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The separated flow over an airfoil is characterized by up to three distinct natural frequen-

cies: those of the shear layer, separation bubble, and wake. Previous work has shown that

open-loop forcing at sub- and super- harmonics of these frequencies can be especially ef-

fective in controlling the extent of the separation bubble. Unfortunately, an understanding

of the mechanisms driving this behavior is far from complete. In this work, we investigate

the interactions between the shear layer and wake using a combination of direct numer-

ical simulations and spectral analysis. We simulate the forced and unforced flows over a

finite-thickness flat plate using an immersed boundary method. Spectral analysis of the

resulting dynamics is performed using the Koopman operator, a linear operator applicable

even to nonlinear systems, as well as traditional signal processing techniques. Using these

two approaches, we identify pertinent flow structures based on their frequency content and

posit the nature of their interactions.

Nomenclature

U∞ freestream velocity, defined at upstream boundary of domain

t thickness of flat plate

c chord length of flat plate

x/c distance from leading edge, measured in chord lengths

v̄j average velocity of synthetic jet during expulsion phase

dj width of synthetic jet slot

Cμ = v̄2jdj/U
2
∞
c momentum coefficient for synthetic jet

F+ = fc/U∞ nondimensional frequency

dw width of wake

St = fdw/U∞ Strouhal number

PSD power spectral density

I. Introduction

A. Overview

With ever-increasing demands for improved performance and increased efficiency, the control of separated
flows has drawn considerable attention. In this work, we are concerned with the flow over an airfoil, wherein
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decreased separation can improve the lift-to-drag ratio.1 Such flows display highly complex behavior, char-
acterized by shear layer instability and vortex shedding in the wake, and in some cases periodic shedding of
the separation bubble. In spite of this, much progress has been made in controlling separation, for instance
by implementing zero-net-mass-flux (ZNMF) actuators. These devices, also known as synthetic jets, are
favored due to their relatively simple design. Furthermore, the periodic excitation they produce has been
shown to be more effective than steady forcing.2

ZNMF actuators are also versatile, in that the forcing frequency can be adjusted to suit a particular
flow. Much research effort has been focused on finding an optimal operating frequency, but as of yet there
is no consensus. The variation in reported values indicates a need for an increased appreciation of the rich,
nonlinear dynamics driving these flows. For instance, the forcing frequency is often nondimensionalized with
respect to the shedding frequency of the separation bubble, without considering the wake frequency or any
interactions therein.3

In fact, separated airfoil flows are characterized by up to three distinct frequencies, associated with the
shear layer, separation bubble, and wake.3 In this work, we will investigate the interactions between the shear
layer and wake for an open separation bubble. We consider a canonical separated flow, in which separation is
induced over a finite-thickness flat plate at zero angle-of-attack by a blowing and suction boundary condition.
Using two-dimensional (2-D) direct numerical simulations, we find the dominant natural frequencies of the
flow with and without ZNMF actuation. (Preliminary simulations show that 3-D effects are confined to
the downstream wake. While these are certainly important, the interactions in which we are interested are
observed in and believed to drive the 2-D flow as well.) We then perform a spectral analysis using both
traditional signal processing techniques as well as the Koopman operator, identifying relevant flow structures
based on their frequency content. The nature of these structures provides insight into the interactions between
the shear layer and wake.

The following sections discuss in more detail previous studies concerning ZNMF actuation of separated
airfoil flows. In Section B, we summarize recent work regarding optimal forcing frequencies and the lack of
consensus among reported values. In Section C we present work suggesting that the rich dynamics of the
separated airfoil flow can be utilized for flow control purposes. Specifically, a number of lock-on states exist,
some of which display desirable lift and drag characteristics.

B. Difficulties in finding an optimal forcing frequency

Much of the research related to ZNMF actuation is concerned with finding an optimal open-loop forcing
frequency. A nondimensional frequency, F+, can be defined using length and velocity scales associated with
some natural frequency in the flow. (The velocity scale is often taken to be U∞, the freestream velocity.) For
studies where the length is scaled by the chord length c, a range of values 0.55 < F+ < 5.5 has been reported
to be optimal (Bar-Sever,4 Seifert et al.,5 Ravindran,6 Wygnanski,7 Margalit,8 Darabi & Wygnanski,9 Funk
& Parekh10). For the length scales XTE (distance from the actuator to the trailing edge) and Lsep (length
of the separation bubble), optimal ranges of 0.50 < F+ < 2.0 (Seifert & Pack,11 Greenblatt & Wygnanski,12

Pack et al.13) and 0.75 < F+ < 2.5 (Seifert et al.,2 Pack & Seifert,14 Gilarranz & Rediniotis15) have been
reported, respectively. As an extreme example, Amitay et al.16 found that for an unconventional airfoil,
forcing at F+ > 10 outperformed configurations with F+ < 4. The magnitude of these discrepancies may
seem insignificant, but Seifert et al.5 reported a corresponding 25% change in the lift coefficient CL when F+

was varied between 0.25 and 1.5. Similarly, Wygnanski7 found a 400% increase in the momentum coefficient
Cμ for the same range of F+.

Even taking into account the varying definitions of F+, it is clear that there is no consensus on its
optimal value. This is not a complete surprise, given the highly complex behavior of these flows. For
instance, in a separated airfoil flow where the mean separation bubble remains detached, there are two
dominant frequencies: those of the shear layer and wake. This is typical of a bluff body flow, and studies
in this field typically focus on the latter frequency and not the former.17–19 Only Wu et al.20 consider both
parameters. When the mean flow reattaches, there can be a third natural frequency, associated with the
shedding of the separation bubble. The lack of agreement on an optimal F+ value may indicate a need to
consider all of these frequencies, as well any coupling between them. For a nice overview of these issues, see
Mittal et al.3
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Figure 1. Schematic of the canonical separated flow. A finite-thickness flat plate with an elliptical leading edge
is subjected to uniform incoming flow. A separation bubble is induced by a steady blowing/suction boundary
condition applied along the upper boundary of the computational domain.

C. Exploiting lock-on states for flow control

Though separated airfoil flows are characterized by up-to three natural frequencies, in certain flow configu-
rations some of these may take on the same value. We refer to such states as lock-on states. Kotapati et al.21

simulated a configuration in which the unforced flow locked onto a single frequency. That is, the shear layer,
separation bubble, and wake frequencies were equal. For this system, actuation at the natural frequency or
its first subharmonic resulted in a coupling of the separation bubble frequency with a superharmonic of the
forcing frequency. On the other hand, forcing at superharmonics caused the wake and separation bubble to
lock onto a subharmonic of the forcing frequency. It was observed that forcing at the first superharmonic
significantly improved the lift-to-drag ratio, while forcing at further superharmonics was detrimental. Given
the rich system dynamics, it is likely that more of these lock-on states exist, some of which may have desirable
lift and/or drag properties. By increasing our understanding of the complex interactions between the shear
layer, separation bubble, and wake, we may improve our ability to exploit these states for control purposes.

II. Flow Configuration

A. The canonical separated flow

All simulations are performed using a canonical separated flow. In this configuration, a finite-thickness
flat plate with an elliptical leading edge is placed in a uniform oncoming flow at zero angle-of-attack. A
separation bubble is induced through a steady blowing/suction boundary condition applied at the top of the
computational domain (Figure 1). By using a flat plate geometry, we eliminate the influence of curvature,
which has been shown to significantly affect the nature of the boundary layer,22 as well as the receptivity
of the flow to actuation.23, 24 Furthermore, by varying the location of the plate and the amplitude of the
blowing/suction boundary condition, we can specify both the location and extent of the separation bubble,
something not possible by setting the angle-of-attack and freestream velocity alone.3

B. Geometry

In this study, we consider a flat plate with a 4:1 elliptical leading edge and a thickness-to-chord ratio
t/c = 0.095. The upper surface of the flat plate is placed 0.15c from the upper wall, with the leading edge
0.5c downstream of the uniform inflow. The inflow (freestream) velocity is chosen such that Rec = 100, 000.
This is similar to the experimental setup analyzed by Aram et al.25

We analyze three particular implementations of the blowing/suction boundary condition. First, we
consider an attached flow, for which there is no blowing/suction at the upper wall; instead, we apply a no-slip
boundary condition. To physically separate the shear layer from the wake, we also consider a configuration
in which separation is imposed near the midchord. Specifically, the vertical velocity v is varied in a region
spanning x/c = 0.45 to x/c = 0.95. Finally, we consider a configuration where separation is imposed closer
to the trailing edge, with blowing/suction enforced from x/c = 0.75 to x/c = 1.25. In both cases, the vertical
velocity in the blowing/suction region varies sinusoidally in the streamwise direction, with an amplitude of
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0.65U∞. (The boundary conditions do not vary with time.)

C. Actuation

We also study the effect of ZNMF forcing, placing a synthetic jet on the upper-surface at x/c = 0.6. We use a
“slot-only” model for jet, with a slot width and depth of 0.01c.26 The jet generates a uniform vertical velocity
across the bottom of the slot. (In this model the jet cavity is not modeled at all.) The slot velocity varies
sinusoidally in time, with an amplitude such that the mean jet velocity (during expulsion) is v̄j = 0.15U∞.
This results in a momentum coefficient Cμ = 2.25 × 10−4. For this study we force the flow at F+ = 2.2.
(From here on out, we use the definition F+ = fc/U∞.)

III. Numerical Methods

A. Direct numerical simulation

We perform 2-D simulations using an immersed boundary code. The Navier-Stokes equation is discretized
using a cell-centered, collocated arrangement of the primitive variables. A second-order Adams-Bashforth
scheme is used for the convective terms, and an implicit Crank-Nicolson scheme for the diffusive terms. To
advance in time, we employ a second-order fractional-step method. This code has been validated extensively
by comparisons with published numerical and experimental data.27, 28

The simulations are run on a domain with dimensions 2c × 0.76c (in x and y). The grid resolution is
512×256, with a nonuniform spacing. At the upper surface, a no-slip boundary condition is enforced, except
in the blowing/suction region, where the vertical velocity varies sinusoidally (in space), with an amplitude of
0.65U∞. The horizontal velocity is subjected to an outflow boundary condition in this region. Downstream,
we also implement an outflow boundary condition. At the lower surface, we enforce a no-slip boundary
condition. This setup is designed to match an existing experimental configuration, similar to that analyzed
by Aram et al.25

B. Koopman analysis

The Koopman operator is an infinite-dimensional, linear operator that can be used to perform spectral
analysis of nonlinear dynamical systems, as suggested by Rowley et al.29 in the context of fluid mechanics.
Suppose we have a discrete-time dynamical system where xk+1 = f(xk). For instance, xk could be the state
of a flow at one instant in time, and xk+1 the state some time Δt later. Let g(xk) be a scalar-valued function.
g could give the spanwise vorticity at a single point in the flow, say. Then the Koopman operator U maps
g to a new function Ug, such that

Ug(xk) = g
(
f(xk)

)
= g(xk+1). (1)

We note that though f may be a nonlinear map, U acts linearly on functions g.
If we let λj and φj be the eigenvalues and eigenfunctions of U , then a vector-valued function g, called

an observable, can be decomposed as

g(xk) =
∞∑
j=1

λk
jφj(x0)vj , (2)

where we refer to the vj as Koopman modes. (An example of an observable would be a vector describing
the spanwise vorticity at a finite number of points in the flow.)

Each Koopman mode vj is associated with a single eigenvalue λj , and consequently a single frequency. If
g is a vector of measurements made at each gridpoint in a simulation, then the Koopman modes are spatial
structures. Thus using Koopman analysis, we can identify flow structures based on their frequency content.
For systems that are characterized by their frequencies, the Koopman operator is a natural tool to apply.

In general, it is unclear how one would compute Koopman modes. For fluid flows, we can approximate
them using an Arnoldi-like algorithm sometimes called dynamic mode decomposition (DMD).29, 30 DMD is
a snapshot based method, similar to proper orthogonal decomposition (POD). Suppose we take snapshots
from a simulation, sampled regularly in time. Then given a set of snapshots {x̂j}

n
j=0, the DMD algorithm
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generates eigenvalues {λ̂j}
n
j=1 and eigenmodes {v̂j}

n
j=1 such that

x̂k =
n∑

j=1

λ̂k
j v̂j k = 0, . . . , n− 1

x̂n =

n∑
j=1

λ̂n
j v̂j + r r ⊥ span{xk}

n−1
k=0 .

(3)

We see that for the first n snapshots, we can exactly reproduce x̂k using the DMD eigenmodes and
eigenvalues. For the last snapshot, there is a small residual if the same reconstruction equation is applied.
The DMD modes are the modes that minimize this residual, in a least-squares sense.29, 30

The DMD decomposition is nearly identical to the Koopman decomposition (see Equation (2)) if we take

xk = x̂k

g(xk) = xk

v̂j = φ(x0)vj .

The key difference is that the sums in (3) are finite, while those in (2) are infinite. That allows the Koopman
decomposition to reproduce trajectories of g that may be nonlinear, whereas the the DMD decomposition
can at best reproduce linear dynamics.

Since the DMD modes exactly reproduce the first n snapshots using these linear dynamics, we interpret
them as the eigenmodes of a linear system that approximates the true, nonlinear system in a small neighbor-
hood. In other words, if the true Navier-Stokes equations can be described by a map x̂k+1 = f(x̂k), the DMD
modes are eigenmodes of an approximating linear system x̃k+1 = Ax̃k, where x̃k = x̂k for k = 0, . . . , n− 1.
At the nth iteration, the linear map no longer matches the nonlinear one, as seen in (3). Because the Koop-
man modes of a linear system are simply its eigenmodes,29 the DMD modes give us an approximation of
the Koopman modes for the nonlinear system. For clarity, we will now drop the “hat” notation for DMD
modes, assuming that they are in effect equal to Koopman modes (modulo scaling by φ(x0)).

IV. Results

A. Unforced flow

1. Power spectrum analysis

When no separation is induced, we simply have flow past a bluff body, and indeed, we observe the familiar
von Kármán vortex street (Figure 2). Measuring v with a probe placed in the wake, we find that the resulting
power spectrum shows a dominant peak at F+ = 3.00 (Figure 3). We also see secondary and tertiary peaks
near the second and first superharmonics of the wake frequency, at F+ = 9.33 and F+ = 6.33.

In the case of midchord separation, the shear layer detaches around x/c = 0.4 and rolls up into distinct
vortices around x/c = 0.6 (Figure 2). These vortices convect downstream but are pushed downward toward
the flat plate by the blowing boundary condition along the upper wall. The shear layer reattaches and the
wake is similar to that of the attached flow.

For this case, the power spectrum from the wake probe has a dominant peak at F+ = 3.0, a secondary
peak at F+ = 8.67, and a weak tertiary peak at F+ = 5.67 (Figure 3). As with the attached flow, these are
roughly harmonics of the fundamental wake frequency. We note that the first superharmonic appears much
more clearly in the data from a probe placed in the shear layer, which has a spectral peak at F+ = 5.67. It
appears that in this configuration, the shear layer frequency locks onto the first superharmonic of the wake
frequency.

When the separation point is moved near the trailing edge, the shear layer no longer reattaches and
the wake structure is highly complex (Figure 2). Using a probe placed in the wake, we can again identify
a dominant wake frequency, at F+ = 2.33, but the spectrum has no clear secondary or tertiary peak.
(Somewhat isolated peaks are visible at F+ = 9.00 and F+ = 6.67, but these are of relatively low amplitude.)
Data taken from a shear layer probe generates a messier spectrum, with the biggest peak near the second
superharmonic of the wake frequency, at F+ = 6.67. This peak is of lower amplitude than was seen for the
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Figure 2. Instantaneous (left) and time-averaged (right) vorticity fields of the unforced flow. Three cases are
considered: no separation (top), midchord separation (middle), and trailing edge separation (bottom). Probe
locations are denoted by (◦). As the separation point is moved aft, the shear layer no longer reattaches, and
the wake structure becomes more complex.
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Figure 3. Power spectra for the unforced flow when no separation is induced (left), when separation is
induced at the midchord (middle), and when separation is induced at the trailing edge (right). The spectra
are computed from measurements of v taken in the wake (blue triangles) and in the shear layer (green circles).
In all three cases, a dominant wake frequency is easily identified. For midchord separation, the shear layer
frequency is also clear, while for trailing edge separation, the peak in the shear layer spectrum is less isolated.

shear layer in the case of midchord separation, and is not nearly as sharp nor isolated. As such, from the
probe data alone, it is difficult to determine whether or not this is the characteristic shear layer frequency.

2. Frequency scales

The flows considered above represent three fundamentally distinct types of separated flows, namely those
with no separation bubble (attached flow), a closed separation bubble, and an open separation bubble. In
each case, a dominant wake frequency can be identified from probe data collected in the wake region. This
suggests that for these flow configurations, the wake is the dominant flow structure. As such, it is logical to
scale frequencies not by chord length, but by wake width.

We define the upper boundary of the wake as the point above the trailing edge where the horizontal
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Figure 4. Comparison of frequency scalings for power spectra computed from measurements of v taken by wake
probes. Spectra for the attached (black squares), midchord separation (blue triangles), and aftchord separation
(green circles) cases are shown. We see that the dominant wake frequencies agree when the frequency is scaled
by the wake width (right) instead of the chord length (left).

velocity u first reaches 99% of the maximum value it attains above the plate. We choose this definition
because unlike a standard boundary layer where the velocity asymptotically approaches the freestream
value, in this configuration, the constriction of the flow between the upper wall and the flat plate causes
a net acceleration. Furthermore, the amount of acceleration varies based on the extent of the separation
bubble. Thus there is no single velocity scale that can be applied in all cases, and the local maximum value
was chosen instead. The lower wake boundary is defined similarly, but with respect to maximum velocity
achieved below the plate. We must consider the two boundaries separately due to the asymmetry of the flow
configuration.

With this scaling, we see that the wake frequencies agree (Figure 4). This is in contrast to the trend in
F+, where there seemed to be a clear decrease in the wake frequency for trailing edge separation. (We do
note, however, that for this case there is a significantly wider peak in the spectrum.) The agreement in wake
frequency is not surprising, as Strouhal number is the natural parameter for characterizing a bluff body flow.
Because it provides a common reference point for comparing frequencies across flow configurations, we use
St in place of F+ for the remainder of this analysis.

3. Limitations of probe data

One drawback of relying on probes for analysis is that the data can be sensitive to the probe locations.
To demonstrate this, we consider the unforced flow with separation at the trailing edge. We compare our
original probe, located in the shear layer at (x/c, y/c) = (0.99, 0.09), to one placed slightly upstream, at
(x/c, y/c) = (0.94, 0.10). Both resulting spectra have their largest peak at St = 1.10 (Figure 5). However,
this peak is almost 25 dB smaller for the upstream probe, and the shapes of the peaks are dissimilar.
Furthermore, the upstream probe has a clear secondary peak at the wake frequency (St = 0.33), despite
being located farther from the wake region. Without further analysis, it is unclear whether this indicates
a secondary frequency in the shear layer, or that the probe is simply picking up frequencies from the wake
oscillation.

To account for the sensitivity to location, we can simply add more probes, hoping to see clear trends that
appear for many probe points. This can be done in computations at little cost, but is certainly not feasible
in experiments. It will not generally solve the problem of having multiple peaks in a spectrum either. To
determine the physical cause of each peak, we require something other than spectral data, motivating the
use of spatial/modal analysis techniques such as POD and Koopman analysis.

Another drawback to traditional spectral analysis is its uniform discretization of frequency space, with
the maximum observable frequency set by the Nyquist criterion and the spacing determined by the number
of samples. As a result, frequencies of interest can only be computed up to some predetermined precision.
Once data have been collected, there is little freedom to alter this. This highlights another advantage of
Koopman spectral analysis, wherein the computed frequencies are not predetermined in any way, separating
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Figure 5. Time-averaged vorticity for the unforced flow with separation at the trailing edge (left), with two
possible shear layer probes (◦). The resulting spectra (right) share a peak at St = 1.10. However, the peaks
for the upstream probe (green) are generally of much smaller amplitude than those for the downstream probe
(blue). Also, the upstream probe shows an isolated peak near the wake frequency, at St = 0.33, while the
downstream probe does not.

it from methods like the Discrete Fourier Transform (DFT).

4. Koopman analysis

As a complement to the traditional spectral analysis discussed above, we also compute Koopman modes
using snapshots of the flow. In each computation, we take snapshots spanning 20,000 timesteps, sampled
every 100 steps. (Each timestep is 0.002 convective time units.) For these flows, none of the Koopman
eigenvalues are unstable, with most lying near the unit circle (neutrally stable). To clean up the spectra,
we disregard any eigenvalues for which ‖λ‖50 < 2/3. Recalling Equation (3), we see the these correspond to
modes whose contribution to a snapshot decreases by 1/3 over 50 samples (one convective time unit).

The Koopman spectrum for the attached flow is shown in Figure 6. We see three clear peaks at the wake
frequency (St = 0.34) and its first two superharmonics (St = 0.68, 1.02), matching the spectrum shown in
Figure 3. The corresponding Koopman modes also show clear, spatially harmonic structures. For clarity, we
discuss only structures in the v velocity field, noting that similar behavior is observed in u. The wake mode
is characterized by large, up-down symmetric bubbles, alternating in sign in the streamwise direction (Figure
7, mode A). Its first superharmonic has a mode with antisymmetric pairs of bubbles, again alternating in
sign as we move downstream (Figure 7, mode B). The second superharmonic mode is similar to the wake
mode, but at a higher spatial frequency (Figure 7, mode C). These mode structures are characteristic of the
flow past any bluff body, such as a 2-D cylinder.31

When separation is induced at the midchord, the behavior is very much the same. The Koopman spectrum
shows three clear peaks at the wake frequency and its first two superharmonics (St = 0.36, 0.72, 1.08) (Figure
6). The corresponding Koopman modes show spatially harmonic wake structures, just as in the attached
flow (Figure 7). However, there is also a clear shear layer structure in the St = 0.72 mode (Figure 7, mode
E). This frequency is also observed in data taken from a shear layer probe (Figure 3), corroborating the
conclusion that the shear layer is locking onto a superharmonic of the wake frequency.

For trailing edge separation, we get a fundamentally different Koopman spectrum. As before, we see
a dominant peak at the wake frequency St = 0.35, as well as a secondary peak at its first superharmonic
St = 0.70 (Figure 8). However, there is no secondary peak at the second superharmonic St = 1.05. Instead,
there is a secondary peak at a slightly higher frequency of St = 1.14, and another secondary peak at St = 1.50.
These nonharmonic peaks are not observed in the attached flow nor in the flow with midchord separation,
and appear to be related to the increased complexity of the wake for the open separation bubble.

The wake mode has the same form as before, with symmetric bubbles of v now centered not at the middle
of the flat plate, but at a slightly higher point (Figure 9, mode A). Looking at the bubble furthest upstream,
we see that this wake structure seems to span the distance from the bottom of the flat plate to the upper
boundary of the separation bubble (compare to Figure 2). Again, this motivates us to scale frequencies by
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Figure 6. Koopman spectra for the unforced flow with no separation (left) and midchord separation (right).
In both cases, clear peaks occur at the wake frequency and its first two harmonics.
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Figure 7. Comparison of Koopman modes for the unforced flow with no separation (left) and midchord sepa-
ration (right). (Only contours of v are shown.) The three dominant modes occur at the wake frequency (top),
its first superharmonic (middle), and its second superharmonic (bottom). (See Figure 6 for corresponding
spectra.) The spatial structures are similar for both cases, with a slightly elongated wake in the case of mid-
chord separation. For that case, it appears that the shear layer is locking onto the first superharmonic of the
wake (middle, right).

wake width rather than chord length. The similarity of the wake mode in all three cases is consistent with
the fact that the wake frequency is the same for all three.

We can also gain insight by comparing the Koopman modes to POD modes generated from the same
data. POD modes identify spatial structures based on their energy content, while Koopman modes do so
based on frequency content.29 In addition, if computed from snapshots spanning a large time interval, the
resulting POD modes are spatial structures that are uncorrelated in time (due to the orthogonality of the
time coefficients). For the attached flow and flow with midchord separation, the Koopman modes and POD
modes are nearly identical. Thus the modes corresponding to the wake and its superharmonics are also the
highest energy structures in the flow, and are not correlated with each other. We might think of them as
independent oscillators.

For the case of trailing edge separation, the wake mode appears as both a Koopman mode and a POD
mode (Figure 9, modes A, A’). Again, we see that the wake is the dominant flow feature, with the most clearly
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Figure 8. Koopman spectrum for the unforced flow with trailing edge separation. The wake frequency appears
as the dominant peak (A), with its first superharmonic a secondary peak (B). There are also secondary peaks
at nonharmonic frequencies (D, E). The peak corresponding to the second superharmonic (C) is weaker than
the secondary peaks, unlike in the attached flow or the flow with midchord separation (see Figure 6).
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Figure 9. Comparison of Koopman modes (left) and POD modes (right) for the unforced flow with trailing
edge separation. (Only contours of v are shown.) The dominant wake modes (top) are nearly identical.
Only the Koopman modes show the expected spatially harmonic structures for the first (middle, left) and
second (bottom, left) superharmonics. (See Figure 8 for corresponding spectrum.) The second (middle, right)
and third (bottom, right) most energetic POD mode pairs show some evidence of these harmonics, but the
structures are not nearly as clear.

identifiable frequency, as well as a high energy structure that is uncorrelated with any others. However, this
is not the case with its superharmonics.

At the first superharmonic of the wake frequency, we see spatially harmonic structures similar to those
observed in the attached flow and flow with midchord separation (Figure 9, mode B). The spatial structures
again come in paired bubbles of v, but in this case they are not nearly as symmetric. The second most
energetic POD mode pair is only slightly similar to this Koopman mode (Figure 9, mode B’). The lack of
similarity suggests that this Koopman mode may be correlated with other structures in the flow.

These differences are even more apparent for the second superharmonic. Based on the Koopman spec-
trum, we don’t expect this to be an important structure (Figure 8). The Koopman mode has a spatially

10 of 14

American Institute of Aeronautics and Astronautics



0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.15

0

0.15

x/c

y
/
c

D

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.15

0

0.15

x/c

E

Figure 10. Koopman modes for the unforced flow with trailing edge separation. (Only contours of v are
shown.) These two modes correspond to nonharmonic peaks in the spectrum (see Figure 8). Both exhibit
strong support in the shear layer as well as the wake, and may be related to the interaction of the two
structures.
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Figure 11. Instantaneous (left) and time-averaged (right) vorticity fields of the forced flow. A synthetic jet is
placed on the upper surface at x/c = 0.6. ZNMF forcing at the wake frequency causes a drastic decrease in the
extent of the separation bubble as compared to the unforced flow (see Figure 5).

harmonic structure as we would expect, but it bears only slight similarity to the third most energetic POD
mode pair (Figure 9, modes C, C’), suggesting it is not a high energy structure. This is consistent with the
relatively small peak in the Koopman spectrum. Again, the lack of similarity between the two modes also
suggests that this Koopman mode may be correlated with other spatial structures.

This leads us to the nonharmonic peaks in the Koopman spectrum. The corresponding Koopman modes
show strong support in the shear layer region as well as in the far wake (Figure 10). The presence of a
shear layer structure in these modes is much stronger than in any other Koopman mode, suggesting that the
nonharmonic modes may be fundamental to the behavior of the shear layer. In addition, the clear support
in the downstream wake may indicate that these structures are responsible for the interaction between the
shear layer and the wake. This is supported by the fact that neither interaction mode appears in POD
analysis. As such, they may be correlated with other flow structures.

The frequency corresponding to the first interaction mode is St = 1.14, which is close to the frequency
that was measured by shear layer probes (St = 1.10). This agreement suggests that this interaction mode
may be the dominant shear layer structure, and that St = 1.14 is the characteristic shear layer frequency.

B. Actuated flow

Motivated by the dominance of the wake mode, we investigate the effect of actuating the flow with a synthetic
jet oscillating at the wake frequency. We implement the actuator in the case of trailing edge separation, where
the effect of separation is the greatest. With actuation, the shear layer still rolls up into distinct vortices,
but these vortices convect downstream along the upper surface of the flat plate, with minimal separation
(Figure 11). This results in a drastic reduction in the extent of the mean separation bubble, decreasing the
height at the trailing edge from 0.062c to 0.037c, a 40% change.

Koopman analysis shows that as a result of actuation, the dominant frequencies are again harmonics of
the wake frequency (Figure 12). The nonharmonic peaks associated with the interaction modes no longer
appear. The wake mode shows a similar structure to that of the unactuated flow, but the symmetry is
broken by the effect of actuation (Figure 13, mode A). We see that the structures in the wake no longer
extend above the upper surface of the flat plate. We also see evidence of actuation in the shear layer along
the upper surface. In the unactuated flow, the wake mode showed no support in the shear layer.

The secondary peak in the Koopman spectrum occurs at the first superharmonic of the wake frequency
(Figure 12). For each of the unactuated flows, this frequency corresponds to a spatially harmonic structure
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Figure 12. Koopman spectrum for the actuated flow with trailing edge separation. There are clear peaks
at the wake/forcing frequency and its superharmonics. Unlike in the unforced flow, there are no peaks at
nonharmonic frequencies (see Figure 8).
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Figure 13. Dominant Koopman modes for the actuated flow with trailing edge separation. (Only contours of
v are shown.) Forcing at the wake frequency decreases the size of the structures in the wake mode (left). It
also causes the first harmonic mode to take a form more similar to the interaction modes (Figure 10) than the
unforced superharmonic mode (Figure 9). (See Figure 12 for corresponding spectrum.)

characterized by antisymmetric pairs of bubbles in v, spanning the length of the wake. In contrast, for the
actuated flow we observe the same superharmonic frequency, but no such harmonic structures. Instead, we
see strong support in the shear layer, with structures that extend into the wake (Figure 13, mode B).

If anything, these structures are more similar to those of the interaction modes than anything else. All
show clear support in the shear layer, with bubbles of v alternating in sign. These structures then extend
downward into the wake. For the interaction modes, the far field wake structure is similar to that of the
second wake superharmonic (Figure 10, mode D, Figure 9, mode C). However, for the actuated flow, the
far field structures seem to be splitting, possibly into the harmonic structures expected for the first wake
superharmonic. The second most energetic POD mode pair has the same structure, meaning this is a high
energy mode that is uncorrelated with others.

Actuation appears to cause the first interaction mode to lock onto the first superharmonic of the wake,
similar to the case of midchord separation. For midchord separation, there are two distinct regions of support
in the first superharmonic mode, one in the shear layer and one in the wake (Figure 7). In the actuated flow
with trailing edge separation, we instead see a combination of these structures, with one flowing into the
other. This is in contrast to the unactuated flow, where the first interaction mode occurs at a nonharmonic
frequency and has support in the shear layer and far wake, but not the near wake.

We recall that in the unactuated flow, the first interaction mode appears as a Koopman mode but not
as a POD mode. This suggests that it could be correlated with other structures. In the actuated case, the
Koopman and POD modes match, and are thus not coupled to other structures. As such, we might infer
that the reason this particular choice of actuation is effective is that it enhances the interaction mode, such
that the vortices from the shear layer can interact with the wake constructively and in an uncoupled manner,
decreasing the extent of the wake.
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V. Conclusions

Koopman analysis proves to be an effective complement to traditional spectral analysis. Using global
data (snapshots of the velocity field) we are able to identify the dominant wake and shear layer frequencies,
matching them to modes with corresponding spatial structures. This is especially useful when probe data
produce spectra with multiple peaks, whose sources can be ambiguous. It also avoids the sensitivity of probe
data to the location of the probe itself.

We analyze three unforced flows, with no separation, separation at the midchord, and separation at the
trailing edge. When normalized by the wake width, the wake frequencies agree within 10%. This provides
a common reference point for comparing flow frequencies. In the case of attached flow, the Koopman
spectrum has peaks at the wake frequency and its superharmonics. For midchord separation, the same
peaks are observed, with the shear layer locking onto the first superharmonic of the wake frequency.

When the separation point is moved near the trailing edge, the spectrum becomes more complex. The
second superharmonic is no longer a dominant peak, and two nonharmonic peaks appear. The two corre-
sponding modes both show support in the shear layer as well as the far wake. This, along with the fact
that neither appears in POD analysis, suggests that these modes may be related to the interaction of the
shear layer and wake. Measurements taken with a probe verify that the nonharmonic shear layer frequency
is indeed observed in the flow.

Motivated by the dominance of the fundamental wake frequency, we investigate the effect of forcing the
flow at a nearby frequency of St = 0.36. ZNMF actuation at this frequency is very effective in reducing the
extent of the separation bubble. The resulting Koopman spectrum is dominated by harmonic peaks only.
However, the corresponding modes resemble the nonharmonic (interaction) modes of the unactuated flow,
with support in the shear layer leading into the wake. This suggests that the effectiveness of this control
strategy may be tied to its enhancing the interaction modes.

Future work will focus on a continued use of Koopman spectral analysis as a complement to traditional
spectral techniques. An obvious parameter of interest is the optimal forcing frequency. A coarse, wide-
ranging sweep of the parameter space will be conducted in an effort to determine whether or not forcing at
higher wake superharmonics (or even subharmonics) is effective. A finer sweep will also be done, in which
small perturbations about the the wake frequency will be tested. In these studies, we will look to identify
patterns in the nature of the Koopman spectra and modes. Commonalities that distinguish effective control
strategies may lead to insight into the physical mechanisms that drive the flow.
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