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Flapping foils found in nature such as bird and insect wings and fish fins are being studied for potential use 
in micro aerial vehicles and autonomous underwater vehicles. The fluid dynamics associated with these foils is 
extremely complicated and much remains to be learnt in this arena. Experimental investigations of flapping 
foils in nature are limited by their inability to provide full-field, spatially and temporally resolved, velocity and 
pressure measurements. Many of the limitations can be alleviated with computational fluid dynamics 
techniques. Computational analysis of these flows is however, by no means an easy proposition due to the 
many inherent complexities in these flows. These include a wide variety of flow conditions and the presence of 
flexible moving boundaries. In the current paper, we describe a Cartesian grid based immersed boundary flow 
solver which is being developed to handle such flows. The paper describes the salient features of the numerical 
approach along with examples that illustrate its capabilities.  

I. Introduction 
lapping foils are being considered for lift generation and/or propulsion in Micro Aerial Vehicles (MAVs) and   
Autonomous Underwater Vehicles (AUVs). Much regarding the fluid mechanics of these biologically inspired 

flows can be learnt by observing insects, fishes and birds. Experimental investigations of flapping foils in nature are 
however limited by their inability to provide full-field, spatially and temporally resolved, velocity and pressure 
measurements1. Some of these limitations are associated with the specific conditions imposed by the need to work 
with live animals since it is difficult to control/predict the motion and location of these animals under test conditions. 
Also it is usually difficult to instrument the test subjects with sensors to the extent needed without disrupting the 
natural behavior of the subject. For instance, no method currently exists for extracting surface pressure and shear 
stress distribution on a structure as delicate as flapping pectoral fin of a fish or flapping wings of insects/birds2. 
Computational fluid dynamics (CFD) on the other hand can overcome many of these limitations and is the method 
employed in the current study. 

This current ongoing effort is specifically focused on understanding the fluid and structural dynamics of a 
pectoral fin. In particular, the subject of interest here is the bluegill sunfish that has been studied experimentally in 
detail by Drucker and Lauder3. For this fish, the Reynolds number based on fish body length (L ~ 20 cm) and velocity 
(0.5 ms-1) is about 2x104. At this Reynolds number, the attached flow over the body is most likely laminar but is 
expected to transition rapidly to turbulence in regions of flow separation which might occur downstream of 
appendages. The fins of this fish are also highly flexible, have complex planforms and undergo complicated motions. 
The flow over the fins can be characterized in terms of a Stokes frequency parameter ( νω /lAS = ) where ω, A 
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and l are the fin angular frequency, amplitude and length respectively. Typical fin beat frequency of about 3 Hz and 
fin amplitude and size of about 2cm and 5cm, respectively; gives S ≈ 1.8x104 that is again in the range where laminar 
attached flow would quickly transition to turbulence post separation. Thus, assuming that the above conditions are 
prototypical of bio-hydrodynamic flow configurations, especially in the context of low-speed maneuvering, the key 
factors to be considered in computational modeling of these configurations are:   

a. Wide Range of Flow Conditions: Typical Reynolds numbers for swimming fishes/cetaceans can vary from  
O(102) to O(107). The flow can be laminar, transitional or turbulent or a combination of all three regimes. In 
addition, the surrounding flow environment can be steady or unsteady. 

b. Moving Boundaries: Bio-hydrodynamic flows of interest are often associated with moving boundaries, may they 
be flapping fins or undulating bodies. 

c. Two-Way Fluid-Structure Coupling: In many cases the control surfaces (fins, appendages etc) are highly flexible 
and can undergo large deformations as a result of the hydrodynamic loading (see Fig. 1). This deformation can in 
turn have a significant effect on the flow, which can then alter the loading itself.  

d. Unsteady Flow Mechanisms: The presence of moving and flexible control surfaces and/or the unsteady flow 
environment leads to configurations where dominance of unsteady flow mechanisms (added mass effects, 
dynamic stall, vortex shedding, vortex pairing, vortex-body and vortex-fin interactions) is a rule rather than an 
exception. 

In the current study, a DNS/LES solver has been developed which is capable of simulating these flows in all their 
complexity. In particular, the solver, which will be discussed in this study, is time-accurate and non-dissipative, and 
allows body motion as well as fluid structure interaction. As will be demonstrated here, the non-dissipative property 
of the solver is the key in allowing us to resolve the vortical features in the flow, which primarily determine the thrust 
and efficiency of the flapping foils.  

Section II discusses the numerical methodology employed in the current solver (hereon referred to as VICAR3D). 
In Section III performance test results and validation cases are presented. In Section IV, results obtained for several 
test cases, including fluid structure interaction, LES of circular cylinder, and flapping foils, will be described. Finally 
Section V provides a summary. 

 
 
 
 

II. Numerical Methodology   
A finite-difference based approach for computing flows with moving immersed solid three-dimensional 

boundaries on fixed Cartesian grid has been developed. The key feature of this method is that simulations with 
complex boundaries can be carried out on stationary non-body conformal Cartesian grids and this eliminates the need 

Figure 1. Two different views of actual kinematics of the pectoral fin of a bluegill sunfish, 
extracted by Lauder’s group at the Harvard University. 
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for complicated remeshing algorithms that are usually employed with conventional Lagrangian body-conformal 
methods.  

Large-Eddy Simulation (LES) is a viable technique to capture the energy-containing scales of turbulence while 
modeling the smaller (subgrid) scales.  In LES, the flow variables are decomposed into a large-scale (or resolved) 
component, denoted by overbar, and a subgrid scale component by applying a filtering operation. The filtered Navier-
Stokes equations of an incompressible fluid for the resolved field are written in tensor form as: 
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where i and j = 1, 2 and 3 correspond to x, y and z coordinates, respectively; and Re is the Reynolds number. In the 
above equations, iu  is the instantaneous filtered velocity component in the i direction, p  represents the filtered 
pressure, and t is the non-dimensional time. The equations have been non-dimensionalized by appropriate velocity 
and length scales. Equation (1) describes the transport of the filtered velocity field and contains the contribution of 
the subgrid scale (SGS) Reynolds stresses, given by jijiij uuuu −=τ . These stresses are formulated using a 
Boussinesq-based eddy viscosity model: 

         ijTkkijij Sντδτ 2
3
1
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where ijδ  is the Kronecker delta, and ( )ijjiij xuxuS ∂∂+∂∂= //2/1 , corresponds to the filtered strain-rate tensor. A 

Smagorinsky-type model is used to formulate the eddy viscosity where ( ) SCsT
2

∆=ν . In this model, sC is the 

Smagorinsky constant, which remains to be determined, ∆  is a measure of the local grid spacing, and ijij SSS 2=  is 

the magnitude of the resolved-scale strain rate tensor. Hence, the system of equations will be closed through 
obtaining an appropriate value of the Smagorinsky constant, sC . Here, a dynamic Lagrangian procedure, formulated 
by Meneveau et al.4 is invoked to parameterize the subgrid scale stresses. In the dynamic Lagrangian approach, the 
model coefficient is averaged along the flow pathlines, and hence requiring no homogeneous direction to maintain 
numerical stability. The equation for computing the model constant, sC , is: 
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where the evolutions of LMΦ  and MMΦ  at time step, (n+1), are given by 
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where nT  is a representative timescale taken to be either, ( ) 8/1
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variables, Lij and Mij, are defined through the Germano’s identity, given  in Ref. 5, as follows: 
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The hat represents a secondary filtering operation, called test filter, and is usually applied on twice the size of the grid 
spacing. The equations are integrated in time using the fractional step method 6. This approach follows along the lines 
of that used by Mittal & Balachandar7 and Mittal8. In the first step, an intermediate velocity field, iu~ , is calculated 
from the momentum equations without the contribution of the pressure gradient. In the second step, the pressure field 
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is computed by solving a Poisson equation. The divergence-free velocity field, 1+n
iu , 

is then obtained by correcting the intermediate velocity field with the computed 
pressure gradient. In the current solution procedure, the convective terms are 
represented using an explicit Adams-Bashforth scheme; while the diffusive terms are 
modeled with an implicit Crank-Nicolson procedure.  

The spatial derivatives have been discretized with a second-order accurate central 
difference scheme on a collocated finite-difference stencil. In the collocated-grid 
arrangement, all variables (i.e., velocity components and pressure) are located at the 
same physical location in contrast to the staggered node arrangement where the 
velocities are centered with the pressure locations. For the pressure-Poisson equation, 
the gradient term uses a compact second-order central difference stencil. The solution 
of pressure Poisson equation (PPE) is the most time consuming part of the solution 
algorithm. In the current solver an efficient multigrid methodology has been 
developed which is well suited for use in conjunction with the immersed boundary 
method. The details of this method will be discussed in 
Section III. In addition to the cell-centered nodal 
velocities, we separately carry and update the face 
normal velocities. This allows us to satisfy the 
divergence-free condition to machine accuracy (see Ref. 
9 for further details).  

The general framework for handling moving 
immersed boundaries can be considered as an Eulerian-
Lagrangian formulation, wherein the immersed 
boundaries are explicitly tracked as surfaces in a 
Lagrangian mode, while the flow computations are 
performed on a fixed Eulerian mesh. The geometry of the 
immersed boundary is defined by a set of “marker 
points” as shown in Fig. 2. Cells whose centers lie inside 
the immersed body and have at least one neighboring 
cell, whose cell center lies outside the body, are marked 
as “ghost cells”10. The rest of the cells with centers inside 
the body and not adjacent to immersed boundary, are marked as “solid cells”. Figure 2 shows the marker points, fluid 
cells, ghost cells and solid cells for an immersed boundary on Cartesian grid. The basic idea in this method is to 
compute the flow variables for the ghost cells such that boundary conditions on the immersed boundary in the 
vicinity of the ghost cell are satisfied10. To compute the value at ghost cell center, a “normal probe” is extended from 
this node to the immersed boundary (to a point called “boundary intercept” point) and is extended further into fluid to 
a point, which we call “probe tip”. Four cell nodes (for the 2D case), which surround the probe tip are then identified 
and a bilinear interpolation is employed to calculate values at the probe tip. The variables at the corresponding ghost 
node are subsequently computed by extrapolating them from the probe-tip and boundary-intercept points such that 
they satisfy appropriate Dirichlet or Neumann’s boundary conditions on the boundary intercept point. Two 
approaches are used based on if four cell centers that surround the tip-marker point include the ghost cell center or 
not. Figure 3a and Fig. 3b show these approaches schematically. An earlier implementation of this approach for 
compressible flow can be found in Ghias et al.10 

III. Performance Test and Validation 

A. Multi-Grid Method 
 The key elements of a multigrid procedure are (i) an appropriate smoother, (ii) grid coarsening, (iii) restriction, 
(iv) prolongation, and (v) multigrid schedule. The implementation of a standard multigrid algorithm into the current 
solver would at first glance seem straightforward given the simple mesh topology. However, implementation of the 
multigrid method requires the reconstruction of the immersed boundary at every coarse multigrid level, which can 
significantly increase the complexity of the scheme. Moreover, the total number of grid points in all three directions 
is quite different in most of our computations. Therefore, a nonstandard geometric multigrid method with a flexible 
semi-coarsening strategy 11,12 has been developed for the PPE. The primary complexity in applying a multigrid 
technique in the current solver is associated with retaining the immersed boundary as a sharp interface at the coarse 

 Marker Point

Solid CellGhost Cell 

Fluid Cell 

Figure 2. Designation of 
various nodes on the grid.  

 
 

Ghost CellBoundary Intercept

Normal ProbeProbe Tip  Normal Probe

Boundary Intercept 

Probe Tip 

Ghost Cell

(a)                                           (b) 

Figure 3. Interpolation stencils employed for the ghost
cells. 
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grid levels at each direction. Motivated by this, a multigrid 
algorithm has been developed wherein the boundary is represented 
as a sharp interface only at the finest grid level. At the coarser 
levels, the presence of the boundary is accounted for only in an 
approximate sense through the volume fraction of the coarse cells 
and no explicit reconstruction of the immersed boundary is done at 
these levels. Although conceptually straightforward, it is essential 
to ensure that this approach not degrade the convergence properties 
of the underlying multigrid algorithm. 
 Performance tests of the multigrid method have been carried 
out on a 2.8 GHz Pentium-IV cluster for a canonical case 
involving two circular cylinders immersed in a square 
computational domain. The focus is on comparing the performance 
of the current multigrid with PetSc (developed at Argonne 
National Lab), which is a state of art GMRES based solvers13. 
Simulations on various size grids have been carried out to examine 
how the performance of these different methods scales with grid 
size (N). Note that we expect CPU time to scale with N2 for a non-
accelerated iterative method like Jacobi or Gauss-Siedel while the 
theoretical performance of a multigrid should approach N1. We find that for the current code, PetSc performance 
scales roughly with N1.78 which is somewhat better than the typical iterative methods. On the other hand, the multigrid 
method developed here scales with N1.17 which is a substantial improvement over the PetSc performance. It should 
also be noted that the observed performance of the multigrid method is reasonably close to the ideal theoretical 
performance thereby confirming that the current multigrid is highly effective when used with VICAR3D.  

B. Demonstration of Spatial Accuracy 
A systematic grid refinement study has been carried out to demonstrate that the ghost-cell methodology maintains 

its second-order accuracy globally as well as locally. Two-dimensional flow past a cylinder is solved in 2d × 2d 
square domain at Re = 100 (where Reynolds number is, Re = U∞d /υ; d is the diameter of the cylinder, U∞ is the 
freestream velocity and υ is kinematic viscosity) with a sequence of grids starting from the finest grid size 316×316 
and coarsening by a factor of 3, 5 and 7. L1, L2 and L∞ norm errors are calculated for the velocities (u and v) on the 
three coarser grids in reference to the solution on the finest grid. The error norms, shown in Fig. 5, clearly 
demonstrate the second-order accuracy of the current ghost-cell methodology. 

C. Moving Boundary Simulations 
Flows of interest in this study are associated with moving 

boundaries, such as flapping foils or undulating bodies as 
stated before. Here we demonstrate the accuracy of the 
current method for flows with moving boundaries by 
simulating flow past an impulsively started normal flat plate 
at a Reynolds number of 126 based on the length of the plate.  

Rather than simulate impulsively started flow past a 
stationary plate as has been done before, we simulate the 
flow associated with a plate impulsively moved in an 
otherwise stationary fluid. The resulting flow in these two 
situations should be the same when viewed in the appropriate 
reference frame and this allows us to examine the fidelity and 
accuracy of our moving boundary algorithm. 

 
Figure 4. Observed and projected 
performance of PetSc and current multigrid 
method with the number of grid points (N) 

 
Figure 5. Test of spatial accuracy for VICAR3D 
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Figure 6.  Spanwise vorticity contours for an 
impulsively started normal plate at Re = 126  

Figure 7. Evolution of the wake bubble size behind 
impulsively started flat plate at Re = 126 

 
 Figure 6 shows the unsteady, early time development of the vortices formed behind the plate at four time 
instances, where t* is non-dimensional time defined as, t* = Ut / L. An extensive study had been carried out on the 
same flow by Ref. 14 using an accurate vortex method. In Fig. 7, the length of the recirculating bubble, as computed 
by the present method, is compared with the experimental results of Taneda and Honji15 and computations of 
Koumoutsakos and Shields14. At the early time stages demonstrated in Fig. 7, VICAR3D results are seen to be in 
good agreement with the experimental data and those obtained with the vortex method.  

IV. Results 

A. Fluid Structure Interaction 
 Due to the flexibility/deformability of fish fins, fluid-structure interaction is an essential feature of these flows. 
Therefore, the ability to simulate two-way coupled fluid structures interaction is needed. Here we demonstrate the 
ability of VICAR3D to handle such problems by simulating a canonical flow; flow induced transverse vibration in a 
elastically mounted circular cylinder placed in a freestream. 
 For this flow, the Navier-Stokes equations are solved in a loosely coupled manner with the equations governing 
the motion of the cylinder. At the end of each time step, body velocity is updated by using the Newmark scheme16. 
Based on the new velocities, the latest position is calculated and subsequently the body is moved over to its new 
position. 

 
 

 

 
Figure 8. Vortex shedding behind an elastically mounted 
cylinder, constrained to move vertically. 

 
 

 
 

Figure 9. Displacement time history for 
cylinder. 
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Figure 8 shows the spanwise vorticity field at four time instances. The dashed line corresponds to its undisturbed 
location and the sequence of plots clearly shows the significant flow induced oscillations that are produced by the 
vortex shedding. Figure 9 illustrates the time history of displacement of the cylinder, which shows that the 
oscillations initially increase in amplitude but eventually saturate to a constant amplitude. 

 

 
 

Figure 10. Isosurfaces of swirl strength for the 
flow past a circular cylinder at Re = 1500. 

Figure 11. Contours of turbulent viscosity 
normalized by molecular viscosity. 

 

B. Large Eddy Simulation (LES) Results 
To demonstrate the LES capabilities of the present solver, the flow past a circular cylinder is simulated using the 

dynamic Lagrangian model at a moderate Reynolds number of 1500. The computational domain extends 30 
diameters in the streamwise and cross-streamwise directions while the spanwise length is one diameter with the 
cylinder placed halfway in the domain. The grid consists of 0.46 million points, non-uniformly distributed in the 
streamwise and transverse directions. Figure 10 shows the isosurfaces of the instantaneous swirling strength. The 
initial rollup of the Karman vortices close to the cylinder and formation of streamwise rib vortices is clearly captured. 
Figure 11 shows the turbulent viscosity at the mid-plane (z/D = 0.5). It is seen that as expected, the LES model 
predicts high values of turbulent viscosity in regions of significant three-dimensionality. 

C. Pitching Foil Simulations 
Finally we present simulations of flow past a flapping foil. 

The flow around a NACA 0012 foil undergoing pitch 
oscillation at a chord Reynolds number of 12,600 has been 
investigated by Koochesfhani and Bohl17 using molecular 
tagging velocimetry (MTV) technique. In this experiment, the 
airfoil is oscillated sinusoidally about its quarter chord axis 
with pitch amplitudes of 2 and 4 degrees and with frequency f 
in the range 1.18-3.21 Hz. A well-defined array of isolated 
vortices is observed in the wake of the pitching foil at small 
amplitude and high frequencies. The vertical alignment of the 
vortices is a function of the reduced frequency parameter k 
(where k = π f c/U∞ , c is the foil chord, f is the frequency and 
U∞ is the freestream velocity) with the orientation switching at 
for k > 5.7. The switch in vertical orientation is marked by a change in the mean streamwise velocity from a velocity 
deficit to a velocity excess (jet like) profile17. Also, airfoil mean thrust coefficient as a function of reduced frequency 
for both 2° and 4° pitch amplitudes has been acquired in Ref. 17.  

In the present study, two-dimensional simulation of this flow has been carried out in which the pitch motion of a 
foil is prescribed as follows:  

( )ftπαα 2sin1=  
where, α1 is the amplitude of the sinusoidal pitch angle variation and f is the pitching frequency. In addition to α1, the 
non-dimensional parameters that govern the fluid dynamics of this configuration are the Reynolds number 
Rec = U∞c /υ (where U∞ is the freestream velocity, c is the foil chord and υ is the kinematic viscosity of the fluid) and 
the Strouhal number St = fh1/U∞ based on the wake width (where h1 is the wake width). An alternative frequency 
parameter based on the foil chord is the reduced frequency which is defined as, k = π f c/U∞ . 

Figure 12. Cartesian grid used for pitching 
NACA 0012 airfoil simulation at Re = 12,600. 
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(a)  

 
(c) 

 
(b) 

 
(d) 

Figure 13.  Spanwise vorticity contours of pitching NACA 0012 with α1  = 4° at k = 5.7 and    
    Re = 12,600 for (a)  α = 0° (b) α = 4° (c) α = 0° (d) αo = -4° 

 
A 519×301 grid is used in the current simulation and the computational domain size is 8.0c × 6.0c (Fig. 12). 

Since, experiments clearly show that vortex dynamics in the wake often times holds the key to the performance of 
flapping foils 3,19,20,21 , high grid resolution is provided around the foil and through the wake.  Figure 13 demonstrates 
the presence of an inverse Karman vortex which is indicative of thrust production at k = 5.7 for 4 degrees pitch 
amplitude case.  

Figure 14 shows the time variations of hydrodynamic force coefficients CT and CL, where the thrust and lift 

coefficients are defined as planxT AUFC 2

2
1/ ρ=  and planyL AUFC 2

2
1/ ρ= , respectively. Computed mean thrust 

coefficients are compared with experimental values of Koochesfehani and Bohl17 and RANS computations of 
Ramamurti and Sandberg18 in Fig. 15. Comparison with the experiment indicates significant under-prediction of the 
thrust although good match is observed with the 2D RANS calculation. This discrepancy could be related to the 
absence of 3D effects in both numerical simulations. An initial study has been done using VICAR3D to analyze the 
effect of three dimensionality on the force calculations at a Reynolds number of 1000. Although there is an indication 
of the generation of streamwise vortical structures in the wake of this thrust producing flapping foil, the inclusion of 
3D effects does not seem to effect force calculations at least at this Reynolds number. 

 

 
 
Other possibilities that might cause a discrepancy between experimental and numerical work had been studied by 

Ramamurti and Sandberg18. They estimated the force coefficients by integrating the velocity profile at the 
downstream of the airfoil as has been done in the experiments. Their results showed that the force values estimation 

  
Figure 14. Time variations of hydrodynamic force 
coefficients CT (solid line) & CL (dotted line) for 
pitching NACA0012 with   α1 = 4° and  k = 5.7 & at 
Re = 12,600 

Figure 15.  Comparison of thrust coefficients with 
Bohl and Koochesfahani’s experimental17 and 
Ramamurti and Sandberg’s numerical results18     
(α 1 = 4 °) 
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from the wake integral is quite sensitive to wake location. They have also investigated computationally the effect of 
the presence of tunnel walls. The tunnel walls were found to marginally increase the thrust coefficient17. It should be 
pointed out that while Ramamurti and Sandberg compared their results with the earlier experiments of 
Koochesfhani21 whereas in the current paper the comparison has been done using their most recent results17, which 
includes the effect of fluctuating components and pressure gradient in the wake. Despite the improved force 
estimation technique employed in the experiment, the discrepancy between experiment and simulations remains.  

V. Summary 
 A Cartesian grid based immersed boundary solver has been developed to simulate, among other things, the flow 
associated with complex flapping foils found in nature. Several validation cases have been described showcasing the 
fidelity, accuracy and efficiency of this solver for complex flows. Cases involving fluid-structure interaction as well 
as LES of moderately high Reynolds number flows are also presented in order to demonstrate the capabilities of the 
solver. Application of this method to complex flapping foils will be presented in the future. 
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