
Numerical Simulations of Synthetic Jet Based

Separation Control in a Canonical Separated Flow

Rupesh B. Kotapati ∗ and Rajat Mittal †

Department of Mechanical and Aerospace Engineering

The George Washington University, Washington, DC 20052, USA

Olaf Marxen ‡, Frank Ham § and Donghyun You ¶

Center for Turbulence Research

Stanford University, Stanford, CA 94305, USA

Direct simulations of a flow configuration devised for investigating active separation
control using zero-net mass-flux (or synthetic) jets are presented. The computational
configuration consists of a 5% thick flat plate with 8:1 elliptic leading edge and blunt
trailing edge at zero incidence in a free-stream. A separation bubble of prescribed size
is created on the top surface of the airfoil at the aft-chord location by applying blowing
and suction on the top boundary of the computational domain. Such separated flows are
generally characterized by three distinct time scales corresponding to the shear layer, the
separation zone, and the vortex shedding in the wake; therefore the resulting flow field
can be considered as a canonical separated airfoil flow. Two-dimensional simulations of
this flow at a chord Reynolds numbers of 60,000 subject to zero-net mass-flux (ZNMF)
perturbation of the boundary layer at different characteristic time scales are investigated.
Results indicate that at a Reynolds number of 60,000, the entire system comprised of the
shear layer, the separation zone, and the wake is locked on to a single frequency. Forcing the
ZNMF device close to this lock-on frequency or its first superharmonic is found to result in
optimal control of the mean separation bubble. The stability characteristics of the different
mean flows resulting from ZNMF forcing at different frequencies are evaluated in terms of
local linear stability theory based on the Orr–Sommerfeld equation. The numerical results
are also Fourier analyzed in time and compared to the theoretical results.

Nomenclature

fJ Forcing frequency of the ZNMF jet “device”.
fsep Separation bubble frequency.
fSL Shear layer frequency.
fwake Wake vortex shedding frequency.
Hsep Height of the separation bubble.
Lsep Length of the separation bubble.
Re Reynolds number based on free-stream velocity and chord length, Re = U∞c/ν.
U∞ Free-stream velocity.
V̄J Characteristic velocity of the ZNMF jet.
c Airfoil chord.
Cµ ZNMF jet momentum coefficient, Cµ = 2(d/c)(V̄J/U∞)2.
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Cf Mean skin-friction coefficient, Cf = 2τw/(ρU2
∞).

d Width of the ZNMF jet slot.
F+ Non-dimensional forcing frequency, F+ = fJc/U∞.
p Pressure.
t Time.
u, v Streamwise and cross-stream velocity components, respectively.
ui General notation for velocity components: u1 ≡ u, u2 ≡ v.
ve(x, t) y-component of the velocity at the exit plane of the ZNMF jet orifice.
xi General notation for spatial coordinates: x1 ≡ x, x2 ≡ y.
xJ Streamwise location of ZNMF forcing.
xsep Streamwise location of primary separation.
XTE Distance between the separation location and the trailing edge.

Subscripts
i Directional index, i = 1, 2.

Symbols
ν Kinematic viscosity.
ωz Instantaneous spanwise vorticity.
ρ Density.
τw Wall shear stress.

I. Introduction

A novel numerical configuration for investigating active separation control of canonical separated airfoil
flows, using zero-net mass-flux (ZNMF) or synthetic jets, was earlier proposed by Mittal et al .1 Using

this configuration, a separation bubble of prescribed size can be created at a desired location on the upper
surface of an airfoil at zero incidence by imposing an adverse pressure gradient through blowing and suction
on the top boundary of the computational domain. This configuration is different from the one used recently
by Rist & Augustin2 in that it also includes leading edge boundary layer inception and a wake driven
by vortices from both suction and pressure sides. Mittal et al.1 used two-dimensional simulations of this
configuration without separation control to show that these canonical separated airfoil flows are generally
characterized by three distinct time scales corresponding to the roll-up of the shear layer, regular pinch off of
large vortices from the separation zone, and vortex shedding in the wake. The non-linear interaction between
these different scales is dependent on the distance between the separation zone and the trailing edge.

Kotapati et al.3 performed numerical experiments of this configuration with mid-chord separation subject
to synthetic jet based separation control at a Reynolds number of 60, 000. They used two-dimensional
simulations with ZNMF perturbation of the boundary layer with various frequencies and duty cycles with a
fixed jet velocity. The current work is an extension of the study by Kotapati et al.3 and considers synthetic
jet based separation control of aft-chord separation on a different airfoil geometry that includes an actual
ZNMF jet cavity for forcing. Currently, it is not well understood if the separation zone downstream of
aft-chord separation is influenced by the wake due to its proximity to the wake vortex shedding. Moreover,
the ongoing physical processes in such flows can be governed by diverse instability mechanisms, ranging from
convective Kelvin-Helmholtz instability to absolute/global instability (see Huerre & Monkewitz4). Therefore,
the study of aft-chord separation and its control is important for understanding the trailing-edge stall of
low-pressure turbine (LPT) blades, pitching airfoils in rotordynamics, etc.

The key operational parameters in a ZNMF device are the jet frequency fJ and the characteristic jet
velocity V̄J ; the slot size d and streamwise location xJ of the ZNMF jet actuator are expected to be fixed
in practical applications. The control authority has been found to vary monotonically with V̄J (Seifert
et al.,5, 6 Seifert & Pack,7 Glezer & Amitay8) up to a point where a further increase would lead to complete
disruption of the boundary layer and therefore, there is very little incentive for optimizing the ZNMF device
with respect to V̄J . On the other hand, the control authority has a highly non-monotonic variation with fJ

(Seifert & Pack,9 Greenblatt & Wygnanski,10 Glezer et al.11). A recent study by Simens & Jiménez12 reports
that the reduction in bubble length as a function of frequency has two minima for sufficient high amplitude
forcing. While one of them is related to the Kelvin-Helmholtz instability of the separated shear layer, the
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other low-frequency regime is reported to be associated with generation of large vortices which are not a
consequence of an instability of the original bubble. This not only suggests the presence of rich flow physics
and multiple flow mechanisms, but also offers the potential for optimizing the control scheme with respect
to fJ . This is also corroborated by the findings of Pack et al.13 that low frequency amplitude modulation
(AM) of the high resonant frequency of a ZNMF device requires approximately 50% less momentum input
to achieve the same performance gains.

II. Scaling of Different Characteristic Frequencies

Consider the flow over an airfoil at incidence where separation occurs at some location downstream of
the leading edge, and the separated shear layer may or may not reattach before the trailing edge. If the flow
reattaches before the trailing edge, there are potentially three distinct frequency scales: fSL, the frequency of
the roll-up of the shear layer into Kelvin-Helmholtz type vortices; fsep, the frequency scale corresponding to
the regular expulsion of large vortices from the separated region; and fwake, the frequency of vortex shedding
in the wake.

For a shear layer that separates from and reattaches to a solid surface, the presence of a near-wall reversed
flow region permits upstream propagation of disturbances and alters the stability characteristics of the shear
layer. In this case, the frequency corresponding to the separated region scales as fsep ∼ U∞/Lsep, where
Lsep is the characteristic length of the mean separation bubble. The wake shedding frequency, however, is
active for all cases and due to its global effect, probably plays some role in the dynamics of the flow. The
scaling for Kármán vortex shedding due to Roshko14 is fwake ∼ U∞/Wwake, where Wwake is the width of
the wake, and this scaling is fundamentally different from that of fsep. For a shear layer that separates and
does not reattach, the shear layer instability frequency plays an important role. This frequency scales more
like that of a free shear layer,15 i.e., fSL ∼ Ū/θ, where Ū is the average velocity across the shear layer, and
θ is the momentum thickness at the point of separation. In order to examine the scaling of these different
frequencies as well as their potential non-linear interactions, it would be advantageous to separately prescribe
the extent and location of the separation bubble as well as the Reynolds number.

III. Flow Configuration

A schematic of the flow configuration used in the current work is shown in figure 1, and consists of a 5%
thick flat plate of chord c with 8:1 elliptic leading edge and blunt trailing edge at 0◦ angle-of-attack in a
free-stream. The origin of the global coordinate system (xo, yo) is fixed at the lower left-hand corner of the
computational domain that measures Lx and Ly in xo and yo directions, and the origin of the local coordinate
system (x, y) is at the leading edge of the airfoil. A separation bubble of prescribed size is induced at the
aft-chord location on the upper surface of the flat plate by applying an adverse pressure gradient through
blowing and suction on the upper boundary of the computational domain. We prescribe a zero-vorticity
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Figure 1. Schematic of the flow configuration (not to scale).
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boundary condition, along the lines of Na & Moin,16 of the following form on the upper boundary:

v(xo, Ly) = G(xo),
∂u

∂yo

∣∣∣∣
(xo,Ly)

=
dG

dxo
, (1)

where G(xo) is the prescribed blowing and suction velocity profile, and the Neumann boundary condition
on u ensures that no spanwise vorticity (ωz) is generated due to blowing and suction. The function G(xo)
allows us to prescribe the location as well as the streamwise size of the separation region. In this study,
G(xo) is of the form:

G(xo) = −Vtop sin
(

2π(xo − xc)
L

)
e−α( 2(xo−xc)

L )β

, (2)

where xc is the center of the blowing and suction velocity profile in the global system and L is the length of
the profile (see figure 1). The parameters Vtop, α and β are set to 0.8U∞, 10 and 20, respectively. It should
be noted that the lower boundary is also assumed to be a zero-vorticity wall with no blowing or suction.
The advantages of using such a cofiguration is explained in detail in the work of Kotapati et al .3

IV. Numerical Methodology

The flow field is obtained using CDP, an unstructured grid finite-volume based flow solver being actively
developed at the Center for Turbulence Research, Stanford University. The flow field is modeled by unsteady
incompressible Navier–Stokes equations in primitive variables (velocity and pressure), written in tensor form
as

∂ui

∂xi
= 0 (3)

∂ui

∂t
+

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
(4)

where the indices, i = 1, 2, represent the x and y directions, respectively, t is the time, ν is the kinematic
viscosity, p is the pressure, and the components of the velocity vector u are denoted by u and v. The
equations are non-dimensionalized with the chord length c and free-stream velocity U∞, and integrated in
time using a second-order accurate fractional step method (Mahesh, Constantinescu & Moin17). The pressure
field is obtained by solving a Poisson system. The convective terms are treated semi-implicitly using Picard
linearization in conjunction with second-order Adams–Bashforth and Crank–Nicolson schemes. The diffusion
terms are discretized using a Crank–Nicolson scheme, which eliminates the viscous stability constraint. The
pressure Poisson equation is solved with an efficient multi-grid method. A key feature of this solver is that it
uses central differences for spatial discretization and constrains the numerical scheme to discretely conserve
not only mass and momentum, but also kinetic energy (Ham & Iaccarino18). This approach minimizes
nonlinear instabilities that might arise from the complete absence of numerical dissipation at coarse-grid
resolutions.

V. Simulation overview

First, the uncontrolled version of the flow configuration with aft-chord separation is simulated to deter-
mine the characteristic frequency scales: fSL, fsep, and fwake. Aft-chord separation is induced by prescribing
blowing and suction over 0.7 ≤ x/c ≤ 1.3 on the top boundary of the computational domain. The char-
acteristic frequencies are determined by computing power spectra of time-series of v-velocity in the shear
layer, the separated region, and the wake. Simulations are then carried out with ZNMF perturbation of the
boundary layer at various frequencies.

In the simulations of the flow at Re = 60, 000, the mesh is composed of approximately 124,000 cells and
the ZNMF “device” consists of an orifice, of width d = 0.0065c and height h = d, connected to an internal
cavity of width W = 13d and height H = 4d. The inner lip of the orifice is rounded to prevent the formation
of vena contracta as the flow enters the orifice from the cavity. First, the flow over the plate without the
ZNMF device is simulated to determine the separation location of the boundary layer. The ZNMF “device”
is then included slightly upstream of the point of separation, and it is found that the inclusion of an inactive
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ZNMF device open to the external cross-flow in the uncontrolled simulation does not change the separation
location. The characteristic velocity of the jet is given by

V̄J =
2

AT

∫ T/2

0

∫
A

ve(x, t)dA dt,

where ve(x, t) is the y component of the velocity at the exit plane of the orifice, A is the cross-sectional area of
the orifice, and T = 1/fJ is the time period of the synthetic jet cycle. A value of 0.1 is obtained for the ratio
V̄J/U∞ at the jet-exit plane by requiring V̄J/U∞ = 0.1 in the expression for oscillatory velocity of the form
(π/2)(V̄J/U∞)(d/W ) sin(2πfJ t) prescribed at the bottom of the cavity. The blowing momentum coefficient
of the jet defined as Cµ = 2(d/c)(V̄J/U∞)2 is fixed at 1.3 × 10−4. Simulations with separation control are
carried out with ZNMF perturbation of the boundary layer at various frequencies detailed in Table 1.

Table 1. Various cases considered at Re =
60, 000.

Case Forcing frequency F+ = fJc/U∞
0 No forcing
1 1.5
2 3.0
3 6.0
4 9.0

VI. Results and Discussion

A. Simulation Results
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Figure 2. Plot of instantaneous spanwise vorticity (ωzc/U∞) and mean streamlines for Case 0. The plot also
shows “probe” locations where the time series of cross-stream velocity is recorded for spectral analyses.

Figure 2 shows the mean streamline pattern superimposed on contours of instantaneous spanwise vorticity
(ωzc/U∞) obtained for the baseline uncontrolled flow (Case 0). The boundary layer on the suction side
loses momentum and thickens due to adverse pressure gradient induced by blowing and suction on the top
boundary. It separates at x/c = 0.646 and the inflection point in the streamwise velocity profile moves
farther away from the wall resulting in an inviscid instability. As a consequence, the shear layer directly
rolls up into large Kelvin–Helmholtz (KH) type vortices without any subharmonic pairing. When these
large vortices are of some appropriate size and strength, they pinch off from the shear layer and convect
downstream into the wake. As these vortices convect, they entrain high-momentum fluid from the outer flow
into the separated region close to the wall. This yields a closed aft-chord separation bubble (as portrayed by
the mean streamlines) in the mean with distinct primary separation and reattachment points, S1 and R1,
respectively. The mean separation bubble also contains secondary separation S2 and reattachment R2 of the
reverse flow driven by the roll up of large vortices. The vortices shed from the suction side boundary layer
at the trailing edge are smaller than those shed from the pressure side. The length (Lsep) and the height
(Hsep) of the mean separation bubble measure 0.308c and 0.029c, respectively.
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Figure 3. Temporal variations of the cross-stream velocity in (a) the shear layer, (b) the separation zone, and
(c) the wake for Case 0.
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Figure 4. Power spectra corresponding to temporal variations of the cross-stream velocity in the (a) shear
layer, (b) the separation zone, and (c) the wake for Case 0.

Figures 3(a)–(c) show temporal variations of cross-stream velocity v for Case 0 in the shear layer, the
separation zone, and the wake, respectively, corresponding to probe locations shown in figure 2. The power
spectra corresponding to these temporal variations are shown in figure 4 and indicate that the shear layer,
the separation zone, and the wake are all locked on to a single frequency fc/U∞ of around 3.3. When
this lock-on frequency fc/U∞ is renormalized using the length Lsep of the separation bubble, we find that
fsepLsep/U∞ ≈ 1. Similarly, we use the width of the wake Wwake to rescale the vortex shedding frequency in
the wake to be fwakeWwake/U∞ ≈ 0.26. Here, the width of the wake Wwake is simply the thickness of the flat
plate plus the height Hsep of the separation bubble. It should be noted that the natural shedding frequency
in the wake for this geometry in the absence of a separation bubble was found to be fwakec/U∞ = 4.9. On
rescaling, this value yields fwakeWwake/U∞ ≈ 0.25 which is close to fwakeWwake/U∞ ≈ 0.26 obtained in the
presence of the separation bubble.

We now examine the effect of forcing the ZNMF jet slightly upstream of the point of separation close
to the lock-on frequency and its harmonics as shown in Table 1. Figures 5(a)–(d) show mean streamlines
superimposed on contours of instantaneous spanwise vorticity for Cases 1–4, respectively. It is clear that
forcing the shear layer close to the lock-on frequency or its first sub- or super-harmonic immediately reattaches
the shear layer to the airfoil surface and delays separation farther downstream, besides reducing the height
of the separation bubble significantly.

The power spectra for Case 1 in figures 6(a)–(c) show that forcing at fJc/U∞ = 1.5 causes the shear layer
and the separation zone to decouple from the wake instability and lock on to the superharmonic of the forcing
frequency (i.e., 4.5U∞/c). The same is observed for forcing close to the lock-on frequency (see figures 6d–f )
with both the shear layer and the separation zone generating strong superharmonics at 6.0U∞/c. However,
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(a) Case 1, F+ = 1.5
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(c) Case 3, F+ = 6.0
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(d) Case 4, F+ = 9.0

Figure 5. Plots of instantaneous spanwise vorticity (ωzc/U∞) and mean streamlines for Cases 1–4.

when the shear layer is forced at 6.0U∞/c, as shown in figures 6(g)–(i), the entire system changes its state
and locks on to the forcing frequency. Forcing the shear layer at a higher superharmonic (fJc/U∞ = 9.0)
appears to amplify Kelvin–Helmholtz type instabilities in the separated shear layer (see figure 5d) leading
to subharmonic pairing in the separated region. As shown by the mean streamlines, this process further
deteriorates the separated region rendering ZNMF forcing ineffective. The power spectra in figures 6(j )–(l)
show that fsep and fwake for Case 4 are the same as those for the uncontrolled case.

Finally, we examine the distribution of mean skin-friction coefficient on the suction side of the flat plate for
Cases 0–4 shown in figure 7. In these plots, the change in sign of wall shear stress from positive to negative and
vice versa identifies locations of primary separation and reattachment, respectively. Distributions for Cases 0
and 4 indicate the presence of secondary separation (and reattachment) within the primary separation bubble.
Among the four controlled cases considered, Case 3 yields optimal control or maximum flow attachment as
measured by the mean surface shear stress. The location of separation (xsep/c), and the length (Lsep) and
the height (Hsep) of the mean separation bubble over the flat plate for various cases are summarized in
Table 2.

Table 2. Location and size of the
separation bubble for Cases 0–4.

Case xsep/c Lsep/c Hsep/c

0 0.646 0.308 0.029
1 0.691 0.236 0.015
2 0.693 0.249 0.011
3 0.689 0.202 0.010
4 0.653 0.314 0.031

B. Linear Stability and Fourier Analyses

The growth of small perturbations introduced into the laminar shear layer by ZNMF actuator can be charac-
terized and studied using a set of linear equations as opposed to the fully non-linear Navier–Stokes equations.
This is done using the so-called Linear Stability Theory (LST) based on the Orr–Sommerfeld equation. The
flow field is decomposed into a known steady base flow U = U(y), V = 0 and P = P (x, y) (parallel-flow
assumption), and small two-dimensional disturbances s′ = u′, v′ and p′. The Navier–Stokes equations of the
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Figure 6. Power spectra corresponding to temporal variations of cross-stream velocity v in the shear layer,
the separation bubble, and the wake for Cases 1–4.
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Figure 7. Distribution of skin-friction coefficient on the suction side for Cases 0–4. Case 0 (No forcing),
Case 1 (F+ = 1.5), Case 2 (F+ = 3.0), Case 3 (F+ = 6.0), Case 4 (F+ = 9.0).

two-dimensional incompressible flow are linearized about the base flow with respect to these disturbances to
yield a system of linear partial differential equations. Assuming a normal-mode for the disturbances:

s′ = ŝ(y) · ei(αx−ωt), ŝ(y) ∈ C, (5)

and eliminating pressure from the system of linear equations, the following fourth order differential equation
known as the Orr–Sommerfeld equation (Schlichting19) is obtained:

(αU − ω)
(

d2

dy2
− α2

)
v̂ − α

d2U

dy2
v̂ = − i

Re

(
d4

dy4
− 2α2 d2

dy2
+ α4

)
v̂ (6)

with complex α, �(α) being the streamwise wave number and �(α) the streamwise amplification rate, and
complex ω, �(ω) being the circular frequency and �(ω) the temporal amplification rate.

When the above equation (Eq. 6) is supplemented by homogeneous boundary conditions at the wall and
at large distances from the wall (outer flow), and either α or ω assigned, we obtain an eigenvalue problem
for the perturbations. In what follows, we consider the spatial approach by prescribing �(ω) and setting
�(ω) = 0 to obtain a complex disturbance spectrum α. Since the only input required for stability analysis
is the streamwise base-flow velocity profile U(y) at a certain streamwise location, this theory is classified as
local linear stability theory. With the present definition, for a given disturbance frequency �(ω) = β = 2πf ,
the flow is unstable if �(α) < 0 and stable if �(α) > 0.

A numerical solution to the Orr–Sommerfeld equation is obtained by means of an iterative shooting-
method (Müller20). Only the non-zero discrete eigenvalue corresponding to strongest amplification is consid-
ered. Initial values for the iteration procedure are obtained from a direct solution of the temporal approach
(i.e., prescribing �(α) and setting �(α) = 0) by employing the conversion procedure based on the formula by
Gaster.21 The stability diagrams for Cases 0–4 computed using linear stability theory over the flat region of
the plate 0.2 < x/c < 1.0 are shown in figure 8. A number of observations can be made from these diagrams.
First, it can be seen that the controlled flow is more stable than the uncontrolled baseline flow: the area of
the amplified region contained within the curve of neutral stability is much smaller for Cases 1–4 with ZNMF
forcing than for the uncontrolled case. Second, among the four cases with ZNMF forcing, Case 3 which yields
optimal control also has the smallest amplified region. Such a stabilizing effect of small disturbances on the
mean flow even upstream of the point of saturation of dominant disturbance has been reported by Marxen.22

Furthermore, the most unstable frequency, which corresponds to fc/U∞ ≈ 8 in the baseline case is lowered
to fc/U∞ ≈ 4.5 in Cases 1–3 and to fc/U∞ ≈ 5.5 in Case 4.

To allow comparisons between numerical and theoretical results, numerical results for one forcing period
are Fourier analyzed in time with the forcing frequency as the respective fundamental frequency β0 =
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(b) Case 1 F+ = 1.5
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(c) Case 2, F+ = 3.0
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(d) Case 3, F+ = 6.0
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(e) Case 4, F+ = 9.0

Figure 8. Stability diagrams for Cases 0–4: contours of the imaginary part of the smallest non-zero eigenvalue
αi computed from the Orr–Sommerfeld equation. The thick, solid line gives the curve of neutral stability
corresponding to �(α) = 0, thin solid lines indicate contours of �(α) > 0 corresponding to damped perturbations,
and thin dashed lines indicate contours of �(α) < 0 corresponding to amplified disturbances.
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(d) Case 4, F+ = 9.0

Figure 9. Disturbance amplification based on the streamwise disturbance velocity for Cases 0–4 in comparison
to results from LST. û1 at β0, û2 at 2β0, û3 at 3β0, û4 at 4β0, ◦ LST (ũk, k = 1, 2, 3, 4).

2π(fJc/U∞). The corresponding inverse discrete Fourier transform is

u(x, y, tn) =
1
N

N−1∑
k=0

|ûk(x, y)| · cos[kβ0n∆t + Φk(x, y)], n = 0, 1, 2, . . . , N − 1 (7)

where N is the sample size in one forcing period, n the sampling index (i.e.,n = 1, 2, . . . , N − 1) and ∆t
the sampling interval so that discrete time tn = n∆t. Here, the Fourier coefficient ûk is complex (i.e.,
ûk = ûk,r + iûk,i) with amplitude |ûk| =

√
û2

k,r + û2
k,i and phase Φk = tan−1(ûk,i/ûk,r).

The downstream evolution of disturbance amplitude in the simulations is quantified and compared against
LST predictions. For the Fourier transformed data from the simulations, wall-normal maxima of the ampli-
tudes of the streamwise disturbance velocity are computed as

ûmax
k (x) = max{|ûk(x = const, y)|}. (8)

These are plotted in figures 9(a)–(d) for Cases 1–4, respectively. In addition, theoretical amplification rates
�(α) from LST are integrated in the downstream direction according to ũk(x) = Ak exp{− ∫ �(α(x))dx},
with arbitrary Ak based on the respective underlying mean flow, and plotted. In these plots, we limit
our attention to disturbance amplitudes corresponding to fc/U∞ ≤ 12 as it can be seen from the stability
diagrams that disturbances at fc/U∞ > 12 are damped downstream. In Cases 1–4 with ZNMF forcing, a
spike in amplitude is evident for the forcing frequency and its superharmonics at the location of the ZNMF
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actuator. We also find a region slightly downstream of the actuator location where the observed amplification
at the forcing frequency (β0) in the simulations shows a good agreement with LST. However, only in Case 3
does this disturbance at the forcing frequency remain dominant downstream of the position of first deviation
between simulation results and theory.

For Case 1 in figure 9(a), the disturbance at 3β0 becomes dominant over the forced disturbance and
is more strongly amplified than suggested by LST. This observation is also true for the Case 2 shown in
figure 9(b) where the disturbance amplitude at 2β0 exceeds that of the forced disturbance at β0 at x/c = 0.8,
but quickly reverses order at x/c = 0.85. The saturation of disturbances at the respective forcing frequency
in Cases 1 and 2 is marked by the sudden drop in amplification at around x/c = 0.76. However, this
saturation does not translate to very early reattachment as in Case 3 because saturation of disturbances at
higher harmonics is not complete and this results in only slightly increased mixing that is not sufficient to
reattach the flow immediately.

In Case 3 shown in figure 9(c), the forced disturbance at β0 remains dominant downstream of forcing
and its growth is in agreement with LST. This forced disturbance saturates leading to roll-up of the shear
layer associated with gain in amplitude of its superharmonics, although not exceeding that of the forced
disturbance, followed by pinch-off of these vortices. This process leads to early reattachment as observed
previously in several studies of transition (Marxen22) and active control (Rist & Augustin2) of laminar
separation bubbles. As evidenced in the plots of skin-friction coefficient (figure 7) and mean streamlines
(figure 5), ZNMF forcing at F+ = 9.0 in Case 4 is ineffective in reducing the size of the separation bubble.
From the spectra shown for this case in figure 6(j )–(l), it is clear that disturbances at frequencies lower than
the forcing frequency might play a significant role. Therefore, Fourier analysis of the flow field for more than
one forcing period will help understand the growth and saturation of these disturbances at lower frequencies.

The origin of superharmonics in Cases 1, 2 and 3 is caused by non-linear interaction around the location
of forcing via the ZNMF actuator. Since, the amplification rates of these superharmonics in the simulations
are different from those suggested by LST, their downstream growth is more likely not linear, but non-linear.

C. Effects of Reynolds Number

While the results at Reynolds number of 60, 000 indicate that the entire system is locked on to a single fre-
quency, preliminary results from the simulation of the same flow configuration at Reynolds number of 100, 000
show markedly different spectral dynamics. Figure 10 shows the mean streamline pattern superimposed on
contours of instantaneous spanwise vorticity obtained for the baseline uncontrolled flow at Re = 100, 000.

x/c

y/
c

0.6 0.7 0.8 0.9 1.0

-0.05

0.00

0.05

0.10

Figure 10. Plot of instantaneous spanwise vorticity (ωzc/U∞) and mean streamlines for the baseline uncon-
trolled flow at Re = 100, 000.

The length (Lsep) and the height (Hsep) of the mean separation bubble measure 0.32c and 0.029c, respec-
tively. Figure 11 shows power spectra corresponding to the temporal variations of cross-stream velocity v in
the shear layer, the separation zone and the wake for the uncontrolled separated flow at Re = 100, 000. From
these spectra, we deduce that fSLc/U∞ ≈ 9, fsepc/U∞ ≈ 3 and fwakec/U∞ ≈ 3. Thus, at Re = 100, 000,
the frequency of the separated region manifests as a subharmonic of the shear layer frequency. The vortices
that pinch off from the separated zone convect downstream and interact with the wake. This interaction
shows up as a strong peak at fc/U∞ ≈ 3 in the power spectrum of the wake, while the second peak at
fc/U∞ ≈ 2.6 in the same plot corresponds to the frequency of vortex shedding from the pressure side of
the plate trailing edge. The increase in the shear layer frequency fSLc/U∞ from 3.3 at Re = 60, 000 to 9.0
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Figure 11. Power spectra corresponding to temporal variations of the cross-stream velocity in the (a) shear
layer, (b) the separation zone, and (c) the wake for the case at Re = 100, 000.

at Re = 100, 000 is in accordance with the scaling of the shear layer frequency with momentum thickness θ
which in turn depends on the Reynolds number. Simulations of separation control using ZNMF jet forcing
at Re = 100, 000 are currently under way and will be presented in future publications.

VII. Conclusions

Time-accurate, two-dimensional simulations are carried out in a flow configuration designed to investigate
ZNMF jet based separation control in a canonical separated airfoil flow. Aft-chord separation is induced
on the suction side of a flat plate with elliptic leading edge and blunt trailing edge at zero incidence in a
free-stream by applying an adverse pressure gradient. The resulting flow at a chord Reynolds number of
60, 000 is then subjected to zero-net mass-flux (ZNMF) perturbations of the boundary layer. Results from
the uncontrolled baseline flow at Re = 60, 000 indicate that the entire system locks on to a single frequency.
Forcing the shear layer close to this lock-on frequency or its first subharmonic causes the separation zone
to couple with the superharmonic of the forcing frequency. ZNMF excitation at the first superharmonic
of the lock-on frequency causes the system to undergo a state change by forcing both the separation zone
and the wake to couple with the forcing frequency. Whereas this forcing reduces the size of the separation
bubble significantly, forcing at a higher superharmonic does not effectively couple with the frequency of the
separation zone.

Local linear stability of the mean flows, obtained with and without ZNMF forcing, is investigated based
on the Orr–Sommerfeld equation. The simulation results are also Fourier analyzed in time and compared
with the theoretical eigen-sloutions. The analyses indicate that larger separation bubble is associated with
larger region of instability and higher most-amplified frequency in the stability diagrams. In all cases with
ZNMF forcing, a region of good agreement between simulations and LST is obtained with respect to the
amplification of disturbances at respective forcing frequencies. However, only in Case 3, where the forcing
frequency is close to most-amplified frequency of the resulting mean flow, does the forced disturbance lead to
complete saturation and early reattachment. A drawback of LST is that it cannot predict the most-amplified
frequency for a controlled flow a priori. However, an educated guess for the forcing frequency can be obtained
by selecting a frequency that is slightly lower than the most-amplified frequency obtained from a stability
analysis of the uncontrolled flow.

At Re = 60, 000 and under the conditions of the pressure gradient considered in the present study, the
dynamics of the separation bubble are largely governed by ZNMF forcing and does not seem to be influenced
by the presence of the wake downstream of the bubble. On the contrary, the wake seems to be driven by
vortices generated in the separated region. This suggests that in these cases, the separation bubble dynamics
are decoupled from the wake instability and can be studied independently.
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