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ABSTRACT

A Cartesian grid method has been developed for simulating
unsteady, viscous, incompressible flows with complex
immersed boundaries. A finite-volume method based on a
second-order accurate central-difference scheme is used in
conjunction with a two-step fractional-step procedure. A new
interpolation procedure for accurate discretization of the
governing equation in cells that are cut by immersed boundaries
is presented which preserves the second-order spatial accuracy
of the underlying solver. The convergence of the pressure
Poisson equation is accelerated by using a preconditioned
conjugate gradient method where the preconditioner takes
advantage of the structured nature of the underlying mesh. The
accuracy and fidelity of the solver is validated by simulating a
number of canonical flows and the ability of the solver to
simulate flows with very complicated immersed boundaries is
demonstrated.

1. INTRODUCTION
The conventional structured-grid approach to simulating

flows with complex immersed boundaries is to discretize the
governing equations on a curvilinear grid that conforms to the
boundaries. The main advantages of this approach are that
imposition of boundary conditions is greatly simplified, and
furthermore, the solver can be easily designed so as to maintain
adequate accuracy and conservation property. However,
depending on the geometrical complexity of the immersed
boundaries, grid generation and grid quality can be major issues
and usually, one has to resort to a multi-block approach in order
to handle anything but the simplest geometries. Furthermore,
transformation of the governing equations to the curvilinear
coordinate system results in a complex system of equations and
this complexity can adversely impact the stability, convergence
and operation count of the solver.

A different approach which is gaining popularity in recent
years is the so called Cartesian grid method where the governing
equations are discretized on a Cartesian grid which does not
conform to the immersed boundaries. This greatly simplifies grid

generation and also retains the relative simplicity of the
governing equations in Cartesian coordinates. In addition, this
method also has a significant advantage over the conventional
body-fitted approach in simulating flows with moving
boundaries, complicated shapes or topological changes16. Since
the underlying Cartesian grid does not depend on the location of
the immersed boundary, there is no need for remeshing
strategies. In fact, a moving boundary algorithm has been
implemented  in conjunction with a Cartesian grid algorithm and
has been used successfully for diffusion-dominated
solidifications problems19 which involve complex time evolving
moving boundaries.

The obvious complication in using Cartesian grid methods is
in the imposition of boundary conditions at the immersed
boundaries. In particular, since the immersed boundary can cut
through the underlying Cartesian mesh in an arbitrary manner,
the main challenge is to construct a boundary treatment which
does not adversely impact the accuracy and conservation
property of the underlying numerical solver. This is especially
critical for viscous flows where inadequate resolution of
boundary layers which form on the immersed boundaries can
reduce the fidelity of the numerical solution. Consequently,
Cartesian grid methods have been used extensively for Euler
flows1,3,6,13 whereas applications to viscous flows are relatively
scarce10,16,18.

Here we have developed a Cartesian grid method which is
well suited for simulating unsteady, viscous, incompressible
flows. The current solver shares some features with the solver of
Udaykumar et al.18 particularly in terms of the description and
identification  of the immersed boundary and the use of a
finite-volume approach. However, a number of key advances
have been made in terms of the capability of the solver. These
include: (1) A fractional-step scheme4 which results in a fast
solution of unsteady flows, (2) adoption of a new compact
interpolation scheme near the immersed boundaries that retains
the second-order accuracy and conservation property of the
solver and (3) use of a preconditioned conjugate gradient method
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for solving the pressure Poisson equation which takes advantage
of the underlying structured nature of the mesh and which
substantially accelerates the convergence of the pressure Poisson
equation.

The current paper will focus on describing these and other
salient features of the numerical methodology, validating the
accuracy and fidelity of the approach and demonstrating the
capabilities  of the solver in some complex configurations.

2. NUMERICAL METHODOLOGY
In this section we will first describe the underlying solver for

a Cartesian mesh without considering the immersed boundaries.
Following this, we will discuss in detail the modifications that
have to be made in the solver to account for immersed
boundaries.

Fractional-Step Method
The governing equation is the unsteady, viscous,

incompressible Navier-Stokes equation written in terms of the
primitive variables. This equation is discretized on a Cartesian
mesh using a colocated (non-staggered) arrangement8 of the
primitive variables which are located at the cell-center. The
integral form of the governing equations given by as follows:

�
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u � n^ dS � 0 (1)
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cs
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cs

	u � n^ dS (2)

is used as the starting point for deriving a second-order accurate
finite-volume method. In the above equations cv and cs denote
the control-volume and control-surface respectively and n^ is a
unit vector normal to the control-surface. The above equations
are to be solved with u(x, t) � v (x, t) on the boundary of the
flow domain where v is the prescribed boundary velocity. A
second-order accurate, two-step fractional step method4,25 is
used for advancing the solution in time. In this time-stepping
scheme, the solution is advanced from time level ‘n’ to ‘n+1’
through an intermediate advection-diffusion step where the
momentum equations without the pressure gradient terms are
first advanced in time. A second-order Adams-Bashforth scheme
is employed for the convective terms and the diffusion terms are
discretized using an implicit Crank-Nicolson scheme. This
eliminates the viscous stability constraint which can be quite
severe in simulation of viscous flows.

At this stage, in addition to the cell-center velocities which
are denoted by u, we also introduce face-center velocities U. In
a manner similar to a fully-staggered arrangement, only the
component normal to the cell-face is computed and stored (see
Figure 1). The face-center velocity is used for computing the
volume flux from each cell in our finite-volume discretization
scheme. The advantage of separately computing the face-center
velocities will be addressed later in this section. The
semi-discrete form of the advection-diffusion equation for each
cell shown in Figure 1 can therefore be written as follows:
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Figure 1. Schematic showing underlying Cartesian
mesh and arrangement of cell-center and face-center
velocities.

�
cv

u* � un

�t
dV � � 1

2
�
cs


3un�Un � n^� � un�1�Un�1.n^�� dS �

                          �
��

�
��

�	�� �	�
� � �
��� (3)

where u* is the intermediate cell-center velocity and ‘cv’ and ‘cs’
denote the volume and surface of a cell respectively. The
velocity boundary condition imposed at this intermediate step
corresponds to that at the end of the full time-step, i.e.,
u* � vn�1. Following the advection-diffusion step, the
intermediate  face-center velocity U* is computed by
interpolating the cell-center intermediate velocity.

The advection-diffusion step is followed by the
pressure-correction  step

un�1 � u*

�t
� �	pn�1 (4)

where we require that the final velocity field satisfy the integral
mass conservation equation given by

 �
cs

�Un�1 � n^� dS � 0 (5)

This results in the following equation for pressure

�
cs

(	p) � n^ dS � 1
�t
�
cs

�U* � n^� dS (6)

which is the integral version of the pressure Poisson equation.
Note that the pressure-correction step is represented by the
inviscid equation (4) and is well posed only if the velocity
component normal to the boundary is specified. Therefore the
velocity boundary condition consistent with (4) is
un�1 � N

^ � vn�1 � N
^
 where N

^
 is the unit normal to the boundary
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of the flow domain. It can be easily shown that this implies that
�	pn�1� � N

^ � 0 be used as the boundary condition for equation
(6). Once the pressure is obtained by solving this equation, both
the cell-center (cc) and face-center (fc) velocities are updated
separately as follows:

un�1 � u* � �t �	pn�1�
cc

Un�1 � U* � �t �	pn�1�
fc

(7)

It should be pointed out that the pressure gradient computed at
the face-center is not simply an interpolated version of the
pressure gradient at the cell-center. This procedure ensures that
even with a compact stencil, the integral constraint (6) is
satisfied to machine precision at the end of the full time step. The
problems of grid-to-grid pressure oscillations and mass
conservation error are therefore eliminated simultaneously.
Furthermore, this updated face-center velocity is used to
compute the convective flux at the next time step as shown in (3).
Since the volume flux is conserved exactly, this ensures that a
uniform velocity field will convect on the grid without
generating spurious gradients.

This approach therefore has some of the most desirable
features of a fully staggered arrangement. The main advantage
of this approach over the fully staggered approach is that the
momentum and pressure equations are all solved at the same
location. However, unlike a fully staggered arrangement, in the
current approach the cell-center velocity is not coupled strongly
to the pressure gradient over the cell. Furthermore in a fully
staggered arrangement, the computed velocity components
satisfy both the momentum as well as continuity equations. In
contrast, in the current approach the velocity field is represented
by two different but closely related variables, the cell-center
velocity which satisfies the momentum equations and the
face-center  velocity which satisfies the continuity constraint.
Zang et al.25 have used this procedure in conjunction with a
curvilinear mesh solver to perform large-eddy simulations of
turbulent flows and have found that the solver performs
satisfactorily for high Reynolds number flows.
Inclusion of Immersed Boundaries

The underlying approach for a Cartesian grid without
immersed boundaries has been outlined in the previous
subsection. We will now describe how this approach is
implemented  in a situation where some of the Cartesian cells are
cut by immersed boundaries as shown in Figure 2a and b. For the
purpose of this discussion we assume that the immersed
boundary demarcates a fluid–solid boundary. However, in
general, this method is also applicable to flows with fluid-fluid
boundaries. Furthermore, in this paper, we limit our discussion
to two-dimensional flows although the algorithm to be described
can be extended to three-dimensional flows in a straightforward
manner.

The immersed boundary is first represented by a series of
piecewise linear segments. Based on this representation of the
immersed boundary, we identify cells in the underlying
Cartesian mesh that are cut by the boundary and determine the
intersection of the immersed boundary with the sides of these cut
cells. Next, cells cut by the immersed boundary whose cell center
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Figure 2. Schematic of computational domain with im-
mersed boundaries. (a) boundary cells with immersed
boundary located south of cell center. (b) boundary cells
with immersed boundary located west of cell center. (c)
typical reshaped trapezoidal boundary cells correspond-
ing to case (a). (d) typical boundary cells corresponding
to case (b).

lie in the fluid are reshaped by discarding the part of these cells
that lies in the solid. Cut cells whose center lie in the solid are
absorbed by neighboring cells. This results in the formation of
control-volumes which are trapezoidal in shape as shown in
Figure 2c and 2d. Details of this reshaping procedure can be
found in Udaykumar et al.19.

Depending on the location and local orientation of the
immersed boundary, trapezoidal cells of a wide variety of
dimensions can be formed. The key issue here is to evaluate
mass, convective and diffusive fluxes and pressure gradients on
the cell-faces of these trapezoidal cells from the neighboring
cell-center  values with adequate accuracy such that global
second-order accuracy of the solver will be preserved.
Furthermore, the current Cartesian grid method has been
developed for unsteady viscous flows at moderately high
Reynolds numbers. In such flows we expect that relatively thin
boundary layers will be generated in the vicinity of the immersed
boundary. These boundary layers are not only regions of high
gradients but quite often, they are also the most important
features of the flow field. Thus, accurate discretization of the
equations is especially important in the boundary layers. Since
all the trapezoidal cells lie within these boundary layer, this is
another reason why adequate local accuracy is desirable for these
cells.

For a uniform Cartesian mesh, the fluxes and pressure
gradients on the face-centers can be computed to second-order
accuracy by a simple linear approximation between neighboring
cell-centers.  This is however not the case for a trapezoidal
boundary cell since the center of some of the faces of such a cell
(marked by shaded arrows in Figure 2c and d) may not lie in a
location which puts it in the middle of neighboring cell-centers
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where a linear approximation would give second-order accurate
estimate of the gradients. Furthermore, some of the neighboring
cell-centers  do not even lie on the same side of the immersed
boundary and therefore cannot be used in the differencing
procedure. Thus, not only do we need a procedure for computing
these face-center quantities which is accurate, we also require
that the procedure adopted be capable of systematically handling
reshaped boundary cells with a wide range of shapes. Our
solution has been to use a compact two-dimensional polynomial
interpolating function which allows us to obtain a second-order
accurate approximation of the fluxes and gradients on the faces
of the trapezoidal boundary cells from available neighboring
cell-center  values. The current interpolation scheme coupled
with the finite-volume formulation guarantees that the accuracy
and conservation property of the underlying algorithm is
retained even in the presence of curved immersed boundaries. In
the following, we describe the interpolation function for a typical
trapezoidal  boundary cell.

As shown in equation (3), a finite-volume discretization of
Navier–Stokes equations requires the estimation of surface
integrals on the faces of each cell. The integrand (denoted here
by �) can either involve the value or the normal derivative of a
variable. An example of the former is the convective flux
denoted by ���� � �

�� and of the latter, the diffusive flux given by
���	� � �

�� where � is a generic scalar variable. In addition to
this, the pressure equation also requires evaluation of the normal
pressure gradient. In order to estimate these surface integrals to
second-order accuracy, the midpoint rule can be used and this
requires accurate evaluation of the integrand at the center of the
face. For regular cells which are away from the immersed
boundary the integrand can be evaluated at the face-center to
second-order accuracy in a straightforward manner by assuming
a linear profile between nodes on the either side of the face. This
is not the case for the trapezoidal boundary cells. Consider the
trapezoidal  boundary cell ����� in Figure 3a. The face ���

of the trapezoidal cell is composed of two pieces; �� coming
from the cell P and �� coming from cell S. The integral on this
face can be decomposed as

�
��

f dy � �
��

f dy � �
��

f dy (8)

A second order approximation to this integral can then be
obtained as

�
��

f dy � fw
�y� � y�

� � fsw
�y� � y�

� (9)

where �� and ��� are computed at the center of segments �� and
�� respectively. If on the other hand, the face is cut by the
immersed boundary such that it is smaller than a nominal cell
face, as in the case of face �� then the integral can be
approximated as

�
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f dy � fe
�y� � y�

� (10)
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Figure 3. Schematic of interpolation for cell face values
and derivative at boundary cells. (a) various fluxes required
for trapezoidal boundary cell (b) trapezoidal region and
stencil used in computing
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where �
 is the flux computed at the center of the segment ��.
For non-boundary cells, these face-center values can be
evaluated to second-order accuracy quite easily by a linear
approximation and we would therefore like to evaluate ��, ���
and �
 to within second-order accuracy also. Approximation of
�� to second-order accuracy is quite straightforward and is done
in the same way as for the face of a non-boundary cell.

Evaluation of ��� or �
 to second-order accuracy is somewhat
more complicated. Simple second–order central difference
approximations cannot be used since in many instances some of
the neighboring nodes can be inside the immersed boundary. For
instance, for the situation shown in Figure 3a, the south node is
inside the immersed boundary and cannot be used in the
evaluation of ���. Even if neighboring nodes are available, as
they are for the east face, it is not clear how a second-order
accurate scheme can be constructed since �
 is not located on the
line joining the neighboring cells centers and consequently,
simple central difference schemes cannot approximate this flux
to second-order accuracy. Thus, a different approach is needed
here for evaluating these fluxes.
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Our approach is to express the flow variables in terms of a
two-dimensional  polynomial interpolating function in an
appropriate region and evaluate the fluxes such as ��� or �
 based
on this interpolating function. For instance, in order to
approximate ���, we express � in the shaded trapezoidal region
shown in Figure 3b in terms of a function that is linear in � and
quadratic in �

� � c1xy2 � c2y
2 � c3xy � c4y � c5x � c6

(11)

where �� to �	 are six unknown coefficients. If ��� involves the
normal derivative of �, this can be obtained by differentiating the
interpolating function, i.e.

��
�x

� c1y
2 � c3y � c5

(12)

The rationale for choosing (11) as the interpolating function
for evaluating ��� is as follows: the objective here is to evaluate
���
��� at the center of �� to within at least second-order
accuracy. Furthermore, we would like to do this with the most
compact interpolant so as to minimize the size of the stencil
required for the boundary cell. Clearly, a biquadratic
interpolating function in the trapezoid shown in Figure 3b would
lead to second-order accurate evaluation of the derivative
anywhere inside the trapezoid. However, a biquadratic function
has nine unknown coefficients and therefore requires a large
nine-point stencil. It turns out however that for the trapezoid
shown in Figure 3b, second-order accurate evaluation of the
derivative on the cell face can be achieved by using an
interpolating function that is quadratic in � but only linear in �.
This is because �� is midway between the two parallel sides of
the trapezoidal and in a manner analogous to central
differencing, linear interpolation in the �-direction leads to
second-order accurate evaluation of derivative at this location.
On the other hand, this situation does not exist in the �-direction
for the cell shown in Figure 3b and therefore a quadratic
interpolation is necessary in this direction in order to obtain a
second–order accurate approximation to ���
��� at the center of
��.

It can be seen in Figure 3b that the sides of the trapezoid in
which the interpolation is performed pass through four nodal
points and two boundary points. Thus, the six unknown
coefficients in (11) can be expressed in terms of the values of �
at these six locations. Solve for �
, the value of � at center of ��

can then be expressed in the form of

�sw � c1 xsw y2
sw � c2 y2

sw � c3 xsw ysw � c4 ysw � c5 xsw � c6
(13)

where �
 contains  the values of ��
�� � ���� 	, therefore

�sw ��6

j�1

�j�j
(14)

The value of ��
�� at center of �� is expressed as

���
�x
�

sw

� c1y
2
sw � c3ysw � c5

(15)

which can be further written as

���
�x
�

sw

��6

j�1

�j�j
(16)

Note that � are � are coefficients that depend only on the mesh
and the location and orientation of the immersed boundary.
Therefore these can be computed once at the beginning of the
solution procedure. Subsequently, relationships such as (14) and
(16) can be used in the spatial discretization of the governing
equations (3)–(7).

A similar interpolation procedure is also used for
approximating �
. For this, a linear-quadratic interpolant is used
in the trapezoidal region shown in Figure 4 and a relationship
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Figure 4. Trapezoidal region and stencil used in com-
puting �


similar to (14) and (16) developed for approximating �
. The six
points contained in this stencil are shown in the Figure 4. It
should be pointed out that the north face of the particular cell
being considered here does not need special treatment since
face-center  values and derivatives can be computed to
second-order accuracy using a linear approximation. However,
in general there are also boundary cells which have their north
or south faces cut by the immersed boundary (as shown in Figure
2b). For these boundary cells too, the same approach is used to
evaluate the fluxes on these cut faces. The only difference here
is that the interpolating function is linear in y and quadratic in x.

Now we turn to the calculation of the flux on cell face ��
which lies on the immersed boundary as shown in Figure 2a. The
integrated flux on this face can again be evaluated to
second-order accuracy using the midpoint rule and as before we
would like to evaluate the integrand at the center of face ��
(denoted here by �	
�) to second-order accuracy. In general both
convective and diffusive fluxes are needed on this face and this
requires approximation of variables value as well normal
derivative at the center of ��. The value is usually available
from a Dirichlet type boundary condition and hence no
interpolation is required for this. Here we describe the
approximation procedure for the normal derivative. The normal
derivative on face �� can be decomposed as

��
�n

�
��
�x

n^ x �
��
�y

n^ y
(17)
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where 
�� and 
�� are the two components of the unit vector normal
to face ��. Since we know the shape of the immersed boundary,

�� and 
�� are known. Therefore computation of the normal flux
requires estimation of ��
�� and ��
�� at the center of the line
segment ��. For the cell being considered here, ��
�� is
computed to second-order accuracy with relative ease by
expressing the � variation along the vertical line in terms of a
quadratic in y as follows

� � a1y
2 � a2y � a3

(18)

The coefficients in the quadratic can be expressed in terms of the
values of � at the three points indicated in Figure 5a.
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Figure 5. Stencil for calculation of interface flux. (a)
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Subsequently, the normal derivative at the center of face �� is
evaluated as:

���
�y
�

int

� 2a1 yint � a2 ��3

j�1

�
y
j
�j

(19)

where again ��
�
 are coefficients which depend solely on the

geometry of the boundary cell.
Unlike the calculation of ��
�� for this cell, the calculation

of ��
�� is not straightforward. However, an approach
consistent with the computation of ��� and �
 can be used to

estimate the value of this derivative to desired accuracy.
Consider the trapezoid shown in Figure 5b. Again, because the
�-coordinate of the center of �� is midway between the two
parallel sides of this trapezoid, expressing the variable in this
trapezoid in terms of an interpolating function which is linear in
x and quadratic in y allows us to obtain a second-order accurate
approximation to ���
���

��
 at the center of the line segment��.

The procedure for this follows along lines similar to that shown
for ���
���

��
 and we get the following expression for the

x-derivative on the interface:

���
�x
�

int

��6

j�1

�
x
j �j

(20)

where ��� depend on the location and orientation of the immersed
boundary in the neighborhood of the cell under consideration.
Finally we get an expression of the form

���
�n
�

int

��9

j�1

�j�j
(21)

for the normal gradient where � � can be obtained from (17), (19)
and (20). Thus we obtain a nine-point stencil for the flux on the
interface and the points in this stencil are shown in Figure 5a and
b. As can be seen from these figures, of these nine points, three
points lie on the immersed boundary and their values are
available from the prescribed boundary condition.

It should be pointed out that although most cells are
four-sided trapezoidal cells, some five-sided cells and
three-sided triangular cells are also encountered. However, the
discretization  of the governing equations for these cells can also
be handled within the framework of the current interpolation
scheme. With all of these features, the current solver can in
principle, handle arbitrarily complex geometries. Furthermore,
multiple immersed bodies can be handled as easily as a single
body. This is in contrast to body fitted grid where the grid
topology can get quite complicated in the presence of multiple
bodies. Finally, since the inside of the immersed boundary is also
gridded, we can quite easily solve a different set of equations
inside the immersed boundary. For instance, equations of heat
conduction could be solved inside the body if the objective were
to study conjugate heat transfer.
Inversion of Discrete Operators

The discretized advection-diffusion and pressure Poisson
equations result in a coupled system of linear algebraic equations
which requires the inversion of a large, sparse, banded matrix.
The structure of this matrix is for the most part similar to that
obtained on a Cartesian mesh without any immersed boundaries
cells. The main difference is that the rows in the matrix
corresponding to the trapezoidal boundary cells also have
additional elements since the stencil of the trapezoidal boundary
cell is different from regular cells. The alternative direction line
successive-overrelaxation  (SOR) method14 is used to solve the
discretized advection-diffusion equation. We find that even in
the presence of the immersed boundaries, this method is
extremely effective for the numerical solution of the discretized
advection-diffusion equation and the residual can be reduced to
acceptable  level within a few iterations.



7

American Institute of Aeronautics and Astronautics

The discretized pressure Poisson equation however exhibits
slower convergence than the advection–diffusion equation. This
is because the time-derivative term in the advection-diffusion
equation tends to improve the diagonal dominance of the
corresponding discretized operator. In the presence of immersed
boundaries this behavior of the pressure equation can be further
exacerbated since the stencil for the trapezoidal cells contains
dependance on some neighboring cells which are not included in
the line-SOR sweeps. Furthermore, depending on the aspect ratio
of the trapezoidal boundary cell and the angle at which the
immersed boundary cuts the cell, diagonal dominance in the
pressure operator can be severely weakened. In the various
simulations that have been performed using the current method,
we have found that the simple line-SOR procedure can result in
an extremely slow convergence for the pressure equation.
Instead, a bi-conjugate gradient stabilized (Bi-CGSTAB)
method2,20 is used. This method, however, only works well in
conjunction with a good preconditioner. We have used the
line-SOR procedure as a preconditioner in the Bi-CGSTAB
algorithm and find a significant improvement in the convergence
rate over a simple line-SOR iterative procedure. Thus the
structured nature of the grid topology leads to significant benefit
in the solution procedure.

This completes the description of the current simulation
methodology. Further details regarding the algorithm can be
found in the paper24. In the following sections we will focus on
validating this methodology by simulating some canonical flows
and demonstrating the capabilities of the method for simulating
flows with complex immersed solid boundaries.

3. RESULTS AND DISCUSSIONS
(i) Wannier Flow

The most straightforward way of verifying the second-order
spatial accuracy of the present method, is to compute a flow
which has a curved immersed boundary and one for which an
analytical  solution exists. The flow chosen here corresponds to
two-dimensional  Stokes flow past a circular cylinder placed next
to a moving wall. The exact solution to this flow was given by
Wannier21. Here we have simulated this flow using our solver on
four different uniform meshes. The meshes have equal spacing
in the x and y directions and have Nx and Ny points in these two
directions respectively. The global error in the numerical
solution is computed as:

� � 1
Nx Ny

�
Nx Ny

j�1

� �numerical
j � �

exact
j

� (22)

In order to simulate Stokes flow, the convection terms have been
turned off in our simulation. Computations have been carried out
in the domain shown in Figure 6 with the exact solution imposed
on boundaries. In Figure 7 we show a log-log plot of the error in
both velocity components u and v versus Nx. Also shown is a line
with a slope of –2 which corresponds to second-order accurate
convergence. The plot clearly shows that the global error in our
computed solution decreases in a manner consistent with a
second-order accurate scheme. This test therefore demonstrates
that the current approach of treating the fluxes in the boundary

Figure 6. Computational domain and computed
streamline pattern of Wannier flow.

Figure 7.  Global error of u and v as a function of
mesh points for Wannier flow.

cells does indeed result in a solver which is globally
second-order accurate.

(ii) Flow Past A Circular Cylinder Immersed in a
Freestream

The exact solution of the Wannier flow allows us to confirm
the accuracy of the solver in the Stokes flow regime. Here we
validate the solver in the finite Reynolds number regime by
simulating steady and unsteady flow past a circular cylinder
immersed in an unbounded, uniform flow over a range of
Reynolds numbers where the Reynolds number is defined as
�
� � ���
	 with d the cylinder diameter and �� the
freestream velocity. This flow had been studied quite extensively
in the past and a number of numerical and experimental datasets
exist for this flow which are useful for the purpose of validation.
Simulations have been performed at Red=20, 40, 80 and 300 and
results compared with established experimental and numerical
results. All these simulations have been performed in a large

��� 
�� domain so as to minimize the effect of the outer
boundary on the development of the wake and Figure 8 shows
the���� ��	 non-uniform mesh used in the low Reynolds
number simulations. At the inlet and top and bottom boundaries
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Figure 8. Typical non–uniform mesh for simulation of
flow past circular cylinder (only every other grid line
is shown).

we specify velocity corresponding to potential flow past a
cylinder and a homogeneous Neumann boundary condition is
applied at exit boundary. We have also tested larger domain sizes
in order to ensure that the results presented here are independent
of the domain size. For all these simulations we first impose a
small asymmetric disturbance at the inflow boundary for a short
period of time and then allow the flow to evolve naturally after
this. For Red=20 and 40 the wake eventually attains a steady
symmetric state and this is consistent with the well established
result that the cylinder wake is stable to perturbations below
�
� � �	 9,15,23. Once the flow has reached a steady state we

compute the drag coefficient defined by �� �
���������


��
�����
��

 and

the length of the recirculation zone and compare these with
established results.

Re� 20 40 80 300

Mesh � 152�156 152�156 217�183 217�183

Study� CD Lw/d CD Lw/d CD St CD St

Ref. [17] 2.2 –– 1.5 –– 1.3 –– –– ––

Ref.[22] 2.1 –– 1.7 –– 1.5 –– 1.2 ––

Ref. [5] 2.1 0.9 1.5 2.4 –– –– –– ––

Ref. [7] 2.0 0.9 1.5 2.2 –– –– –– ––

Ref. [12] –– –– –– –– –– –– 1.4 0.21

Ref. [23] –– –– –– –– –– 0.15 –– 0.20

Current 2.0 0.9 1.5 2.3 1.4 0.15 1.4 0.21

Table I. Comparison of mean drag coefficient, length of
wake bubble Lw (measured from rear end of cylinder) and

Strouhal number with established results.

The streamline plots in Figure 9a and 9b show the mean

Figure 9.  Streamline plot of flow past a circular cylinder.
(a)                  (b)��� � �� ��� � ��

recirculation  regions behind the circular cylinder at �
�= 20 and
40 respectively. In this steady flow regime, results using the
current method are compared in Table I to numerical simulation
by Dennis & Chang5 as well as experimental measurements of
Tritton17. It is found that our results compare well with the other
numerical simulations and experiments.

It is generally accepted that the wake of a cylinder immersed
in a freestream first becomes unstable to perturbations at a
critical Reynolds number of about �
� � �	 9,15. Above this
Reynolds number, a small asymmetric perturbation in the near
wake will grow in time and lead to an unsteady wake and Karman
vortex shedding. This is indeed what we find for our simulation
at Red � 80. Figure 10 shows the variation of the lift and drag

Figure 10. Variation of lift and drag coefficients
with time for��� � ��

coefficient with time and it shows how vortex shedding develops
to a periodic state in time. The computed mean drag coefficient
from the current simulation is about 1.4 which lies between the
two experiments17,22. The Strouhal number for vortex shedding
is defined as �� � ����
��, where � is the shedding frequency
and is one of the key quantities that characterizes the vortex
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shedding process. Here we have estimated the Strouhal number
from the periodic variation of the lift coefficient and the value
comes out to be 0.15 which compares very well with the value
obtained from experiments 23.

In addition to the low Reynolds number simulations, we have
also carried out a simulation at a moderately high Reynolds
number of 300. This simulation serves to demonstrate that the
current methodology is capable of resolving thin boundary layers
that develop in flows at these Reynolds numbers. The mesh used
for this simulations is the same as that used for Red � 80. This
is a relatively coarse mesh and this coarse resolution severely
tests the discretization scheme used in our solver for the
boundary cells.  The mean drag and Strouhal numbers have been
computed and included in Table I. It can be seen that these agree
very well with the 2-D spectral simulation of Mittal &
Balachandar12 and the Strouhal number also matches well with
the experiments of Williamson23. It should be pointed out that at
this Reynolds number the cylinder wake is intrinsically
three-dimensional  whereas our simulation is two-dimensional
and therefore does not allow spanwise variations. As shown by
Mittal & Balachandar11 one consequence of performing a 2-D
simulation in this regime is that the drag is typically
over-predicted. This is indeed what we observe for the current
simulations. Thus, even though our mean drag matches with the
other 2-D simulation, it is about 12% higher than the
experimentally  determined value of Weiselsberger22.

In Figure 11 we have shown contour plots of spanwise

Figure 11. Spanwise vorticity contour plots in the wake
of the circular cylinder for                             (a) View extending
to 9d downstream of cylinder. (b) Closeup view showing
the resolution provided to the attached boundary layers
and separated shear layers.

��� � 
��

vorticity at one time-instant. Figure 11a shows a view of of the
wake that extends to about 10d downstream from the cylinder

and as expected, this plot shows the formation and evolution of
compact Karman vortices in the wake. Figure 11b is closeup
view of the flow around the cylinder and the mesh superposed on
the greyscale contour plot clearly shows that there are fewer than
five points in the attached boundary layer. It can be seen that even
with relatively low resolution provided here, the boundary layers
on the cylinder surface are smooth indicating that the current
treatment of the boundary cells adequately resolves thin
boundary layers.
(iv) Application to Complex Geometries

We have verified the accuracy and fidelity of the solver for
some relatively simple canonical flows. The main objective of
the current work however is to develop an accurate and efficient
numerical method that will allow us to simulate flows with
extremely complicated internal boundaries on simple Cartesian
grids. We now demonstrate this capability of the current solver
by presenting results of a numerical simulation of flow past a
periodic array of airfoils configured in a way similar to that found
in a typical turbine or compressor. The configuration is shown in
Figure 12. It should however be pointed out that all the airfoils
here are stationary. An inflow velocity is provided at the left
boundary and a homogeneous Neumann exit boundary condition
is applied at the right boundary. Furthermore, periodic
conditions are used on the top and bottom boundaries. It is worth
mentioning that this is a particularly severe test of the current
methodology since the airfoil is only about four grid-spacing
wide near the trailing edge and therefore the boundary cell
discretization  scheme has to contend with large curvatures. The
Reynolds number based on the axial chord of the airfoil is 200
and a 400×250 uniform mesh is used for this simulation. The
flow at this Reynolds number is inherently unsteady and Figure
12a shows the streamline pattern at one time instant. It can be
observed that a number of recirculation zones are in various
stages of formation. Figure 12b shows the corresponding
spanwise vorticity pattern and this plot gives a hint of the
complex vortex-vortex as well as vortex-body interactions that
occur in this flow. Despite the relatively coarse resolution of the
trailing edge geometry we find that the solver has no difficulty
in obtaining the solution for this flow.

4. CONCLUSIONS
A finite-volume based Cartesian grid method has been

developed which allows us to simulate unsteady, viscous
incompressible flows with complex immersed boundaries. The
underlying method is based on a colocated arrangement of
variables and a second-order central difference scheme is used
for spatial differencing. Furthermore, the solution is advanced in
time using a two-step fractional-step scheme. A new
interpolation procedure has been devised which allows us to
systematically  develop a spatial discretization for the cells cut by
the immersed boundary that preserves the second-order spatial
accuracy and conservation property of the underlying solver.
This is especially crucial for the current solver since we plan to
use it for simulating flows at moderately high Reynolds numbers.
In such flows, relatively thin boundary layers are expected to
form on the immersed boundaries and these have to be resolved
adequately in order to obtain an accurate representation of the
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Figure 12. Flow past a cascade of airfoils at one time instant (a) Instantaneous streamlines (b) corresponding spanwise
vorticity contours.

(a)

(b)
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flow. We have found that the presence of immersed boundaries
alters the conditioning of the linear operators and slows down the
iterative solution of the pressure Poisson equation. In the current
solver, the convergence is accelerated by using a preconditioned
conjugate gradient method where the preconditioner takes
advantage of the structured nature of the underlying mesh.

The second-order global accuracy of the solver has been
confirmed by simulating Stokes flow past a circular cylinder
placed near a moving wall and comparing with the exact solution
provided by Wannier21. Simulations of flow past a circular
cylinder immersed in a uniform freestream have also been
carried out in the Reynolds number range from 20 to 300. Key
quantities such as mean drag coefficient, length of recirculation
zone and vortex shedding Strouhal number obtained from our
simulations agree well with established experimental and
numerical results.

The main advantage of the current approach is that flows with
extremely complex internal boundaries can be simulated with
relative ease on simple Cartesian meshes. In order to
demonstrate this capability of the solver, we have simulated a
relatively complex flow which involves flow through a cascade
of airfoils at a relatively high Reynolds number. This flow
configuration has been chosen since it would require generation
of a relatively complicated mesh if conventional
structured/unstructured  method were to be used. The current
Cartesian grid solver is able to simulate this flow with ease
thereby demonstrating the advantage of the current approach for
flows with complex immersed boundaries.
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