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ABSTRACT
A highly accurate Fourier-Chebyshev spectral collocation

method has been used to simulate flow in the wake of a sphere
in the Reynolds number range from 350 to 650. Flow
visualizations and frequency spectra provide a glimpse of the
complex vortex dynamics that are observed in the sphere wake.
It is found that in addition to the vortex shedding frequency
which corresponds to the shedding of large-scale vortex loops in
the wake other lower and higher frequencies are also present and
the complex evolution of the vortices in the wake is a result of
the non-linear interaction of these frequencies. The response of
the sphere wake to flow perturbations is also addressed.
Interestingly, it is found that the sphere wake exhibits classic
symptoms of the vortex shedding “lock-on” phenomenon which
has hitherto been observed mainly in 2-D bluff-body wakes.

1. INTRODUCTION
The sphere wake which is a prototypical axisymmetric wake

is not as well understood as its two-dimensional counter part, the
circular cylinder wake. Studies to date indicate that vortex
shedding in the sphere wake is substantially different from that
in the wake of a cylinder and therefore little of what has been
learnt for 2-D bluff body wakes is directly applicable to
axisymmetric  wakes. Detailed investigation of the structure of
the sphere wake were initiated by Margavey and co-workers9,10

who mapped out the various transition ranges in the sphere wake
over a range of Reynolds numbers. More recent
experiments17,19,18 and numerical simulations8,11,12,16,20 have
also added to our knowledge of the various bifurcations that the
sphere wake undergoes as the Reynolds number is increased.
Based on these studies it is known that vortex shedding in the
sphere wake occurs for Reynolds numbers greater than about
300. As the Reynolds number is increased beyond this value the
vortex shedding process goes through a series of bifurcations
which successively increase its complexity. Although a number
of previous investigations have reported these bifurcations very
little consensus exists regarding the nature of these bifurcations.

From the point of view of flow-structure interaction it is also
of interest to understand how the sphere wake behaves when

exposed to a perturbed flow. Cylinder wakes exhibit the
phenomenon of vortex shedding “lock-on” where the vortex
shedding can lock-on to a forcing frequency which is different
from the natural shedding frequency1,3,5,6,7,15. One
characteristic  feature of vortex shedding from cylinders is that
every shedding cycle involves the formation of two
counter-rotating vortices. As a result of this, the lift oscillates at
the shedding frequency whereas the drag oscillates at twice the
shedding frequency. Thus the cylinder wake exhibits a strong
superharmonic component. In contrast vortex shedding from a
sphere at low Reynolds numbers involves the formation of one
vortex loop per shedding cycle and thus a significant
superharmonic component does not exist12. This difference
between the two wakes is expected to result in a markedly
different response to flow perturbations.

In the current study we therefore address two aspects of
vortex shedding in sphere wakes (1) The complexity of the
vortex dynamics observed in the sphere wake in the transitional
range 350<Red<650 (2) The response of the sphere wake to
freestream perturbations and vortex shedding lock-on in a sphere
wake.

2. NUMERICAL METHODOLOGY
A solver based on a Fourier–Chebyshev spectral collocation

has been developed for direct numerical simulation of
three-dimensional,  viscous, incompressible flow past a prolate
spheroid. Flow past a sphere can be solved as a special case. Here
we present only a brief outline of the solver used for the current
simulations. For a detailed description the reader is referred to
Mittal11 .

The governing equations are the unsteady, incompressible
Navier-Stokes equations given by

�.u � 0 (1)
�u
�t

� u.�u � ��P �
1

Red
�

2u (2)

where u and P are the velocity and pressure respectively and Red

is the Reynolds number based on the freestream velocity (U�)
and diameter (d) of the sphere. The above equations are
transformed to the prolate spheroidal coordinate system and
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discretized on an orthogonal curvilinear body-fitted grid. The
azimuthal direction � is periodic over 2� and this allows us to use
a Fourier collocation method in this direction. In the �–direction,
which is referred to as the wall-tangential direction, the flow is
periodic not over � but over 2�� and a restricted Fourier series
is used for computing derivatives along this direction. The
algorithm also allows us to cluster more points in the wake in the
�–direction. The semi-infinite flow domain is truncated to a large
but finite distance and a Chebyshev collocation method is used
in this non-periodic direction. Thus, spectral discretization is
used in all the three directions resulting in a highly accurate
computation of the spatial derivatives.

A two-step time-split scheme4 is used for advancing the
solution in time. The intermediate velocity field is obtained first
by advancing through the advection-diffusion equation. and a
second-order accurate, semi-implicit method is used for this
step. The radial and azimuthal viscous terms are discretized in
an implicit manner using a Crank-Nicolson scheme. All other
terms such as the non-linear convection and other cross-terms
that result from the curvilinear nature of the coordinate system
are treated explicitly using a 2nd-order Adams-Bashforth
scheme. The next step is pressure-correction and this requires the
solution of the pressure Poisson equation which is solved with a
homogeneous Neumann condition on the boundaries. Finally the
pressure correction is added to the intermediate velocity and a
divergence-free velocity field is obtained. A higher order
boundary condition for the intermediate velocity is used which
results in accurate imposition of the no-slip, no-penetration
condition on the body. Details of the time-split scheme can be
found in Mittal11. Figure 1 shows a 2-D cut of a typical grid used
in our simulations. The 3-D mesh is obtained by a rotation of the
2-D mesh about the axis of the sphere.

Since the flow domain is truncated to a finite extent in the
current simulations, appropriate boundary conditions are
required at the outer boundary. Inviscid flow past the spheroid is
computed first and this is used as the inflow boundary condition
as well as the initial condition. At the outflow boundary we use
a previously developed non-reflective boundary condition which
allows vortical disturbances to exit the computational domain in
a smooth manner without any significant reflections. This
boundary treatment has been tested extensively in cylindrical
and spheroidal geometries and details of these tests can be found
in Mittal & Balachandar14 and Mittal11.

3. RESULTS AND DISCUSSIONS

Natural Vortex Shedding
The current study will focus on the 350<Red<650 regime. It

is known from previous studies16,18 that for Reynolds numbers
lower than 300 small scale perturbations do not lead to vortex
shedding in the wake. However at higher Reynolds number,
perturbation are amplified by the inherent instability of the wake
and leads to a dynamically complex vortex shedding process. In
the current simulations a small perturbation is given for a short
duration of time at the beginning and the flow is then allowed to

develop naturally. The perturbation grows under the influence of
the inherent wake instability and results in vortex shedding. Each
simulation is integrated in time until a stationary state is obtained
and this can take up to 200d�U�. The simulation is run over an
additional time interval of about 120d�U� after the stationary
state is reached.

Figure 2a shows the vortex topology in the wake of the sphere
at Red=350. The vortices in the wake have been identified by
plotting one isosurface of the imaginary part of the eigenvalue
of the velocity gradient tensor. The most striking feature
observed in the bottom view of Figure 2a is the apparent
symmetry of the wake about a plane passing through the wake
centerline.  This peculiar condition has been the subject of a
previous paper12 where it has been shown that this planar
symmetric vortex shedding may exist upto a Reynolds number
of about 375. Figure 3a shows the frequency spectra
corresponding to the temporal variation of the transverse
velocity component at one location in the near wake. The spectra
indicates a vortex shedding Strouhal number of 0.138�0.003.
However, in addition to the vortex shedding frequency, the
spectra also shows a peak at 0.040�0.003. The dotted line shows
the spectra from the computation of Bagchi & Balachandar2

which employs a different solver. The power spectral density of
their plot has been scaled down in order to fit both curves on the
same plot. Their simulation predicts a vortex shedding frequency
of 0.135�0.005 and a lower frequency of 0.034�0.005 both of
which are in good agreement with our simulation.

Figure 2b and c show the vortex topology for Red=500 and
650 respectively. In both cases it can be seen that the orientation
of the vortex varies significantly from cycle to cycle.
Furthermore, both figures shows the formation of vortex rings in
the downstream region of the wake and this is in line with the
observations of Margavey & Bishop9. Figure 3b shows the
spectra for the Red=500 case and we find that the shedding
frequency for this case is 0.150�0.006�. However in addition to
the vortex shedding frequency, lower frequencies of 0.05 and
0.025 also exist. A similar low frequency has also been observed
in the simulation of Tomboulides et al.20 Figure 3c shows the
frequency spectra for Red=650 and we find that the vortex
shedding Strouhal number is 0.176�0.008. In addition to this the
spectra also clearly shows a peak at a higher frequency of
0.272�0.008. Thus, even though there does not seem to be a
significant difference in the topology of the wake at these two
Reynolds number, the spectra indicates that the dynamics of the
wake are quite different.

The presence of the high frequency in the Red=650 is
somewhat surprising. As shown in Figure 4, experiments19

indicate a “high-mode” of shedding in the wake at Reynolds
numbers higher than about 800. This shedding mode is
associated with the formation of shear layer vortices in the
separated shear layers which typically occurs at a frequency
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higher than the vortex shedding frequency. Our simulation show
the presence of a higher frequency at a Reynolds number of 650
which would indicate that the onset of the high-mode occurs at
a lower Reynolds number than previously reported. However,
this is not confirmed by flow visualizations. Figure 5 shows a
contour plot of the instantaneous azimuthal vorticity distribution
and no rollup of the separating shear layers can be observed. It
is possible that the higher frequency is created due to non-linear
interaction between the vortex shedding frequency and other
lower frequencies but further analysis is needed in order to
confirm this hypothesis.

Vortex Shedding Lock-On in Perturbed Flow
Previous studies1,3,5,6,7,15 of flow past circular cylinders

have shown that in the presence of an external periodic forcing
mechanism, vortex shedding from a cylinder can lock-on to
frequency of the external forcing. The forcing can either come
from free/forced vibrations of the cylinder or from perturbations
in the surrounding flow. This phenomenon has importance in
flow-structure interaction since for an elastically mounted
cylinder lock-on is usually accompanied by large amplitude
vibration. Furthermore, this phenomenon suggests a means for
active control of vortex shedding from bluff-body wakes.

Flow induced vibrations of spherical bodies is also of
relevance to marine systems (towed arrays, underwater mines,
UUVs). However, even though extensive work has been done on
studying the lock-on phenomenon in cylinder wakes, very scant
information exists regarding similar behavior in sphere wakes.
In the current study we have performed a series of simulations
in order to shed some light on the nature of vortex-shedding
lock-on in sphere wakes. In these simulations a sinusoidal
perturbation is applied to the cross-flow (uy) velocity
component. Thus the flow velocity prescribed at the inflow of the
computational  domain which is located 15d upstream of the
sphere is given by:

�
ux
uy
uz
	 � � 1

Ain sin(2��et)
0

	 (3)

where Ain is the amplitude and �e the nondimensional frequency
(�e � Fd�U� where F is the fluctuation frequency) of the
perturbation.  The inlet perturbation decays at it convects into the
domain due to viscous action and this decay depends strongly on
the perturbation frequency. In the current simulations, Ain is
chosen for each perturbation frequency so as to produce a 2%
fluctuation at a location 5d upstream of the sphere. This ensures
that the fluctuation level experienced by the sphere is for the
most part independent of the perturbation frequency. Further
details regarding the procedure for imposing the perturbation can
be found in Mittal13.

A series of simulation have been carried out where the
perturbation frequency has been varied over the range
0.05 
 �e 
 0.3. Here we present results of three simulations

each of which demonstrate distinct behaviors of the forced wake.
Figure 6a shows the frequency spectra obtained from the
temporal variation of the transverse velocity at one location in
the near wake (x�d � 4) for the case where �e=0.3. The
location is chosen to be the same as Figure 3a so that a direct
comparison can be made. No significant peak is observed at the
forcing frequency indicating that the vortex shedding does not
respond to this forcing frequency. Figure 6b shows the
corresponding power spectra for the �e=0.2 simulation and this
spectra clearly shows a peak at the forcing frequency in addition
to a comparable peak at the natural shedding frequency. This
type of spectra is indicative of vortex shedding lock-on.

Finally, Figure 6c shows the frequency spectra for the case of
�e=0.15 which is roughly 9% higher than the shedding
frequency. The spectra indicates the absence of the natural
shedding frequency. Instead the vortex shedding now occurs
exclusively at the forcing frequency and this is termed as
“complete lock-on.” In our simulations complete lock-on is also
observed for a forcing frequency of 0.10 which is about 27%
lower than the shedding frequency. Thus, even at this low level
of freestream perturbation, the sphere wake exhibits a rather
large lock-on frequency range. Our previous simulations13 have
shown that the vortex shedding process in the sphere wake is
considerably weaker than that in the cylinder wake. Although
direct comparisons of the vortex strengths between the two flows
have not been made, the lower fluctuation level of lift (or side)
force and lower fluctuation intensities in the the sphere wake
provide indirect proof for this assertion. It therefore follows that
the sphere wake will be susceptible to perturbations of a lower
amplitude than the cylinder wake.

4. CONCLUSIONS
Direct numerical simulations of the sphere wake have been

performed to gain some insight into the complexity of the vortex
shedding process in the range 350<Red<650. It has been found
that the sphere wake at these transitional Reynolds numbers
exhibits multiple dominant frequencies and the non-linear
interaction between these frequencies leads to a complex
evolution of vortex structures in the near wake. The physical
mechanisms associated with the frequencies other than the
vortex shedding frequency are not clear at this point and are the
subject of an ongoing study. Simulations of flow past a sphere in
a flow with transverse velocity perturbations show that the
sphere-wake is susceptible to the classic lock-on phenomenon
which to date been reported only in cylinder wakes.
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Figure 1. Grid used in the current simulations
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Figure 2. Vortex structures in the sphere wake (a) Red=350 (b) Red=500 (c) Red=650.
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Figure 3. Frequency spectra obtained from temporal variation of trans-
verse velocity at one location in the near wake. (a) Red=350 (b)
Red=500 (c) Red=650. The dotted line in (a) is the spectra obtained by
Bagchi and Balachandar using a different solver.
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Figure 4. Variation of Strouhal number with Reynolds number.

Figure 5. Contour plot of azimuthal vorticity at one time instant in the
sphere wake at Red=650.
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Figure 5. Power spectra obtained from temporal variation of trans-
verse velocity at one location in forced sphere wake.(a) �e=0.30
(b) �e=0.20 (c) �e=0.15.


