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Formation Criterion for Synthetic Jets
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A formation criterion for synthetic jets is proposed and validated. A synthetic jet actuator is a zero-net mass-flux
device that imparts momentum to its surroundings. Jet formation is defined as the appearance of a time-averaged
outward velocity along the jet axis and corresponds to the generation and subsequent convection or escape of a
vortex ring. It is shown that over a wide range of operating conditions synthetic jet formation is governed by the jet
Strouhal number Sr (or Reynolds number Re and Stokes number S). Both numerical simulations and experiments
are performed to supplement available two-dimensional and axisymmetric synthetic jet formation data in the
literature. The data support the jet formation criterion 1/Sr = Re/S2 > K, where the constant K is approximately
1 and 0.16 for two-dimensional and axisymmetric synthetic jets, respectively. In addition, the dependence of the
constant K on the normalized radius of curvature of a rounded orifice or slot is addressed. The criterion is expected
to serve as a useful design guide for synthetic jet formation in flow control, heat transfer, and acoustic liner
applications, in which a stronger jet is synonymous with increased momentum transfer, vorticity generation, and
acoustic nonlinearities.

I. Introduction

S YNTHETIC jet actuators are useful for thermal-fluid con-
trol applications, including mixing enhancement,1 separation

control,2−4 thrust vectoring,5 and heat transfer.6−9 Figure 1 shows a
schematic of a typical synthetic jet or zero-net mass-flux (ZNMF)
actuator. In one implementation, a piezoelectric disk is bonded to
a metal diaphragm, which is sealed to form a cavity having an ori-
fice or slot. The cavity and orifice/slot form a Helmholtz resonator.
As the diaphragm or driver oscillates, fluid is periodically entrained
into and expelled from the orifice. During the expulsion portion of
the cycle, a vortex ring can form near the orifice and, under cer-
tain operating conditions, convect away from the orifice to form
a time-averaged jet. This behavior is defined as jet formation and
was observed more than 50 years ago.10 For other operating condi-
tions, the vortex ring is ingested back into the slot during the suction
part of the cycle, and no jet is formed.11 When this occurs, it can
seriously hamper heat-transfer enhancement in applications where
the impinging vortices are used to cool electronic components. As
will be shown later in the paper, jet formation is directly related to
the flux of vorticity from the synthetic jet. Because vorticity flux is
a quantity that is quite important in applications where jets oper-
ate in a crossflow,12 it is clear that understanding jet formation in
quiescent flow is a crucial first step towards understanding their per-
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formance vis à vis vorticity flux in these crossflow applications. Jet
formation also leads to the generation of nonlinear resistance effects
in Helmholtz resonators used in acoustic liners, which complicates
their modeling and design.10,13,14 Thus, the development of a simple
jet formation criterion will be quite useful for such applications and
is the primary objective of this paper.

The governing parameters for a synthetic jet based on a simple
“slug-velocity-profile” model include a dimensionless stroke length
L0/d and a Reynolds number ReU0 = U0d/ν based on the velocity
scale

U0 = f L0 = f

∫ T/2

0

u0(t) dt (1)

where d is the diameter of the orifice (or the width of the slot), ν is
the kinematic viscosity of the fluid, u0(t) is the centerline velocity
at the exit, T = 1/ f is the period, f is the frequency of oscillation,
and L0 is the distance that a slug of fluid travels away from the
orifice during the ejection portion of the cycle or period.15−17 Later,
Smith and Swift18 argued that because the spatial velocity profile can
deviate significantly from the assumed slug shape the centerline ve-
locity profile u0(t) is more generally defined as the spatial-averaged
velocity at the exit.

Alternatively, a jet Reynolds number can be defined in terms of
an average jet velocity during the expulsion stroke19:

ReŪ = Ūd/ν (2)

where Ū is the time- and spatial-averaged exit velocity

Ū = 2

T

1

A

∫
A

∫ T/2

0

u(t, y) dt dA (3)

Here, A is the orifice exit area, and y is the cross-stream coordinate
(see Fig. 1). Equations (1) and (3) reveal that the two velocity scales
are related by Ū = 2U0.

Furthermore, note that L0/d = U0/( f d) is closely related to the
inverse of the Strouhal number via

1/Sr = (L0/d)/π = Ū/ωd = (Ūd/ν)/(ωd2/ν) = Re/S2 (4)
2110
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Fig. 1 Schematic of a synthetic jet.

where S is the Stokes number given by

S =
√

ωd2/ν (5)

and ω = 2π f is the radian frequency of oscillation. The ability of a
ZNMF actuator to impart momentum to its surroundings is highly
dependent on these nondimensional numbers and, in addition, on
the slot/orifice geometry.19,20

The purpose of this paper is to propose and validate a unified
jet formation criterion suitable for circular orifices and rectangu-
lar slots with a radius of curvature. First, a jet formation criterion
based on a simple order-of-magnitude analysis is presented. Next,
computational and experimental flow-visualization experiments are
described to determine the onset of vortex escape (i.e., jet forma-
tion). Detailed flow measurements are used to determine the jet
formation parameters. Finally, available data are used to validate
the criterion.

II. Vortex-Based Jet Formation Criterion
Smith and Swift18 and Rampunggoon11 independently proposed

a jet formation criterion for two-dimensional synthetic jets. Smith
and Swift18 argued that a threshold stroke length L0/d exists for
jet formation. On the other hand, Rampunggoon11 used a simple
order-of-magnitude analysis to show that the ratio of the Reynolds
number to the square of the Stokes number must be greater than
some constant to ensure jet formation. Preliminary computational
and experimental validations of this criterion were subsequently
accomplished by Utturkar19 and Utturkar et al.,21 respectively. The
order-of-magnitude analysis is summarized next.

Figure 1 illustrates a vortex ring emanating from a slot (or orifice).
The ability of the ring to overcome the suction velocity during the
ingestion stroke depends on its self-induced velocity, which in turn
is a function of the vortex strength. The strength of each shed vortex
�v has been shown by Didden22 to be related to the flux of vorticity
through a (x, y) planar slice of the half-slot during the ejection phase
of the cycle

�v =
∫ T/2

0

∫ d/2

0

ξz(y, t)u(y, t) dy dt (6)

where ξz(y, t) is the spanwise (or azimuthal) vorticity component
at the exit for a two-dimensional (or axisymmetric) case and u(y, t)
is the exit jet x velocity. In Fig. 1, δs is the size of the shear flow
region characterized by nonzero vorticity. The induced velocity of
the dipole VI is thus proportional to �v/d , where d is the slot width.
An order-of-magnitude analysis of Eq. (6) results in

�v ∼ (Ū/δs)Ūδs(1/ω) ∼ Ū 2/ω (7)

If it is assumed that a jet will form when the induced velocity of the
dipole VI is somewhat larger than the average jet suction velocity

Vs ∼ Ū , it follows that the ratio of the induced dipole velocity to the
suction velocity is

VI /Vs ∼ (�v/d)/Ū ∼ Ū/ωd = 1/Sr

= (Ūd/ν)/(ωd2/ν) = Re/S2 > K (8)

where K is an O(1) constant.
Equation (8) states that a vortex escapes or a jet is formed when

the Strouhal number is below a critical value. We now seek to per-
form a dimensional analysis of the synthetic jet problem using the
Buckingham–Pi theorem to bolster this argument. The dependent
parameter is the average jet velocity Ū and is a function of the geom-
etry of the device, the diaphragm, and fluid properties. The geomet-
ric properties of the two-dimensional synthetic jet include the slot
width d, the neck height h, the slot depth in the spanwise direction
w, the radius of curvature of the slot edge R, and the volume of the
synthetic jet cavity ∀. It has been previously shown that the behavior
of the flowfield emanating from the slot is primarily sensitive to the
cavity volume and not its shape.23 The oscillatory diaphragm prop-
erties include the angular frequency of oscillation ω, its fundamental
resonant frequency ωd , and the volume displaced by it �∀, whereas
the relevant fluid properties are the isentropic speed of sound c0 and
the kinematic viscosity ν. These 11 parameters contain the two pri-
mary dimensions of length and time; thus, there are 9 dimensionless
parameters. Choosing the slot width d and the actuator frequency ω
as repeating parameters, the following groups are obtained:

Ū/ωd = f
(∀/d3, h/d, w/d, R/d, ωd/ω, �∀/d3, c0/ωd, ν/ωd2

)
(9)

Equation (9) can be rearranged by recombining the pi groups as

Sr = f
(
ω/ωH , h/d, w/d, ε, ω/ωd , �∀/d3, kd, S

)
(10)

where Sr is the Strouhal number; ω/ωH is the ratio of the os-
cillation frequency to the Helmholtz frequency of the device
ωH � c0

√
(wd/∀h), which is a measure of the compressibility of

the flow in the cavity; h/d is the slot height aspect ratio; w/d is
the slot depth aspect ratio; ε = 2R/d is the normalized radius of
curvature of the slot; ω/ωd is the ratio of the oscillation frequency
to the resonant frequency of the diaphragm; �∀/d3 is the ratio of
the displaced cavity volume to the cube of the slot width; kd is the
dimensionless wave number; and S is the Stokes number as defined
earlier. For a given fluid (i.e., ideal gas), diaphragm, and actuator ge-
ometry, the Strouhal number will only change because of variations
in the following parameters:

Sr = f
(
ω/ωH , ω/ωd , �∀/d3, kd, S

)
(11)

If the frequency of oscillation is also fixed, then Eq. (11) reduces to

Sr = f (�∀/d3) (12)

Thus, for a given ZNMF device operating at a fixed frequency, the
dimensionless diaphragm amplitude controls the Strouhal number.
From Eq. (8), the Strouhal number will decrease as �∀/d3 increases,
eventually forming a jet.

Of course, based on the preceding dimensional analysis, we ex-
pect that the value of the constant K in Eq. (8) will be affected
by the orifice geometry, namely, the aspect ratio h/d and the exit
edge shape (sharp or rounded, etc.). The constant is also expected
to assume different values for two-dimensional and axisymmetric
models having similar orifice geometry because of different func-
tional forms of solutions to fully developed unsteady pressure-driven
flow in a pipe vs a two-dimensional channel.24 Although the focal
point in this paper is on the jet formation criterion and its valida-
tion, the influence of the aforesaid factors on the scaling constant is
recognized and briefly discussed next.

A. Effect of Orifice Geometry
The influence of the orifice geometry on the value of the constant

K can be reasonably explained by a simple extension to the preced-
ing scaling. Equation (6) can be adapted for a jet with a rounded
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edge to

�v =
∫ T/2

0

∫ d/2 + R

0

−∂u(y, t)

∂y
u(y, t) dy dt (13)

where R is the radius of curvature (see Fig. 1). The no-slip bound-
ary condition for u(y, t) is u(d/2 + R, t) = 0. Exact integration of
Eq. (13) yields

�v =
∫ π/ω

0

1

2
u(0, t)2 dt (14)

which can be evaluated by assuming a sinusoidal form of the cen-
terline velocity u(0, t) = Ucl sin(ωt + φ).

�v = 1
4 (π/ω)U 2

cl (15)

Equation (15) shows that the resulting vorticity flux is a function
of the centerline velocity and frequency. By analogy with steady
pressure-driven flow in a channel or pipe, we will define the ratio of
the amplitude of the spatial-averaged velocity Uavg to the amplitude
of the centerline velocity Ucl as a frequency-dependent constant
Uavg/Ucl = c. Next, from Eq. (3) Ū = 2Uavg/π , so that

�v = 1
4 (π/ω)

(
U 2

avg

/
c2

) = 1
4 (π/ω)[(πŪ/2)2/c2] (16)

Employing the nondimensional exit radius of curvature defined ear-
lier, ε = 2R/d, the following heuristic expression25,26 can be em-
ployed to estimate the induced velocity:

VI = κ(�v/2π DV ) = κ
[
�v

/
2πd(1 + ε)p

]
(17)

by modeling the distance between the vortex centers (DV in Fig. 1)
as equal to d(1 + ε)p . Here, the exponent p < 1 accounts grossly
for flow separation caused by the exit curvature, and κ is a constant
that depends on the ratio of the vortex core radius a to the distance
between the two vortex centers DV (see Fig. 1). Substituting Eq. (16)
into Eq. (17) and then this result into Eq. (8) results in a general jet
formation criterion

1

Sr
= Re

S2
>

32c2(1 + ε)p

κπ 2︸ ︷︷ ︸
jet formation constant

(18)

First, Eq. (18) indicates a smaller jet formation constant for ori-
fices with a sharp exit (small ε) as compared to those with a finite
radius of curvature ε. In other words, a fillet radius will tend to
delay the formation of discrete vortices (although this does not im-
ply anything about the efficiency of jet formation20). Second, the
constant is directly proportional to the square of c = Uavg/Ucl ≤ 1,
which is, in turn, affected by the geometry of the orifice and the
Stokes number.24 Furthermore, the constant is proportional to 1/κ ,
where κ in Eq. (17) depends on whether a vortex dipole (in the case
of a slot) or ring (in the case of an orifice) is considered.25,26 The
distinction between a rectangular slot and an axisymmetric circular
orifice is discussed further next.

B. Two-Dimensional vs Axisymmetric Jet
Past studies25,26 have estimated the constant κ in Eq. (17) as a

function of a/DV in the case of two-dimensional vortex dipoles
and axisymmetric vortex rings. For 0 < a/DV < 0.5, the value of
κ in the two-dimensional case lies between 20–40% of that for the
axisymmetric case. Furthermore, the constant c = Uavg/Ucl assumes
a different value for the two-dimensional and axisymmetric cases.
For example, for a fully developed, laminar, steady flow, the velocity
profile shape is parabolic, and c is 0.67 and 0.5 for two-dimensional
and axisymmetric flow, respectively. For large S, the value of c tends
to 1 (a slug profile) for both cases. Consequently, these combined
effects suggest that the formation constant for axisymmetric jets is
significantly lower, by up to almost an order of magnitude, than its
two-dimensional counterpart. This is validated by numerical simu-
lations and experiments described next.

III. Computational Studies
Numerical simulations are performed to characterize a two-

dimensional synthetic jet. A previously developed and extensively
validated Cartesian grid solver27−29 is employed in these simulations
to facilitate simulation of unsteady viscous incompressible flows
with complex immersed moving boundaries on Cartesian grids. The
solver employs a second-order-accurate central difference scheme
for spatial discretization and a mixed explicit-implicit fractional step
scheme for time advancement, which is also second-order accurate.
An efficient multigrid algorithm is used for solving the pressure
Poisson equation. The second-order spatial accuracy of the code
has been clearly demonstrated27,28 along with validation for a num-
ber of canonical flow cases. Furthermore, the code has also been
validated against experiments by simulating a transitional jet in qui-
escent flow.30

The key advantage of this solver for the current problem is that the
entire geometry of the actuator including the oscillating diaphragm
is modeled on a stationary Cartesian mesh. As the diaphragm moves
over the underlying Cartesian mesh, the discretization in the cells
cut by the solid boundary is modified to account for the presence of
the solid boundary. In addition, a soft velocity boundary condition,
which accommodates the jet flow, is applied on free boundaries. All
simulations are run until initial transients decay and statistics are
accumulated beyond this over a number of cycles. The exit curva-
ture for all computed cases amounts to ε = 0.15. A dense 600 × 220
grid is employed for these simulations. The grid has been carefully
designed so as to provide adequate resolution to the key features
of the flowfield while minimizing spurious numerical effects. For
instance, we use uniform meshes in and around the jet slot and pro-
vide a relatively high resolution to the boundary layers that develop
on the slot walls as well as the vortices that form at the lips of the
slots. In the external flow, the mesh is slowly stretched in the vertical
direction in a way that corresponds roughly with the increasing size
of the eddies in the synthetic jet. A large external domain size of
over 30 slot widths in each direction is chosen so as to minimize the
effect of the external boundary on the computed flow near the slot.
The grid has been chosen after extensive grid and domain sensitiv-
ity studies, which are reported in Mittal and Rampunggoon.31 The
computations also employ about 2000 time steps per cycle, which
leads to very high temporal resolution of the flow.

Figure 2a shows a simulation result at two phases in a cycle
for a case with no jet formation. For this case, Re/S2 = 0.76. As
illustrated in Fig. 2a, the vortices formed at the orifice during the

Fig. 2 Vorticity plots from two-dimensional synthetic jet simulations
indicating the dynamics of the vortex dipole between minimum and max-
imum cavity volume stages respectively S = 15.8: a) no jet (Re/S2 = 0.76),
b) transition (Re/S2 = 1.02), and c) jet (Re/S2 = 1.92).
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Fig. 3 Summary of observations made regarding jet formation from
two-dimensional synthetic jet computations: ——, Re/S2 = 1; �, no jet;
�, transition; and �, clear jet.

a)

b)

Fig. 4 Jet formation threshold for two-dimensional synthetic jets:
a) experimental data of Smith and Swift,18 ——, Re/S2 = 1; b) normal-
ized data of Smith and Swift to account for Stokes number and radius
of curvature, ——, {Re/[32c2(1 + ε)p]}/S2 = 0.0425. Data points denote
threshold value for clear jet formation: �, ε= 2.4; �, ε= 1.2; �, ε= 0.84;
and �, ε= 0.61.

expulsion part of the cycle are reingested during the suction part.
Figure 2b shows a transitional case with Re/S2 = 1.02 in which jet
formation is not readily apparent. Figure 2c corresponds to a case
with Re/S2 = 1.92 and is an example of a case exhibiting a clear
jet formation as indicated by the expelled vortex ring. A series of
numerical simulations over a range of Reynolds and Stokes numbers
suggest that the constant K >O(1), as shown in Fig. 3.

IV. Experimental Studies
The data of Smith and Swift18 are recast to yield Reynolds and

Stokes numbers and are presented in Fig. 4a. Their ZNMF device
consists of a speaker-driven diaphragm and a two-dimensional slot
with an aspect ratio h/d much greater than one (i.e., 12 < h/d < 47).
The jet formation threshold was determined by increasing the driver
amplitude until a jet was detected visually. Clearly, a general trend
of the jet formation criterion Re/S2 > constant is observed for the
experimental results, which correspond to clear jet formation. The
normalized radius of curvature ε varies considerably in their exper-
iments. A closer look at Fig. 4a, however, verifies Eq. (18), namely,

Table 1 ZNMF actuator details

Property Value

Cavity volume, m3 5.50 × 10−6

Orifice diameter, mm 2.00
Orifice thickness, mm 1.65

Table 2 PIV measurement details

Property Value

CCD camera lensa 200-mm micro with
bellows extender

CCD camera image size, pixels 1024 × 1024
Spatial resolution, µm/pixel 7.7
Interrogation window size, pixels 32 × 32
Time �T between captures, µs 15–250
Number of image pairs 270–360
Phase resolution, deg 1.00–1.33
Velocity vector overlap, % 50
Measurement location, x/d 0.08
Number of velocity vectors across orifice 15

aCCD = charge-coupled device.

that a jet is more easily formed for a sharp-edged slot, which is
consistent with the discussion in Sec. II.A.

By comparison, in Fig. 4b we seek to minimize the combined
influence of exit curvature and Stokes number on the data (via
c = Uavg/Ucl) by normalizing the Reynolds number by the con-
stant 32c2(1 + ε)p , as derived in Eq. (18). This normalization of
the Reynolds number attempts to unify the jet formation analysis
for synthetic jets with varying exit curvature and operating over a
wide range of Stokes numbers. The exit plane velocity profile, as a
function of S, is modeled by the unsteady flow solution for a fully de-
veloped channel flow subject to an oscillatory pressure gradient.24,32

Although the exit plane velocity profile can tend to deviate from the
assumed channel flow solution because of entrance effects, the pre-
ceding assumption does not produce any noticeable discrepancy in
the scaling analysis, as seen from Fig. 4b. The value of c is numer-
ically estimated by an integral analysis of the velocity profile. The
exponent p = 0.62 provides the best qualitative agreement within
the wide-ranging experimental data, as depicted in Fig. 4b. Despite
the apparent agreement, the analysis in Sec. II.A is inadequate to
precisely model all complexities of the flow in the jet orifice and
only serves to estimate the impact of the significant factors on the
scaling constant. In particular, there is insufficient information at
present to calculate the constant κ in Eq. (18) because of a lack of
knowledge of the vortex size and spacing.

Experimental jet formation data for the axisymmetric case were
published over 50 years ago by Ingard and Labate.10 More recent
studies33,34 suggest that L0/d > 1 for axisymmetric jet formation.
However, the range of Stokes numbers covered by these studies is
high: S > 35. An extension to the low-Stokes-number range is de-
sired and would prove useful in applications involving large-scale
flow control experiments and engine nacelle acoustic liners.35 There-
fore, an axisymmetric ZNMF actuator is constructed to operate at
a low-Stokes-number range: 6 ≤ S ≤ 36. The construction of the
cavity and the piezoelectric diaphragm is nearly similar to case 2
described in Gallas et al.,36 and the geometric parameters of the
ZNMF actuator are given in Table 1.

Particle-image-velocimetry (PIV)-based flow visualization is first
used to determine the onset of jet formation, and Table 2 summarizes
the parameters pertaining to the PIV setup. Successive images are
acquired at a frame rate that is slightly different than a submultiple
of the actuation frequency (similar to the schlieren imaging of Smith
and Glezer16). Thus a different vortex ring is captured in each im-
age at a slightly different phase in the cycle. The resulting sequence
of images then forms an “aliased movie” of the flowfield. Velocity
vector fields over one aliased cycle of the synthetic jet are acquired,
and vorticity contours are computed for each frame. The resulting
aliased movie of the vortex escape is then used to determine jet
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a)

b)

c)

Fig. 5 PIV velocity vector fields with overlaid vorticity contours for
minimum and maximum cavity volume stages respectively, S = 18 cir-
cular orifice: a) no jet (Re/S2 = 0.14), b) transition (Re/S2 = 0.25), and c)
jet (Re/S2 = 0.37).

formation. Figure 5 shows the evolution of vorticity during the min-
imum and maximum cavity volume stages of the cycle for S = 18
under no-jet, transitional, and clear-jet formation conditions, respec-
tively. These images for the axisymmetric case are in good qualita-
tive agreement with their two-dimensional simulation counterparts
in Fig. 2. The mean flow from the orifice is presented in Fig. 6 for
the corresponding cases in Fig. 5. Indeed, the formation of a mean
jet, evident in Fig. 6c, corresponds to the case of vortex escape in
Fig. 5c.

In contrast with the Stokes number, estimating the jet Reynolds
number is difficult because the average volume flow rate during
the expulsion part of the cycle Q̄, and hence Ū from Eq. (3), must
be determined by measuring the phase-locked, spatially varying
velocity profile across the surface of the orifice. Given the small
diameter of the orifice, the accuracy of the PIV-computed velocity
profiles was deemed questionable. In addition, the spatial resolu-
tion of the PIV data was 246 µm, and the depth of field and light
sheet thickness were approximately 0.25 and 0.15 mm, respectively.
Furthermore, a relatively small number of images were acquired.
Thus, laser Doppler anemometry (LDA) was used to measure phase-
locked velocity profiles of select cases to validate the PIV results.
The principle advantage of using LDA with 90-deg off-axis receiv-
ing optics vs PIV to measure velocity is the potential to achieve a
much higher spatial resolution. Using the same 200-mm microlens
with bellows extension as the PIV system in an off-axis receiving
optics configuration that uses a pinhole aperture, the LDA probe
volume is approximately (0.058 mm)3, giving a spatial resolution
approximately four times better than the present PIV setup. Phase-
averaged velocity measurements are acquired at a given point with
a resolution of 10 deg, and approximately 100 velocity values are
acquired at each phase angle.

Once the velocity profiles at the surface of the orifice are acquired,
whether using PIV or LDA, the profiles are spatially integrated to
determine the volume flow rate as a function of phase angle. The
locus of the positive values of the volume flow rate is then integrated
to give the time-averaged volume flow rate during the expulsion

Table 3 Comparison between PIV- and LDA-acquired
Reynolds numbers

Measurement technique S = 12, no-jet S = 18, clear-jet
and location formation formation

PIV, x/d = 0.08 17.8 ± 3% 121.2 ± 3.7%
LDA, x/d = 0.08 18.9 ± 3% 121.4 ± 3%
LDA, x/d = 0.03 18.1 ± 3% 126.9 ± 3%

a)

b)

c)

Fig. 6 U-component velocity contours corresponding to Fig. 5, incre-
ment between contour lines is 0.05 m/s, S = 18, circular orifice: a) no jet
(Re/S2 = 0.14), b) transition (Re/S2 = 0.25), and c) jet (Re/S2 = 0.37).

part of the cycle Q̄, which is related to the average velocity by
Q̄ = Ūπd2/4. Thus, the Reynolds number as defined in Eq. (2) can
be recast as

ReŪ = 4Q̄/πνd (19)

Because of the previously mentioned limitations of the PIV sys-
tem, the closest plane at which velocity data can be obtained is at
x/d = 0.08, and fluid entrainment at this location can be nonnegligi-
ble. Therefore, velocity profiles are acquired closer to the surface of
the orifice (x/d = 0.03) using LDA. The computed Reynolds num-
bers are compared with their uncertainty estimates using the two
different methods. Table 3 summarizes the comparison between the
computed Reynolds number using PIV and LDA, for two different
Stokes-number cases. The data agree to within the 95% confidence
intervals for all cases. Thus, we conclude that the PIV-computed
Reynolds numbers at x/d = 0.08 are sufficiently accurate for the
purposes of determining a jet formation criterion.

The jet formation data from the current experiments along with
the axisymmetric data from Ingard and Labate10 and Smith et al.33

are compared in Fig. 7. It is found that the available data are consis-
tent with the jet formation criterion with an empirically determined
constant K equal to approximately 0.16.

The deviation of Ingard and Labate’s data at their four lowest
Reynolds numbers is interesting. Ingard and Labate report “particle-
velocity” measurements but do not provide any description of the
method or uncertainty in the data. In a later paper, however, Ingard37

clarified these data as rms velocities obtained from a hot-wire
anemometer. These four points correspond to very low particle ve-
locities in the range of 10–60 cm/s. Thus, these data are deemed
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Fig. 7 Jet formation criterion for axisymmetric case: ——, Re/S2 =
0.16; �, threshold jet formation values of Ingard and Labate10; �,
threshold jet formation values of Smith et al.33; �, maximum values
of no jet formation acquired for the current study; and �, minimum
values of observed jet formation acquired for the current study.

questionable because of free-convection effects and the strong fluc-
tuating component compared to the near-zero mean value.

V. Conclusions
A formation criterion for both two-dimensional and axisymmet-

ric synthetic jets has been presented and evaluated. Jet formation
depends on the dimensionless stroke length (i.e., Strouhal num-
ber) or, alternatively, the Reynolds number and Stokes number. The
available data in the literature have been supplemented with current
computational and experimental data. All of the data are consistent
with the proposed jet formation criterion that 1/Sr = Re/S2 > K ,
where the constant K is dependent upon geometric factors such as
orifice/slot shape, radius of curvature, and aspect ratio of the slot.
Because cavity compressibility can be significant and the velocity
profile can deviate from being slug like, computing the stroke length
of the oscillating diaphragm in the cavity and applying continuity at
the orifice, although appealing, is insufficient to determine Reynolds
number in the general case of a compressible fluid (i.e., air) and a
nonrigid diaphragm (e.g., a piezoelectric diaphragm). Instead, the
more difficult task of measuring the exit velocity profile must be
undertaken in order to accurately compute the Reynolds number.
Alternatively, one can use a model, such as that proposed in Gallas
et al.,36 to predict the nominal exit velocity and determine if a jet is
formed using the proposed criterion.

The jet formation criterion is expected to be useful for applica-
tions of synthetic jets, which rely on the successful formation or
suppression of vortex rings ejected into quiescent fluid. For exam-
ple, in a study investigating the application of synthetic jets for heat
transfer to cool a laptop computer,7 it was reported that a typical
frequency of oscillation was 100 Hz and a typical orifice diameter
was 1.6 mm. The Stokes number of this flow is approximately 10.
Based on the current jet formation criterion, the Reynolds number
should be of order 16 to form a jet, which translates to a minimum
jet velocity of order 16 cm/s. The investigators reported a jet center-
line velocity of 14 m/s at two orifice diameters downstream, which
indicates the formation of a jet having significant strength.

The present criterion can be a significant asset to the design of
flow-control actuators, where vortex escape and concomitant large
vorticity and momentum injection is potentially required for good
performance. Finally, it is expected that this criterion will aid in the
modeling and subsequent design of acoustic liners, where vortex
escape leads to complicating nonlinear effects.10,13,14

The present results are, however, insufficient to identify a uni-
versal jet formation constant. More detailed data concerning the
separation, size, and trajectory of the expelled vortices are required
for this purpose.
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