulation at higher Reynolds number. 

B. Preliminary Result of Rudimentary Landing Gear Noise 
In this section, the noise generated by flow over a rudimentary landing gear42 configuration is considered in 

order to demonstrate the capability of the current solver to address problems with highly complex geometries. Only 
preliminary results at early stage of computation are presented here. The geometry of landing gear is based on the 
Ref42. The landing gear shape is generated by surface meshes with total 187742 triangular elements and shown in 
Fig. 8a. The landing gear is placed in the rectangular domain: 0x12D, 0y6D, 0z5D, (where D is the diameter 
of wheel) and non-uniform Cartesian grid with total 512256256 (about 33 million) grid points is used. The 
computational grid in x-y plane is shown in Fig. 8b.  For the present test computation, the Reynolds number based 
on the wheel diameter and flow Mach number are set to ReD=2000 and M=0.3, respectively. Figure 9a shows 
instantaneous vortical structures with Q-criteria (Eq. 13) and complex three-dimensional vortex structures are 
observed in the landing gear wake. The instantaneous acoustic field is plotted in Fig. 9b with total pressure 
fluctuation (Eq. 12) contours at several planes. It shows radiating acoustic waves as well as the pressure fluctuations 
caused by vortices in the wake.  

 

a    b  
 

Figure 8. a) Geometry of rudimentary landing gear. b) Computational grid in x-y plane around the landing gear.  
 

a        b  
 

Figure 9. Instantaneous flow and acoustic field; a) Vortical structures colored by span-wise vorticity. b) Total pressure 
fluctuation contours.  
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C. Sound Generated by Flapping Motion 
In order to test the present method for a moving body problem with relatively complex geometrical configuration, 

the sound generated flapping wings is considered in this section. The problem is relevant to the aerodynamic sound 
generation in the flight of an insect or a MAV with flapping wings. The schematic of the problem is shown in Fig. 
10a. The main body and wings are modeled by canonical geometries and the flapping motion of wings is prescribed 
with the sinusoidal time variation of the angular velocity: 

 
max / sin(2 / )tipV r t T  , (14) 

where Vmax is the maximum wing tip velocity, rtip=1.5c is the distance from the body center to the wing tip, and T is 
the period. The wing length c and the maximum wing tip velocity Vmax are used as the length and velocity scales, 
respectively. Left and right wings move symmetrically with a simple sinusoidal motion. The Reynolds number is set 
to 200, the Strouhal number is c/TVmax=0.25, and the Mach number based on the wing tip velocity is M=0.1. A 
Cartesian grid with 512512 points is used and the wing length c is resolved by about 60 grid points. The 
instantaneous flow field is shown by the vorticity contour in Fig. 10b. Time histories of lift coefficients for wing and 
body are plotted in Fig. 11. Due to the symmetry, the lift coefficients of left and right wings are the same. The lift 
coefficient of the body also varies in time due to the induced flow by flapping motions.  
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Figure 10. a) schematic of modeled flapping motion. b) Instantaneous vorticity contours 
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Figure 11. Time histories of lift coefficients; a) wings, b) center body. 

 
 The acoustic field is computed by LPCE and Fig. 12a shows the instantaneous field. Based on the Strouhal and 
Mach number, the wavelength of the main wave is 40c. The symmetric flapping motion of two wings behaves like a 
dipole sound source, and the directivity pattern shown in Fig. 12b shows a dipole in the vertical direction. Time 
histories of acoustic pressure monitored at (0,60c) and (0,-60c) are plotted in Fig. 13. The signal is periodic and 
particular wave forms are interesting. Although the present problem employs simple geometry and motion, it 
illustrates the capability of the present method for resolving sound generation by moving bodies quite well. The 
realistic three-dimensional geometry and flapping motion in insect flight will be considered in the future study. 
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Figure 12. a) Instantaneous acoustic field generated by a modeled flapping motion. b) directivity at r=50c. 
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Figure 13. Time histories of acoustic pressure fluctuation monitored at a) (0,60c) and b) (0,-60c). 

 

IV. Conclusion 
 In this paper, the computation of aerodynamic sound at low Mach numbers around complex, stationary and 
moving bodies have been described for several modeled and practical problems. The flow-field and sound 
generation and propagation around very complex geometries with arbitrary body motion are predicted with an IBM 
based INS/LPCE hybrid method on the non-body conformal Cartesian grids. The present approach is quite versatile 
and applicable to the prediction of airframe noise at low sub-sonic speed, fan noise in industrial turbo machineries as 
well as electric devices, and many other aerodynamic noise problems in practical applications. One challenge is that 
resolution of flows at very high Reynolds number on a Cartesian grid is very costly. This issue is being addressed by 
employing local grid refinement strategy.     
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