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I. Introduction 

 

he last decade has seen a tremendous rise in the popularity of immersed boundary methods
[1-6]

. 

The primary factor driving this is the relative ease with which this methodology allows 

researchers to develop computational models of flows with complex geometries and/or moving 

boundaries. Immersed boundary solvers have been employed successfully for simulating 

biological flows, physiological flows, flow-induced vibration and complex turbulent flows. The 

key feature of the immersed boundary method is that simulations with complex boundaries can be 

carried out on stationary, non-body conformal Cartesian grids. This approach eliminates the need 

for complicated re-meshing algorithms that are usually employed with conventional Lagrangian 

body-conformal methods. These methods provide a unique capability for simulating flows with 

complex moving boundaries and as such, are ideally suited for simulation of flows associated 

with biological locomotion.  

 

In the current paper, we describe a versatile immersed–boundary Cartesian grid-based method 

and also demonstrate the capabilities of this method for a number of biological configurations. 

The paper is organized as follows: in Section II, we present the numerical methodology and in 

Section III-V, we discuss simulation results obtained for several biologically inspired flows 

including the fish pectoral fin hydrodynamics, the dolphin kick in human swimmers and the 

aerodynamics of dragonfly flight.  

II. Numerical Methodology 

A finite-difference based immersed boundary methodology is used in the current simulations. 

As pointed out before, the key feature of these methods is that simulations with complex 
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boundaries can be carried out on stationary non-body conformal Cartesian grids. Hence, this 

eliminates the need for complicated remeshing algorithms that are usually employed with 

conventional Lagrangian body-conformal methods. We solve the 3-D Navier-Stokes unsteady 

governing equations for a viscous incompressible flow, written in tensor form as: 
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where i and j = 1, 2 and 3 correspond to x, y and z coordinates, respectively; and Re is the 

Reynolds number. In Equation (1), 
iu  is the instantaneous velocity component in the i direction, 

p  represents the pressure, and t is the non-dimensional time. The equations have been non-

dimensionalized by appropriate velocity and length scales. The solver can be run either as a DNS 

or an LES. In the LES formalism, the flow variables are decomposed into a large-scale (or 

resolved) component, denoted by overbar, and a sub-grid scale component by applying a filtering 

operation. Therefore, in this context, Equation (1) describes the transport of the filtered velocity 

field and contains the contribution of the subgrid scale (SGS) Reynolds stresses. These stresses 

are formulated using a Boussinesq-based eddy viscosity model and a Smagorinsky-type model is 

used to formulate the eddy viscosity. A dynamic Lagrangian procedure, formulated by Meneveau 

et al.
7
 is invoked to parameterize the subgrid scale stresses.  

The Navier-Stokes equations are discretized using a cell-centered collocated (non-staggered) 

mesh arrangement of the primitive variables (
iu , p). In addition to the cell-center velocities (

iu ), 

the face-center velocities (
iU ) are computed. In the current solution procedure, the convective 

terms are discretized using an explicit second-order Adams-Bashforth scheme, while the diffusive 

terms employ an implicit Crank-Nicolson procedure. The spatial derivatives are constructed with 

a second-order accurate central difference scheme. The time-integration is based on the fractional 

step method
8
 which consists of a three-step approach. In the first step, the advection-diffusion 

equation is solved and the intermediate 

velocity, *

iu , is obtained. In the second step, 

a multigrid solver is used to efficiently solve 

the pressure Poisson equation. This multigrid 

solver has been optimized to properly handle 

the immersed boundaries. Finally, in the third 

step, the cell and face-center velocity fields 

are updated by adding the appropriate 

pressure correction. At that final step, the 

face-velocities satisfy discrete mass-

conservation to machine accuracy.  

The basic concept of the current immersed 

boundary method is to compute the flow 

variables for the ghost-cells (GC), such that 

boundary conditions on the immersed 

boundary in the vicinity of the ghost-cells are 

satisfied while preserving second-order 

accuracy (see Figure 1 for a schematic). 

Ghost-cells are defined as those cells whose 

Figure 1. Designation of various nodes on the 

grid for membranous immersed structure. 
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centers lie inside the immersed body and have at least one neighboring cell which lies outside the 

immersed body. For an immersed membrane, the definition of ghost-cell will become more 

general and corresponds to those cells lying on one side of the immersed body that have at least 

one neighboring cells which lies on the opposite side of the immersed membrane.  

The process begins by specifying the geometry of the immersed boundary. The immersed body 

is comprised of a surface mesh made of triangular elements and a 2D representation of this is 

shown in Figure 1. A non-conformal Cartesian grid is then generated followed by a procedure that 

identifies the ghost cells. For a membranous structure, ghost-cells are generated on both sides of 

the boundary. Such identification procedure is based on a robust and efficient search algorithm 

that begins by selecting an area around the immersed body and identifying whether these cells are 

solid or fluid cells. Then a fast algorithm fills the remaining computational cells with appropriate 

identification flag. For non-moving bodies, this procedure is performed at the start of the 

simulations; while for moving bodies, the procedure is invoked at every time-step. 

Following the identification of the ghost cell, a probe is extended from the ghost-cells to the 

immersed boundary such that it intersects normal to the immersed boundary. The intersection of 

the probe on the immersed boundary is called the boundary intercept point (BI). The boundary 

intercept point is the location where the boundary condition will be satisfied. Next, the probe is 

extended further into the fluid to a distance equal to the distance between the ghost-cell and the 

boundary intercept point. The location at the end of the probe is referred to as the image point (IP). 

Eight cells that surround the image point are then identified and a bilinear interpolation  

∑= iiIP φβφ  

is employed to calculate the value φ  (which denote a generic variable) at the image point, where i 

extends over all the surrounding cells and β are the interpolated weights corresponding to the 

nodes surrounding the image point. All of the information regarding the local geometry of 

boundary and its placement relative to the mesh is incorporated into these weights (βi). The flow 

variables at the ghost-cell are then computed using the value from the image point and boundary-

intercept point which lay on the normal probe via a second-order interpolation. Hence for a 

Dirichlet and Neumann boundary conditions the values at the ghost cells are computed as follows: 
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For moving immersed bodies, boundary motion can be seamlessly incorporated in the current 

solver. To advance the governing equations from time level (n) to (n+1), we first move the 

immersed boundary from its current location to the new location by moving the vertices of the 

surface triangles. In the next step, the ghost-cells are identified again making use of the cells 

obtained from the previous timestep and the image points and body intercepts with their 

associated weights are recomputed. Subsequently, the governing flow equations are integrated in 

time using the usual time-splitting approach. Hence the current framework is considered as of 

Eulerian-Lagrangian nature wherein the immersed boundaries are explicitly tracked as 3D 

surfaces in a Lagrangian mode while the underlying flow computations are carried out on a fixed 

Eulerian mesh. Further details regarding the solver and immersed boundary methodology have 

been described in Dong et al.
 6

 and Bozkurttas et al.
9, 10

. In the current work, we concentrate on 

simulating flow past deformable fish fins, human swimmer and models of flying insects. 

(2) 

(3) 
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III. Simulation of Membranous Configurations 

 Simulations are performed of the flow past a flapping pectoral fin of a bluegill sunfish. The 

objective of this study is to examine the hydrodynamic performance and vortex topology of fish 

pectoral fins as a part of the research program to design maneuvering propulsor for autonomous 

underwater vehicles (AUV’s). Fin kinematics, which was obtained from high resolution, high 

speed video of fish fin movement during steady swimming by a bluegill sunfish, has been 

provided by Lauder et.al.
11

. Surface meshes of the fin membranes have been generated based on 

the experimental results and included in the computations. In this set of simulations, the pectoral 

fin is being described as a thin membrane and flapping at a constant frequency. The key 

nondimensional parameters are: the Strouhal number (defined as 
∞= UfL

S
/St  where

S
L , f  and 

∞U  are the spanwise size of the fin, fin flapping frequency and fish forward velocity, 

respectively) and the Reynolds number (defined as ν/Re
S

LU∞∞ = ). In the current computations, 

the following values are used of 0.54St =  which matches that in the experiment and Re 1440= , 

which is about one-fourth of that in the experiment.  

 The nominal grid size employed in the current simulations is 153 × 161 × 113, corresponding 

approximately to 2.78 million grid points. The mesh points have been non-uniformly distributed 

with an increased grid refinement near the pectoral fin membrane. A comprehensive study
12

 has 

been carried out to assess the effect of the grid resolution and domain size on the salient features 

of the flow and to also demonstrate the accuracy of nominal grid size. For the present mesh 

resolution used here, it was clearly observed that the computed hydrodynamic forces are grid and 

domain independent. Table 1 shows the mean values of the hydrodynamic force coefficients 

produced by the fin over one flapping cycle. The force coefficient, 
F

C , for a given force F  is 

computed as 
finF AUFC

2
)2/1/( ∞= ρ  where 

fin
A represents the nominal fin area. It is seen in Table 1 

that while considerable thrust is being generated by the fin, small mean lift and spanwise force 

components are produced. This implies that the motion is highly efficient and allows the fish to 

propel itself forwards while minimizing any transverse or lateral drift.  

  

 
(a) t/T = 1/3 

 
(b) t/T = 2/3 

 
(c) t/T = 1.0 

Figure 2. Wake structures for flow past a membraneous fish pectoral fin 

Table 1. Mean force coefficients for flapping fin 

Mean Thrust  

Coefficient 

Mean Lift  

Coefficient 

Mean Spanwise Force  

Coefficient 

1.29 0.24 -0.19 
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 Figure 2 shows the wake structures at three different time instances during the cycle where x 

direction is the streamwise direction, the y is vertical direction. The body of the fish is shown for 

viewing purpose only and is not included in the simulations. The set of three iso-surface plots 

shows a very complex system of vortices being generated by the fin as it moves through a typical 

cycle. Of particular note is the strong tip vortex observed in Figure 2(c) as well as a leading edge 

vortex created by the top edge of the fin both during abduction and adduction. 

Lauder et.al.
11

 have carried out PIV measurements of the flow past the bluegill’s pectoral fin in 

steady swimming and these measurements have been used to validate the current simulations. The 

comparison between these experiments and CFD is reasonably good and provides further 

confidence in the fidelity of the present computational method
12

.  

 

IV. Full-Body Analysis Dolphin Kick in Swimmers 

 

 Computations are carried out of the flow past a human swimmer to investigate the dynamics of 

the “dolphin-kick” in competitive swimming. In this stroke, the arms and legs are stretched out 

and the swimmer propels him(her)self underwater by passing an undulatory wave down his(her) 

body. Proficiency in this stroke can give a significant competitive advantage to a swimmer since 

it can be used during starts and turns in freestyle, butterfly and backstroke competitions. This is a 

kinematically simple stroke and therefore amenable to a comprehensive analysis via CFD 

techniques.  

In the particular video used to create motion for the current solver, the swimmer, whose 

outstretched body length (L) is 2.19 m, kicks at a frequency (f) of about 1.82 Hz and moves 

almost steadily in the water at a speed (V) of about 1.47 m/s. The toe-amplitude of the swimmer 

(A) is about 0.36 m and the speed (C) of the body wave can be estimated to be 1.7 m/s. Based on 

these, the key non-dimensional parameters are: Strouhal ( )/fA V=  and Reynolds numbers ( )/VL ν  

are equal to 0.45 and 63 10× , respectively, while ( )/A L  and ( )/C V  are equal to 0.164 and 1.16, 

respectively. In the current simulations, we match all of these parameters except the Reynolds 

number which is kept at a lower value of 45 10× . Past studies have indicated that Reynolds 

number plays a minor role in the flow physics of such flows and a lower Reynolds number makes 

these simulations more computationally feasible. 

Figure 3(a) shows the body configuration of a swimmer as well as the surface mesh, which 

consists of around 30,000 triangles. Figures 3(b) and 3(c) presents two stages in the kick along 

with the vortex topology in the wake. Grids have over three million points and simulation fidelity 

is checked through grid refinement studies. Due to the anterior-posterior joint asymmetry in the 

lower limbs, the upstroke and downstroke produce different flow structures. In particular, during 

the upstroke, as the knees transition from flexion to extension, the ankle joint simultaneously 

undergoes rapid dorsiflexion from a fully plantar flexed position and this significantly increases 

the speed of the foot. As a result of this, each upstroke produces a remarkably well defined 

circular vortex ring that propagates downwards into the wake. The simulations provide a first of 

its kind glimpse of the fluid and vortex dynamics associated with the motions.  
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(a) Body configuration and 

surface mesh 

 
(b) t/T = 0.5 

 
(c) t/T = 1.0 

Figure 3. Simulations of dolphin-kick in competitive swimming. 

 

V. Aerodynamics of the Dragonfly in Flight 

In this section, we examine the aerodynamics of dragonfly flight with all of its complexity 

including the role of wing-wing interaction and wing-body interaction. To accomplish this, we 

have constructed a computational model of the dragonfly, referred to as Model-1 (see Figure 4a), 

which consists of a suitably scaled body (head, thorax and abdomen) and two pairs of flapping 

wings where the wings are modeled as thin ellipsoids. A grid with 128 × 128 × 128 cells has been 

chosen for this simulation.  

In this application, the motion of the each wing consists of a rotation around the root of the 

wing (closest point of the wing to the body) itself which is the so called the rolling motion. This 

motion of the wings can be expressed as: ( )A sin tθ ω= , where θ  defines the angle between the 

direction along the wing span and x- axis, ( 2 )fω π= is the angular frequency, A is the amplitude 

of the motion and f is the wing beat frequency. Here the amplitudes of the motion for the wings 

are selected as 30A =  degrees (the forewings have a motion opposite to that of the hindwings). 

This simulation is primarily intended to show the complexity of the flow for such an insect and 

this is aptly demonstrated in Figure 4(b) and (c) which show the wake structures at two distinct 

time instances in a cycle. 

 

 
(a) Dragonfly  

Model-1 configuration  

 
(b) t/T = 0.5 

 
(c) t/T = 1.0 

Figure 4. Simulation of a modeled dragonfly in flight. 
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 A more realistic body configuration with membranous wings has also been created from body 

scan and images of a variegated meadowhawk (Sympetrum corruptum) which is a medium size 

dragonfly with a length of 33-43 mm. Some simplifications in the geometry of the body have 

been made to make it more suitable for CFD simulations. Figure 5(a) shows the body 

configuration as well as the surface mesh for Model-2 from two different perspectives. This 

configuration is first simulated with stationary wings at a 5 degrees angle of attack and results 

from this simulation are shown in Figure 5(b). In another simulation, the two set of wings are 

moved with the rolling motion specified for Model-1 above and figure 5(c) shows the vortex 

structure results from this simulation. 

 

 

 
(a) Dragonfly Model-2 

configuration  

 
(b) Vortex structure and 

streamlines at 5 deg. AOA 

stationary case 

 

 

 

 
 

 

(c) t/T = 0.25  

Figure 5. Simulation of a dragonfly in flight. 

 

 It should be noted that the rolling motion is selected because of its simplicity. Actual kinematic 

data of dragonflies in free-flight including, rolling amplitude, pitch variation, inclination of the 

stroke-planes, wing beat frequency and phase-relation between the fore- and hindwings, etc., have 

been measured
13,14

 and our plan is to incorporate these in the next set of simulations.  
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