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Two-dimensional numerical simulations are used to examine the vorticity flux and slot 
entrance effects in zero-net mass-flux devices. The simulations allow us to extract a simple 
scaling law for the vorticity flux which provides insight into the relative importance of the 
various operational parameters. In addition to this, a semi-analytical model is proposed in 
order to determine the pressure loss across an orifice or slot for oscillatory flows. A key 
parameter in this model is the normalized entrance length and numerical simulations are 
used to determine the variation of this parameter with the jet Strouhal number.  

Nomenclature 
d = slot width, m  
D = cavity depth, m  
δ = boundary layer thickness, m  
h = slot height, m 
hc = channel height, m 
H = cavity height, m 
ξz = z-component of vorticity, s-1 
LE = entrance length, m 
υ = kinematic viscosity, m2/s 

vΩ  = flux of vorticity, m2/s 
ω = radian frequency, Hz 
p = pressure, N/m2 
φ = phase angle, degrees 
Q = volumetric flow rate, m2/s 
Re = Reynolds number, υdV jj =Re , υdu=Re  

St  = Strouhal number, / jSt d Vω= , /St d uω=  

S  = Stokes number, 2 /S dω υ= , 2 /cS hω υ=          
T = Forcing period, ωπ /2=T  
u = x-component of velocity , m/s 
u  = averaged velocity, m/s 
Uo = Velocity amplitude, m/s 
U∞ = Cross-stream velocity , m/s 
v = y-component of velocity, m/s 

jV  = averaged jet velocity, m/s 
W = width of cavity, m 

Subscripts 
i  =  indicial notations 

I. Introduction 
ero-net mass-flux (ZNMF) devices, or synthetic jets as they are popularly known, have proven to be versatile 
devices. The versatility of these devices is primarily because they provide unsteady forcing, which is more 

effective than its steady counterpart, and since the jets are synthesized from the working fluid itself complex fluid 
circuits are not required. Moreover, actuation frequency and waveform for these devices can usually be adjusted to a 
particular flow configuration.  
 A typical synthetic jet actuator consists of a jet orifice opposed on one side by an enclosed cavity consisting of 
three components: an oscillatory driver, a cavity, and an orifice or slot as shown in Fig. 1. The oscillating driver 
compresses and expands the fluid in the cavity by changing the cavity volume at an excitation frequency to create 
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pressure oscillations. Due to time-periodic changes in the cavity volume a jet is synthesized from the entrained fluid, 
and if these changes are sufficiently strong, a train of vortex rings are generated at the edge of the orifice. Thus even 
with a zero net mass-flux through the orifice, the actuator imparts a finite momentum to the surrounding fluid. 
Interaction of the jet with an external flow can lead to closed recirculation regions which, in turn, lead to significant 
global effects on the flow boundary, like modification of 
the pressure distribution, on scales larger than the 
characteristic length scales of the synthetic jets 
themselves1,2.  
 Extensive experimental and numerical investigations 
have been carried out for synthetic jets operating both in 
a quiescent medium and interacting with an external 
boundary layer in the aforementioned applications. 
Glezer and Amitay3 have provided a comprehensive 
review on the evolution of synthetic jets and related 
work. Most of these studies have found that the 
performance characteristics of ZNMF devices are 
governed by a number of geometrical, structural and 
flow parameters4-8. However, there is still insufficient 
understanding as to how the performance of these 
devices scales with the governing parameters. Utturkar 
et al.9 have carried out studies for parametric 
characterization of jets in a quiescent medium.  The authors proposed and validated a jet formation criterion as a 
function of the ratio of jet Reynolds number to Stokes number for sharp orifices.  Similar jet formation criterion 
based on the non-dimensional stroke length have been presented recently by Milavonic and Zaman10.  Shuster and 
Smith11 have concluded that both the orifice geometry and the non-dimensional stroke length determine whether a 
synthetic or a pulsed jet is formed. For a synthetic jet in a crossflow, however, the important issue is that of 
penetration of the boundary layer.  For transverse jets in crossflow, studies indicate that the maximum jet penetration 
for improved mixing occurs for specific values of jet Strouhal numbers12,13; however similar parametric 
investigations are lacking for synthetic jets in crossflow. A parameter considered key to characterizing the jet is the 
momentum coefficient Cµ

14,15, generally defined as the ratio of the momentum imparted by the jet to the momentum 
of the external flow. A recent study shows that the penetration height for a synthetic jet in a crossflow increases with 
the increasing stroke length for a fixed frequency and crossflow velocity10. 

The purpose of the current study is to develop a better understanding of the influence of these parameters on the 
flow characteristics of ZNMF actuators. This study focuses on two separate aspects of ZNMF devices: (1) the local 
interaction between a synthetic jet and incoming boundary layer in order to develop a scaling law for vorticity flux 
and (2) a semi-analytic model for calculating a loss coefficient in oscillatory slot/orifice flows at low Reynolds 
numbers. Similar to the scaling presented by Utturkar et al.9, the importance of the functional dependence of the 
vorticity flux on key operational parameters is investigated. The focus here is on extracting a scaling law which 
relates the vorticity flux to both the Strouhal number and the ratio of external velocity to jet velocity. It is expected 
that the scaling laws developed from the current study will form an essential component in the design and 
deployment of ZNMF actuators in practical applications. 
 Furthermore, the development of low-dimensional models of synthetic jet requires a better understanding of the 
pressure losses across the orifice height. These are difficult to measure experimentally and numerical simulations 
provide a viable alternative. Depending on the flow parameters, the pressure losses might be linear and/or non-
linear16. In the current paper, we propose a semi-theoretical model based on the full Navier-Stokes (N-S) equations 
and use simulations to evaluate the scaling of unknown coefficients in this model. 

II. Scaling Arguments  

A. Vorticity Flux Scaling for ZNMF actuators 
The entrainment and expulsion of fluid by the actuator can lead to the formation of vortices that promote mixing 

and even transition of a laminar boundary layer. The expelled vortices transfer momentum to the external boundary 
layer and also lead to time-averaged recirculation bubbles in the proximity of the slot which might be suitable for 
certain applications17. Hence in addition to the momentum coefficient, characterization of the vorticity flux during 
the expulsion phase is also important18. Past simulations and experiments have shown that the vorticity flux during 
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Figure 1. A typical sharp lipped synthetic jet in a 
quiescent medium. 
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expulsion determines whether a synthetic jet is formed in quiescent flow9. This time-averaged flux of vorticity, vΩ  
across a planar slice during the expulsion phase can be defined as, 

 ∫ ∫=Ω
2/

0 0

T d

zv vdxdtξ  (1)  

where v is the axial jet velocity component. Simple scaling arguments led to the conclusion that the non-dimensional 
vorticity flux is inversely proportional to the Strouhal number, and jet formation requires that the vorticity flux is 

larger than a critical value9. Thus the formation criterion is KSt
dV j

v >
Ω −1~ , where the constant K is 2.0 and 0.16 

for two-dimensional and axisymmetric jets, respectively9. In the presence of crossflow, additional parameters such 
as dδ /  and jVU /∞ , are also expected to influence the vorticity flux. In general, for jets in crossflow, the 
following minimum functional dependence is expected 
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In the current paper, we use numerical simulations and experiments to extract the above scaling law for the case of 
zero pressure-gradient laminar boundary layer.  

B. Entrance Length Effects 
The ratio of pressure drop to volume flow rate, Qp /∆  , called acoustic impedance, is an important parameter in 

low-order models of synthetic jets. For ZNMF devices, since the jet slot is relatively short, it is expected that 
entrance and end-effects will contribute significantly to the pressure losses. Determination of these entrance and 
end-effects is best accomplished through numerical simulations.   

Unsteady pipe and channel flows, both oscillatory and pulsatile, have been investigated due mostly to their 
applications in biological systems. By definition, oscillatory flows have a zero time-averaged velocity where the 
velocity is generally given as )sin( tUu o ω= ; pulsatile flows are usually prescribed by )sin( tUu o ω+=  and 
therefore have a non-zero time-averaged velocity. Although several researchers have extensively investigated 
entrance effects in steady flows19-23 and pulsatile flows24,25, only a few have documented these effects for purely 
oscillatory flows.26,27 In the current study we develop a semi-analytical model for predicting the entrance losses and 
use numerical simulations to provide empirical data for the closure of the semi-analytic model. 

 
The governing equations for flow through 2-D channel of height hc = 2 with rigid walls, depicted in Fig. 2, can 

be non-dimensionalized based on the definition of the Stokes number, S . Using the BL assumptions and integrating 
across of the height of the channel, the governing equation can be expressed in terms of the axial velocity u as 

 
1

1

1

22 22
y
u

x
p

dyu
xt

Q
S

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

∫
−

 (3) 

where Q(t) and p are the volumetric flow rate and spatial-averaged pressure across the channel height, respectively. 
We then assume an axial velocity profile of the following form based on the analytical solution for developing 
steady laminar flow in a channel given by Fargie and Martin21, 
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Figure 2. Schematic of entrance flow in a channel. 
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where cosh( ') cosh( ' )( , , ) Real
cosh( ') 1
S S zf y S

S
α

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

 is based on the theoretical model given for oscillatory, fully-

developed, pressure-driven channel flow by Loundon and Tordesillas28. Here ( )ou t  is the oscillatory velocity in the 

jet core, α(x) is the core height, (1-α) is the boundary layer thickness, 'S S i=  and 
α
α

−
−

=
1
y

z . It should be pointed 

out here that there is an implicit assumption in Eq. (4) that the velocity is in phase at each time instant across the 
entire development length.  This might not necessarily be the case, and this assumption requires further evaluation.  

The continuity equation yields the form of ( )ou t  
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 is a known function of S . Integration of the momentum equation 

along the channel length then yields the following form for the pressure loss, 
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 are again known integral functions of S , and EL  is the 

unknown entrance length. This expression can further be modified to give the loss coefficient across the entrance 
region of the channel as, 
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Term I on the RHS represents the loss coefficient due to the inviscid acceleration, II is due to entrance loss from the 
nonlinear convective term, and term III is due to viscous effects. Hence we can obtain a closed form expression to 
determine the loss coefficient in the entrance length of a channel if α(x) and EL are known. In fact, one can assume a 
simple form for α(x), but EL  still needs to be determined as a function of other parameters.  It is known from 
previous work that the entrance length for pulsatile flows scales as SthLE 64.2= .29 The objective here is to 
develop a similar scaling law for the entrance length as a function of Strouhal number and Stokes (or Reynolds) 
number for a purely oscillatory flow using numerical simulations. This then can be used to obtain an expression for 
α(x), yielding finally a complete solution for the loss coefficient. 

III. Simulation Overview 

A. Numerical Methodology 
A synthetic jet issuing from a cavity is modeled by the unsteady, incompressible Navier-Stokes equations, 

written in tensor form, as 
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where the indices, i = 1, 2, 3 represent the )(),(),( 321 zxyxxx  directions, respectively, p is the pressure and the 
components of the velocity vector ui are denoted by )(),( 21 vuuu  and )(3 wu  respectively. The equations are non-
dimensionalized with the appropriate length and velocity scales, and Re is the Reynolds number. The Navier-Stokes 
equations are discretized using a cell-centered, collocated (non-staggered) arrangement of the primitive variables 
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velocity, ui and pressure, p. In addition to the cell-center velocities (ui), the face-center velocities (Ui), are also 
computed. Similar to a fully staggered arrangement, only the component normal to the cell-face is calculated and 
stored. The face-center velocity is used for computing the volume flux from each cell. The advantage of separately 
computing the face-center velocities has been initially proposed by Zang et al.30 and discussed in the context of the 
current method in Ye at al.31 The equations are integrated in time using a second-order accurate fractional step 
method. In the first step, the pressure field is computed by solving a Poisson equation. A second-order Adams-
Bashforth scheme is employed for the convective terms while the diffusion terms are discretized using an implicit 
Crank-Nicolson scheme which eliminates the viscous stability constraint. The pressure Poisson equation is solved 
with a Krylov-based approach. A multi-dimensional ghost-cell methodology is used to incorporate the effect of the 
immersed boundary on the flow. The general framework can be considered as Eulerian-Lagrangian, wherein the 
immersed boundaries are explicitly tracked as surfaces in a Lagrangian mode, while the flow computations are 
performed on a fixed Eulerian mesh. Care has been taken to ensure that the discretized equations satisfy local and 
global mass conservation constraints as well as pressure-velocity compatibility relations. The code has been 
rigorously validated by comparisons of several test cases against established experimental and computational 
data32,33.  

B. Flow Configuration for Synthetic Jet simulations 
To simulate a synthetic jet at the slot exit, the numerical simulations impose an oscillatory boundary condition 

Uosin(ωt) at the bottom of the cavity. Figure 3(a) shows the implementation of the boundary conditions for a typical 
2D synthetic jet in a crossflow. For a jet in a quiescent external flow, the three governing parameters are the jet 
Reynolds number Re j , Stokes number S  and h/d ratio. The Strouhal number ( St ) can also be used in place of 
either the Reynolds number or the Stokes number. The effectiveness of the synthetic jet to impart momentum to its 
surroundings is highly dependent on these parameters and the slot/orifice geometry. The presence of a crossflow 
brings in at least two additional parameters; jVU /∞  and d/δ . A typical 2-D grid for a rectangular synthetic jet in 
a crossflow in the vicinity of the jet exit is shown in Fig. 3(b). 

Since the number of parameters to be examined is large, we have restricted the analysis to low jet Reynolds 
number cases with a laminar boundary layer in crossflow. In addition, the geometry and the ratio d/δ  is held fixed 
for all runs, while Re j  and S  are varied to obtain different values of St . In another instance, St  is held fixed while 

the ratio JVU /∞  is varied. The details of the computations have been listed in Table 1. 
 

 
 

 

 
 

      
    (a)                 (b) 
Figure 3. (a) Synthetic jet computational boundary conditions and (b) a typical Cartesian grid in the 
vicinity of the slot. 
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Table 1. Computational details and range of parameters used for the vorticity flux simulations. 
 

Domain 
( )yx LL   ×  

Grids 
( )yx NN   ×  

Dimensions held 
Constant 

Range 
of Re j  

Range 
of S  

Range of 
jVU /∞  

10dx10d 154 × 127 
198 × 177 

dh / = 1.0 
d/δ = 2.0 

W / D = 3.0 
H / D  = 1.5 

93.75 
125 
250 
500 

5 
10 
20 
50 

0.5 
1.0 
2.0 
3.0 
4.0 

C. Flow Configuration for Entrance Flow simulations 
Two types of entrance configurations have been studied. Figure 2 shows a straight channel with an oscillatory 

velocity profile prescribed at the inlet. Such a channel represents the model configuration of a jet with a smooth 
entrance. In addition, a channel with sharp-corners at the entrance is also chosen, as seen in Fig. 4. A similar 
configuration has been used to study entrance losses for steady flow calculations34.  

The details of the channel dimensions based on the channel height hc and grids used are listed in Table 2. For 
both cases the inlet conditions are specified similar to a synthetic jet, where an oscillatory plug velocity profile 
Uosin(ωt) is prescribed. For the sharp orifice the inlet domain is of size 5hc x 2hc where hc is the channel height. In 
both cases the Reynolds number is based on averaged velocity during the expulsion stroke. 

 

 
Table 2. Computational details and range of parameters used for the entrance effect simulations. 

 
Channel Dimensions  

( )yx LL   ×  
Grids 

( )yx NN   ×  Range of Re Range of S  

cc hh 201 ×  

cc hh 301 ×  
54 × 251 

107 × 1001 

cccc hhhh 50125 ×+×  81 × 685 

50 
100 
250 
500 
1000 

5 
10 
15 
20 
30 

31.7 

IV. Results 

A. Vorticity Flux Scaling 
Figure 5 shows experimental data (for a circular orifice) on non-dimensional vorticity flux as a function of St  in 

a quiescent external flow for varying S  from 4 to 53.6. Details of these experiments are described in Gallas35. Use 
of the log scale shows that over the range of St  (0.068 – 25.4), the vorticity flux exhibits a power-law trend that 
seems to vary linearly with S . This is consistent with the simple scaling law of Utturkar et al.9 The objective in the 
current study is to determine if a jet in crossflow exhibits a similar scaling law.   

 

x 
y 

u(t) = Uo.sin(ωt) hc 

Vena-contracta

Figure 4. Schematic of entrance flow in a channel with a sharp-corner. 
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For simulations with crossflow the Reynolds number 
based on the boundary layer thickness ( )υδδ /Re ∞=U  is 
varied from 125 to 4000, while St  is varied between 0.1 – 
26.7. Figure 6 shows the vorticity contours of a synthetic 
jet interacting with a laminar boundary layer at δRe =1000 
for St  = 0.8 and 20.0. For St  = 0.80 ( Re j  = 125, S  = 10) 
the expelled vortices are swept away by the laminar 
boundary layer. For the same Re j  = 125 at significantly 
higher Strouhal number, the vortices formed are not 
completely expelled but are reingested. This indicates that 
for very high St , the vorticity flux might not have a 
significant effect on the boundary layer.  
 The normalized instantaneous vorticity flux, based on 
the magnitude of the vorticity across the slot exit, is shown 
in Fig. 7 as a function of phase angle. The plot shows a 
periodic behavior indicating that the flow has reached a 
stationary state. The magnitude of the vorticity is 
calculated by time-averaging over the expulsion half of the 
cycle.  

(a)  (a)  

(b)  (b)  

(c)  (c)  

(d)  (d)  
St  = 0.8 St  = 20.0 

Figure 6: Comparison of the vorticity contours for St  = 0.8 and St  = 20.0 at phase angles, (a) φ = 0°,  
(b) φ = 90°, (c) φ = 180° and (d) φ = 270° of a cycle.  Note that φ = 0° is the start of the expulsion stroke.   

Figure 5. Experimental results for vorticity flux 
as a function of Strouhal number for different 
Stokes numbers. 
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While fixing jVU /∞ = 4, S  is varied for a particular Re j , which yields four data sets with different Re j . A 
comparison of the time-averaged vorticity flux versue the St  reveals a negative power-law type behavior at all 
Reynolds numbers, as seen in Fig. 8(a). This is similar to the experimental findings for quiescent flows shown 
previously in Fig. 5. The vorticity flux also reveals an approximately linear dependence on JVU /∞  over a range of 
0.5 to 4 at a fixed Re j  and St , as seen in Fig. 8(b). This indicates that the non-dimensional vorticity flux can be 
expressed as a combination of these two parameters 

 (Re )v
j

J j

U= St
V d V

βα λ− ∞
⎛ ⎞Ω

+⎜ ⎟⎜ ⎟
⎝ ⎠

 (9) 

where α is an unknown function of Re j , and β and λ are constants that also need to be determined. Nonlinear 
regression analysis of the available data yields the values of the four constants listed in Table 3. We have found that 
among many possible functional dependencies on Re j , a simple log-law provides acceptable accuracy. 

 
Table 3.  Constants obtained for the scaling law. 

 
Constant Value 

λ  3.9 
β  0.9 

)(Re jα  
Re

0.66 ln
4.04

j⎛ ⎞
× ⎜ ⎟

⎝ ⎠
 

 
Hence we find a scaling law for the vorticity flux that varies with the natural logarithm of Re j , a negative power of 

St , and a linear function of jVU /∞ . Equation (9) is plotted in Fig. 8 along with the computed data, and we see that 
the fit is reasonable for most cases.  

 
(a)                                                                                (b) 

Figure 7: Normalized Ωv(t) across the slot exit as a function of the phase for four cycles, (a) St = 3.2 and 
jVU /∞ = 4, (b) St = 1.6 and jVU /∞ = 2. 
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B. Entrance Length Scaling 
Simulations were carried out to determine the entrance length for low Reynolds numbers ranging from 50 to 

1000 and Stokes number from 5 to 50, since most ZNMF devices operate in this range.  Grid independence studies 
showed that the variation in results is less than 0.4 %. The first set of simulations was carried out for a straight 
channel corresponding to an orifice with a rounded edge for the expulsion cycle only. The entrance length was 
calculated based on the length in the streamwise direction where the velocity reaches 99% of its peak value. Figure 9 
show the entrance length as a function of phase angle for Re = 50, 100, 250 and 500, respectively, at different 
Stokes numbers. For higher values of Stokes number the flow tends to have lower entrance lengths due to a decrease 
in the time required for the flow to develop, whereas the flow tends to reach a quasi-steady state for lower values of 
Stokes number. Also note that higher Reynolds number flows require longer entrance lengths. These results clearly 
show that the entrance length LE is a function of both Re and S . Since the simulations were restricted to the first 
half cycle (i.e., the expulsion stroke 0º−180º), we do not see the phase difference for the entrance lengths with 
increasing Stokes number that has been observed in the case of pulsatile flows25. 

Instead of using the maximum entrance length values we instead calculated the average entrance length values 
over the half cycle. Figure 10(a) plots the normalized average entrance length as a function of S  for five different 
Re ranging from 50 to 1000. It shows a rapid exponential decay for higher S  converging to an asymptotic value of 
LE. A similar observation was made for pulsatile flows with varying Womersley number ( υω /R , R being the 
radius of a tube) based on the maximum entrance length25. On the other hand, the variation of the entrance length 
versus the Reynolds number reflects a linear behavior, which is seen in Fig. 10(b). These results indicate that for 
sufficiently high values of S , the entrance length becomes independent of the Reynolds number, as is seen for S  = 
30.  This implies that while jet frequency is important, viscous effects are relatively unimportant and suggests that 
an inviscid frequency parameter such as St  may be appropriate for scaling.  The variation of the average entrance 
length versus St  for the different Re is shown in Fig. 11. In general, the various curves collapse, particularly for St  
greater than ~1. Even for lower values of St , the entrance length shows a power-law trend, which suggests that it 
can be scaled directly with the inverse power of St . This corresponds to observations made earlier for pulsatile 
flows.29 

 
 
 

  (a)                                                                                        (b) 

Figure 8: Vorticity flux as a function of (a) Strouhal number and (b) JVU /∞  at different Re j . 
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(a) (b)

(c) (d)

Figure 9:  Entrance length variation as a function of phase for varying Stokes number at (a) Re = 50, (b) 
Re = 100, (c) Re = 250 and (d) Re =500. 

 

(a) (b)

Figure 10: Average entrance length as a function of (a) Stokes number, and (b) Reynolds number. 
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Figure 11: Average entrance length as a function of 
Strouhal number. 

From the point of view of ZNMF actuators used 
in practical applications, the flow configuration of a 
channel with a sharp entrance is more relevant. The 
simulations were repeated for the same set of 
parameters as that of the purely straight channel, 
and it was observed that both flows are inherently 
different. Due to the sharp corner, the flow in the 
inlet region of the channel develops a vena-
contracta during the expulsion cycle, as illustrated 
in Fig. 4. The size of vena-contracta varies during 
the cycle and disappears during the ingestion phase 
where a counter-rotating pair of vortices is formed 
near the lip of the entrance. Thus the flow is 
significantly more complicated in this second case. 

Figure 12 shows the velocity profiles at the 
entrance for the second flow configuration for two 
different Stokes numbers. For the lower Stokes 
number case, during the expulsion stroke the 
velocity magnitude near the center is slightly less 
than the near wall values, which is characteristic of 
oscillatory flows. However during the peak 
ingestion stroke the flow profile is found to be 
completely parabolic as seen in Fig. 12(a), which is inherently different from the peak expulsion stroke profile. For 
the higher Stokes number case, seen in Fig. 12(b), the velocity profiles exhibit the “Womersley” type profile, found 
in fully-developed oscillatory flows, at all phases in the cycle.  

As mentioned earlier there are some inherent difficulties associated with the determination of the scaling of the 
entrance length in such a configuration. Figure 13 shows the centerline velocity and pressure profiles at peak 
expulsion and ingestion phases for two different Reynolds numbers ( S  = 10). The centerline peaks in the vena-
contracta due to fluid acceleration and drops linearly in the downstream region during the expulsion phase. As 
shown in Fig. 13(a), the local peak increases with increasing Reynolds number. During the peak ingestion phase at 
Re= 50, the velocity increases right after the fluid enters the channel, while the Re = 250 case shows a sudden drop 
before a subsequent increase to a local maximum. Fig. 13(b) shows a nonlinear change in the centerline pressure due 
to the velocity gradients along the channel. This is different from the observations made by Sadri and Floryan34 for 
steady flows, where it was observed that, for Re < 137, the flow does not separate and the pressure decreases 
linearly. Thus further simulations need to be performed in order to better assess the characteristics of the flow in this 
configuration.  

 
Figure 12: Velocity profiles at the entrance of a slot with a sharp entrance at Re = 100, (a) S = 5, and (b) 
S =30. 

(a) (b) 
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Figure 13: Centerline profiles at Re = 50 and Re = 250 for (a) velocity and (b) pressure. 

V. Conclusions 
Two-dimensional simulations are used to develop a scaling law for the vorticity flux from a zero-net mass-flux 

device operating in a crossflow laminar boundary layer. It is observed that for a fixed geometry and for a range of 
parameters included in the current study, the non-dimensional vorticity flux scales with the natural logarithm of jet 
Reynolds number ( Re j ), as an inverse power (nearly -1) with the Strouhal number ( St ), and linearly with the ratio 

of the crosstream velocity to the average jet velocity ( jVU /∞ ). 
Next, in order to determine the pressure loss across an orifice, a semi-analytical model is formulated for an 

oscillatory flow in a channel. Numerical simulations are used in order to determine the scaling of entrance length at 
low Reynolds numbers. At higher values of both Stokes number ( S  > 30) and Strouhal number ( St  > 1) the 
entrance length is not influenced by Re, and shows an inverse power-law-type behavior. Preliminary simulations of 
oscillatory entrance flow in a slot with a sharp inlet have also been carried out. The presence of the sharp lip leads to 
a more complex flow with a vena-contracta, and further simulations are needed in order to characterize the entrance 
effects in this configuration. 
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