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A thorough understanding of the pectoral fin hydrodynamics of the bluegill sunfish
(Lepomis macrochirus) provides insight that can be applied to the design of propulsors
for autonomous underwater vehicles (AUVs). The pectoral fin represents a continuously
deforming complex moving boundary problem. For the sunfish, both propulsion and ma-
neuvering are entirely controlled by the pectoral fins. First, the kinematics of the fish fins
and body are obtained experimentally through the use of high-speed, high resolution cam-
eras. Then, simulations are carried out using a Cartesian grid based immersed boundary
method that can handle unstructured deforming boundaries with the digitized kinemat-
ics as input. Here, we present a detailed analysis of the performance of the pectoral fins
involved in a turning maneuver.

I. Introduction

Nature and evolution have combined to produce a multitude of efficient and successful control surfaces and
propulsors (wings of birds, fish fins etc.). Biomimetics is a rapidly growing field that hopes to incorporate the
best features of design found in nature into engineering systems. Any such endeavor starts with establishing
a clear understanding of the reasons for the success of an evolutionary design. The bluegill sunfish is of
particular interest for its ability perform a wide range of maneuvers and steady swimming using just its
pectoral fins. This is probably the result of evolution to thrive in its natural habitat of small flowing
streams. The ability to maneuver effectively in small spaces helps it successfully forage for food and evade
prey.

Recently, the performance of the pectoral fins in steady swimming was studied in great detail using proper
orthogonal decomposition (POD) by Bozkurttas.1 This type of decomposition of fin motion is needed to
systematically study the role of flexibility on its performance. This feature of the pectoral fin motion
distinguishes it from other moving control surfaces such as flapping foils which undergo strictly rigid body
motion. This inherent flexibility may be advantageous in the design of effective underwater propulsion
systems.2 Through the above mentioned study,1 a great deal is now known about steady locomotion of
bluegill sunfish.

However, there does not exist the same degree of understanding about other equally important modes of
operation of the pectoral fin. The present study attempts to fill this void through an investigation of a yaw
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turn maneuver executed by the bluegill sunfish.3 This maneuver is executed by the sunfish in response to a
stimulus (refer to Figure 1(a)). This mimics a typical evasive response of the sunfish in its natural habitat.
Finally, we note that the present work is a part of an ongoing multi-disciplinary effort that aims to develop
robust and efficient flexible fin based propulsion.1,2, 4

II. Methodology

A. Experimental Methodology

Figure 1 shows different frames of the bluegill sunfish executing a maneuver from a ventral view. The motion
of the sunfish pectoral fin and body are captured using multiple high speed video cameras simultaneously
operating at 250 or more frames per second with a 1024 × 1024 resolution.4,5 Then, at a particular time
step, several points are digitized, nominally using 300 points per time step. This procedure is repeated for
different timesteps at equally spaced time intervals spanning a fin beat. Thus, the kinematics of the fin
motion are acquired for the simulation (see Figure 2).
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Figure 1. A bluegill sunfish during a maneuver: ventral (bottom) view.

B. Computational Methodology

We present a brief description of the Cartesian grid based immersed boundary method for moving boundaries
starting with the governing equations. The three-dimensional unsteady, viscous incompressible Navier-Stokes
equations are given as

∂ui

∂xi
= 0 (1)
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Figure 2. Kinematics of the pectoral fins input to the simulation.
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where i; j = 1, 2, 3, ui are the velocity component, p is the pressure, and ρ and ν are the fluid density and
kinematic viscosity.

1. Numerical Method

The Navier-Stokes equations (2) are discretized using a cell-centered, collocated (non-staggered) arrangement
of the primitive variables (ui, p). In addition to the cell-center velocities (ui), the face-center velocities, Ui,
are computed. A second-order Adams-Bashforth scheme is employed for the convective terms while the
diffusion terms are discretized using an implicit Crank-Nicolson scheme which eliminates the viscous stability
constraint. The spatial derivatives are computed using a second-order accurate central difference scheme.
The equations are integrated in time using the fractional step method.6In the first sub-step of this method
a modified momentum equation is solved and an intermediate velocity u∗ obtained. The second sub-step
requires the solution of the pressure correction equation which is solved with the constraint that the final
velocity un+1

i be divergence-free. This gives the following Poisson equation for the pressure correction and a
Neumann boundary condition imposed on this pressure correction at all boundaries. This Poisson equation is
solved with a highly efficient geometric multigrid method which employs a Gauss-Siedel line-SOR smoother.
Once the pressure correction is obtained, the pressure and velocity are updated. These separately updated
face-velocities satisfy discrete mass-conservation to machine accuracy and use of these velocities in estimating
the non-linear convective flux leads to a more accurate and robust solution procedure. The advantage of
separately computing the face-center velocities was initially proposed by Zang et al.7 and discussed in the
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Figure 3. Schematic describing naming convention and location of velocity components (left) and the ghost-cell
method (right).

context of the Cartesian grid methods in Ye et al.8,9

2. Immersed Boundary Treatment

The immersed boundary method used here employs a multi-dimensional ghost-cell methodology to impose
the boundary conditions on the immersed boundary. The current solver is designed from the start for
fast, efficient and accurate solution of flows with complex three-dimensional, moving boundaries. Also, the
current method is a“sharp” interface method in that the boundary conditions on the immersed boundary
are imposed at the precise location of the immersed body and there is no spurious spreading of boundary
forcing into the fluid as what usually occurs with diffuse interface methods (See Mittal & Iaccarino10 for
details).

3. Geometric Representation of Immersed Boundary

The current method is designed to simulate flows over arbitrarily complex 2D and 3D immersed stationary
and moving boundaries and the approach chosen to represent the boundary surface should be flexible enough
so as not to limit the type of geometries that can be handled. A number of different approaches are available
for representing the surface of the immersed boundary including level-sets (11,12), and unstructured surface
grids. In the current solver we choose to represent the surface of the IB by a unstructured mesh with
triangular elements. This approach is very well suited for the wide variety of flow engineering and biological
configurations that we are interested and is compatible with the immersed boundary methodology used in
the current solver.

4. Ghost-Cell Formulation

First, the surface mesh (see Figure 3) is embedded or immersed into the Cartesian grid. Next, a systematic
procedure is developed to implement the ghost-cell methodology for such an immersed boundary. The
method begins with identifying cells whose nodes are inside the solid boundary (termed “solid cells”) and
cells that are outside the body (termed “fluid cells”). Once the solid-fluid interface has been determined,
the next step is to mark the so-called “ghost-cells”. These are cells whose nodes are inside the solid but have
at least one north, south, east or west neighbor in the fluid. The overall approach now is to determine an
appropriate equation for these ghost cells that implicitly satisfies the imposed physical boundary condition on
the immersed boundary in the vicinity of each ghost-cell. This is accomplished by extending a line segment
from the node of these cells into the fluid to an “image-point” (denoted by IP ) such that it intersects normal
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to the immersed boundary and the boundary intercept (denoted by BI) lies midway between the ghost-node
and the image-point. Next, the cells surrounding the IP are identified and bilinear interpolation is used to
compute the value of generic variable φ at the image point as follows,

φIP =
∑

βiφi (3)

where i extends over all the surrounding cells and βi are the associated interpolation weights of these cells.
Following this, the value of variable at the ghost-cell (denoted by GC) is computed by using a central-
difference approximation along the normal probe which incorporates the prescribed boundary condition at
the boundary intercept. Thus, for Dirichlet and Neumann boundary conditions, the formulas are:

φGC = 2φBI − φIP (4)

and

φGC = ∆lp

(
δφ

δn

)
BI

+ φIP (5)

respectively where ∆lp is the total length of the normal line segment. Equations 4 and 5 can now be combined
with Eq. 3 to give an implicit expression for the ghost-node values ie.

φGC +
∑

βiφi = 2φBI (6)

and

φGC −
∑

βiφi = ∆lp

(
δφ

δn

)
BI

(7)

respectively for these two types of boundary conditions. These equations are then solved in a fully coupled
manner with the discretized governing equations 2 for the neighboring fluid cells along with the trivial
equation φ = 0 for the internal solid cells. Using this procedure, the boundary conditions are prescribed to
second-order accuracy and this along with the second-order accurate discretization of the fluid cells leads to
local and global second-order accuracy in the computations.

5. Boundary Motion

Boundary motion can be included into the above formulation with relative ease. In advancing the field
equations from time level n to n + 1 in the case of a moving boundary, the first step is to move from its
current location to the new location. This is is accomplished by moving the nodes of the surface triangles
with a known velocity. Thus we employ the following equation to update the coordinates (Xi) of the surface
element vertices

Xn+1
i −Xn

i

∆t
= V n+1

i (8)

where Vi is the vertex velocity. The vertex velocity can either be prescribed or it can be computed from a
dynamical equation if the body motion is coupled to the fluid. The next step is to determine the ghost-cells
for this new immersed boundary location and recompute the body-intercepts, image-points and associated
weights βs. Subsequently, the flow equations which are written in Eulerian form are advanced in time.
The general framework described above can therefore be considered as Eulerian-Lagrangian, wherein the
immersed boundaries are explicitly tracked as surfaces in a Lagrangian mode, while the flow computations
are performed on a fixed Eulerian mesh. Additional details regarding the immersed boundary methodology
may be found in Dong et al,13 Bozkurttas1 and Mittal et. al.9

III. Simulation of Yaw Turn Maneuver

A. Computational Setup

The pectoral fins and an idealized body, immersed in the computational grid, are shown in Figure 4. The
fins are modeled as deforming membranes while the body is treated as rigid body undergoing general motion.

5 of 11

American Institute of Aeronautics and Astronautics



(c) (d)

(a) (b)

Figure 4. Cartesian grid and unstructured mesh employed for yaw maneuver : (a) x − y plane section (4.8
million grid points); (b) x − z plane section ; (c) y − z plane section; (d) Unstructured Surface Mesh (Pectoral
Fin, nodes= 10000, elements= 19602)

The nominal grid size used in the current simulation is 241×145×145 (see Figure 4). The Reynolds number
is defined as Re = U∞Ls/ν, where U∞, Ls, and ν are the freestream velocity, spanwise fin length, and the
kinematic viscosity of water (ν = 1.007×10−6m2s−1 at room temperature (20 degrees Celsius)). The domain
size employed for the maneuver is 7.5Ls × 5Ls × 5Ls. The Reynolds number for the turning maneuver is
approximately 3500 based on spanwise fin length and a freestream velocity of 0.5 body lengths per second.
The boundary conditions on the domain are freestream on the left, outflow on the right while the remaining
boundaries employ slip or symmetry boundary conditions (see Figure 4(a)). Finally, the fin surface and fish
body are considered no slip boundaries.

B. Computational Results

Figure 5 shows the comparison of the time history of force coefficients developed on the strongside and
weakside fin. The force coefficients are defined as,

Cd =
2Fx

ρU2
∞Afin

, Cl =
2Fy

ρU2
∞Afin

, and, Cz =
2Fz

ρU2
∞Afin

, (9)
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Figure 5. Comparison of time variation of force coefficients: (a)strongside; (b) weakside.

where Fx, Fy, and Fz are the forces respectively in the streamwise, vertical, and spanwise directions, Afin is
the nominal fin area, and ρ is the density of the fluid. Clearly, the magnitude of the forces on the weakside
are an order of magnitude lower (see Figure 5(b)). This is consistent with the observation that the spatial
and temporal kinematics of the strong side fin show greater variation with respect to the weak side fin (refer
to Figures 1 and 2). Therefore, it comes as no surprise that the dynamics of the strongside pectoral fin
dominate the maneuver. Thus, we focus exclusively on the strongside fin performance in our discussion
hereafter.

Figure 6 shows the evolution of the wake structure emanating as result of the strongside fin kinematics
from two vantage points: lateral (Figure 6 (a,c,e)) and dorsal (Figure 6 (b,d,f)). The strong fin is successful
in generating a strong vortex ring during the outstroke by sweeping the entire planform in opposition to
the freestream. This motion simultaneously produces a large force in the streamwise (Cd) direction while
generating significant lateral (Cz) thrust (see Figure 5(a)). The lateral thrust is a direct result of the reaction
to the strong lateral jet flow away from the body (see Figure 7). The evolving vortex ring, clearly seen in
Figure 6 (d) and (f), continues to be oriented nearly parallel to the fish body. Consequently, the lateral jet
orientation ensures that the maximum lateral force continues to act normal to the fish body for the duration
of the maneuver. Meanwhile, the forces directed vertically (Cl) are negligible compared to Cd and Cz.

Importantly, the vortex ring and the associated lateral jet, shown in Figure 6 and 7, have also been
observed in experimental visualization.3 The peak lateral velocity is found to be greater than 3 times the
freestream velocity. Consequently, the lateral forces developed are several times that observed in forward
thrust for the steady swimming case.1 Preliminary estimates suggest this factor may be as high as 4. This
factor is in reasonable agreement with the forces measured experimentally.3

Returning to Figure 5(a)), we note that the Cz peak is reached between t/T = 0.15 and t/T = 0.3.
Shortly after, the Cd peak occurs between t/T = 0.3 and t/T = 0.4. As expected, the first priority in the
maneuver is to evade the stimulus (prey in the wild) by quickly generating a strong lateral force (maximum
occurs at t/T ≈ 0.2). Thereafter, the drag force developed in the streamwise direction is likely used to
modulate the direction of the resultant force as the sunfish turns away from the stimulus. Here, the inherent
flexibility of the pectoral fin structure and the ability to alter planform area is likely to be very useful.

Finally, we attempt to identify the source of the principal force production by dividing the strongside
pectoral fin into dorsal and ventral halves (see Figure 8). A comparison of the force histories obtained using
just the dorsal and ventral halves is shown in Figure 9. It is found that the peak lateral thrust developed
by the dorsal part is approximately 70% of the lateral force as opposed to 30% for the ventral portion (see
Figure 9(c)). Meanwhile, the streamwise force magnitudes are comparable except that the ventral portion
appears to contribute minimally in thrust production, if any (see Figure 9(a)). And finally, the ventral
and dorsal portions appear to produce vertical forces that are in opposite directions, respectively. This is
consistent with the minimal vertical forces observed with the full pectoral fin (see Figure 5 (a)). As a result,
the dorsal Cl is often times greater than the full fin Cl over the course of the maneuver (see Figure 9(b)).
Overall, while the dorsal portion contributes to the majority of lateral force production, the ratio of dorsal
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to ventral contribution appears to be more equitable than the steady swimming case discussed earlier.1

IV. Conclusions

A successful simulation of the yaw turn maneuver is performed using a Cartesian grid based immersed
boundary method.9,10,13 The strong lateral jet produced by the strongside fin motion, observed in the
experiments,3 is reproduced in the simulation. The lateral force, as expected, is significantly larger compared
with steady swimming suggesting a wider operational envelope for the pectoral fin. The bluegill sunfish
appears to actively employ a larger portion of the fin in executing the maneuver likely due to the increased
force requirements when compared to steady swimming.1 Even so, the dorsal half of the fin still appears to
supply a majority of the lateral force.
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Figure 6. Formation of the vortex ring due to the strongside pectoral fin motion: (a), (c), and (e) are lateral
views at t/T = 0.22, t/T = 0.49, and t/T = 0.66, respectively; (b), (d), and (f) are the corresponding dorsal views
at t/T = 0.22, t/T = 0.49, and t/T = 0.66, respectively.

9 of 11

American Institute of Aeronautics and Astronautics



@
@

@
@

@R

�
�

�
�

��

A

B

Figure 7. The strongside lateral jet associated with the vortex structures in Figure 6(c) at t/T = 0.49.

Figure 8. Illustration of sectioning of the strongside pectoral fin into ventral and dorsal halves.
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Figure 9. Comparison of forces produced on the dorsal and ventral halves of the strong side fin with respect
to the full fin: (a) Streamwise Force; (b) Vertical Force; (c) Lateral Force.
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