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Abstract  
This paper proposes and validates a jet formation 

criterion for synthetic jet actuators.  The synthetic jet 
is a zero net mass flux device, adding additional 
momentum but no mass to its surroundings.  Jet 
formation is defined as a mean outward velocity 
along the jet axis and corresponds to the clear 
formation of shed vortices.  It is shown that the 
synthetic jet formation is governed by the Strouhal 
number (or Reynolds number and Stokes number).  
Numerical simulations and experiments are 
performed to supplement available two-dimensional 
and axisymmetric jet formation data in the literature.  
The data support the jet formation criterion 

, where the constant 2Re/ S K> K  is approximately 
2 and 0.16 for two dimensional and axisymmetric 
synthetic jets, respectively.  This criterion is valid for 
relatively thick orifice plates with thickness-to-width 
ratios greater than approximately 2.  This result is 
expected to be useful for the design of flow-control 
actuators and engine nacelle acoustic liners. 

Introduction 
Synthetic jet actuators have been shown to be a 

useful tool for flow control, with applications 
including mixing enhancement, separation control, 
and thrust vectoring [1].  Figure 1 shows a schematic 
of a typical synthetic jet or “zero net mass flux” 
device.  In its most common implementation, a 
piezoelectric disk is bonded to a metal diaphragm, 

which is sealed to form a cavity.  As the diaphragm 
oscillates, fluid is periodically entrained and expelled 
from the cavity through the orifice (or slot).  Under 
certain operating conditions, a vortex pair (vortex 
ring in the axisymmetric case) is formed at the orifice 
edge during the expulsion part of the cycle.  This 
vortex pair is convected away from the orifice.  If the 
self-induced velocity of the vortex pair is strong 
enough, then the vortex pair is not ingested back into 
the orifice during the suction part of the cycle.  The 
formation of a vortex pair is defined herein as the 
onset of jet formation. 
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The governing parameters for synthetic jets 
based on a simple “slug” model [2,3,4] include a 
dimensionless stroke length  and a Reynolds 
number based on the velocity scale 
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where ( )0u t  is the spatial-averaged velocity at the 
exit, 1T f= is the period, d is the width of the slot 
(or diameter of the orifice), and  is the distance 
that a “slug” of fluid travels away from the orifice 
during the ejection portion of the cycle or period.  
The Reynolds number is then defined as  

0L

 0Re U d ν= , (2) 

where ν µ ρ=  is the kinematic viscosity.   
Alternatively, the Reynolds number can be 

defined in terms of a spatial and time-averaged exit 
velocity during the expulsion stroke [5], Re Ud ν= , 
where 

 ( )
2

0

2 1 ,
T

A
U u t y

T A
= ∫ ∫ dtdA , (3) 

A  is the exit area, and  is the cross-stream 
coordinate (see Figure 2).  It is easily shown that the 
two velocity scales are related by 

y

02=U U . 
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Note that ( )0 0/L d U fd=  is closely related to 
the inverse of the Strouhal number, which may be 
written as 

 2

1 U Ud
St d d S

ν
ω ω ν

= = = 2

Re , (4) 

where S is the Stokes number 

 
2dS ω

ν
= , (5) 

and 2 fω π=  is the radian frequency of oscillation 
of the diaphragm. 

The effectiveness of the synthetic jet to impart 
momentum to its surroundings is highly dependent on 
these jet formation parameters and on the slot/orifice 
geometry.  It is therefore desirable to define a jet 
formation criterion in terms of these parameters and 
validate it through experimental measurements.  
Similar jet formation criteria have been proposed by 
Smith and Swift [4] and Utturkar [5] and are 
described below.   

The purpose of this paper is to propose and 
validate a unified criterion suitable for quasi fully-
developed two-dimensional and axisymmetric 
orifices.  First, the jet formation criterion is presented 
that is based on a simple order-of-magnitude 
analysis.  Next, computational and experimental flow 
visualization experiments are described that 
determine the onset of vortex shedding (i.e. jet 
formation).  Detailed Laser Doppler Velocimetry 
(LDV) measurements are used to determine the jet 
formation parameters.  Finally, available jet 
formation parameters obtained from various studies 
are used to validate the criterion. 

Order-of-Magnitude Analysis 
Smith and Swift [4] and Utturkar [5] 

independently arrived at a jet formation criterion for 
two dimensional synthetic jets.  Smith and Swift 
argued that a threshold stroke length exists for jet 
formation.  Utturkar reached a similar conclusion 
based on the Strouhal number and, using Eq. (4), 
argued that the ratio of the Reynolds number to the 
square of the Stokes number must be greater than 
some constant to ensure jet formation.  This criterion 
is presented here for completeness. 

Figure 2 illustrates a vortex pair (or ring) 
emanating from an orifice.  Previous studies [6,7] 
suggested that under certain circumstances, a vortex 
pair formed at the orifice lip during the expulsion 
stroke of the diaphragm can be ingested back into the 
jet cavity before it can escape due to its self-induced 
velocity.   

The strength of each shed vortex  has been 
shown by Didden [8] to be related to the flux of 
vorticity through a planar slice of the orifice during 
the expulsion portion of the cycle 

vΩ

 
/ 2 2
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v zudydtξΩ ∫ ∫ , (6) 

where zξ  is the vorticity component of interest, and 
is the jet velocity.  In Figure 2, u sδ is the size of the 

viscous flow region characterized by non-zero 
vorticity.  The induced velocity of the dipole IV  is 
proportional to /v dΩ .  Performing an order-of-
magnitude analysis on Eq. (6) results in 

 1~v
s

U Uδ sδ ω
Ω . (7) 

If it is assumed that a jet will form when the induced 
velocity of the dipole IV  is somewhat larger than the 
average jet suction velocity sV , it follows that 

 2
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where K is an unknown constant.   
The value of this constant varies depending upon 

orifice geometry.  This is best illustrated by 
considering again Eq. (6), and assuming a 
sinusoidally varying velocity profile of the form 

 , (9) ( ) (0 sinu u t f yω= )

where  is the centerline velocity and 0u ( )f y  is the 
shape of the velocity profile defined such that 

( )2f y 0d= =  due to the no-slip boundary 

condition and ( )0 1f y = = .  The integral in Eq. (6) 
then becomes 
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Substituting in Eq. (9) into Eq. (10) results in 
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which simplifies to 

 
2

2

4v
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ω
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where 0 /N u U=  is the ratio of the centerline 
velocity to the average velocity that has been used.  
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Substituting Eq. (12)into Eq. (8) yields the following 
jet formation criterion: 

 2

Re
2

K
S N

′
> , (13) 

where K ′  is a constant. 
It should be emphasized that since this is an 

order of magnitude analysis, caution must be used 
when considering Eq. (13).  This result merely shows 
that the jet formation criterion is dependent on the 
shape of the velocity profile.  Also, the velocity 
profile is assumed to be completely in phase across 
the orifice.  Thus, this approximation is only valid at 
low Stokes numbers when the velocity profile is 
parabolic. 

For steady flow emanating from an axisymmetric 
orifice, the average velocity can be expressed as 

 
2
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Evaluating Eq. (14) gives 

 0 2
u

N
U

= = . (15) 

Similarly, if a two dimensional slot is 
considered, then 

 0 1.5
u

N
U

= = . (16) 

The constant N in Eq. (13) is higher for an 
axisymmetric orifice than for a two-dimensional slot.  
Hence, the constant K in the jet formation criterion, 
Eq. (8), is expected to be lower for the axisymmetric 
jet than for the two dimensional jet.  Consequently, a 
synthetic jet will likely form at a lower Reynolds 
number for an axisymmetric orifice than for a two 
dimensional slot. 

Computational Studies 
Numerical simulations have been performed to 

characterize the velocity profile of a two-dimensional 
synthetic jet.  A previously developed Cartesian grid 
solver [9,10,11] is employed in these simulations.  
Details of the solution procedure can be found in 
these papers.  The solver allows simulation of 
unsteady viscous incompressible flows with complex 
immersed moving boundaries on Cartesian grids.  
This solver employs a second-order accurate central 
difference scheme for the spatial discretization and a 
mixed explicit-implicit fractional step scheme for 
time advancement. An efficient multigrid algorithm 
is used for solving the pressure Poisson equation. 

The key advantage of this solver for the current 
flow is that the entire geometry of the synthetic jet 
including the oscillating diaphragm is modeled on a 
stationary Cartesian mesh.  Figure 3 shows a typical 
mesh used in the simulations.  As the diaphragm 
moves over the underlying Cartesian mesh, the 
discretization in the cells cut by the solid boundary is 
modified to account for the presence of the solid 
boundary.  In addition, suitable boundary conditions 
also need to be prescribed for the external flow.  A 
soft velocity boundary condition is applied on the 
north, east and west boundaries that allow the 
conditions at these boundaries to respond freely to 
the flow created by the jet.  All simulations are run 
until initial transients decay and statistics are 
accumulated beyond this over a number of cycles. 

Figure 4 shows a simulation result at four phases 
in the cycle, for a case of no jet formation.  As 
expected, the vortex structures formed at the orifice 
during the expulsion part of the cycle are ingested 
during the suction part.  Figure 5 shows a transitional 
case in which jet formation is not readily apparent.  
Figure 6 is an example of a case exhibiting a clear jet 
formation as indicated by the shed vortex pair.  A 
series of numerical simulations over a range of 
Reynolds and Stokes numbers suggested that the 
constant 1K ≈ , as shown in Figure 7. 

The data of Smith and Swift were converted to 
Reynolds and Stokes number and are presented in 
Figure 8.  Clearly, the experimental results are in 
good agreement with the jet formation criterion 

2Re 2S > . 

Flow Visualization 
Experimental jet formation data for the 

axisymmetric case was published over 50 years ago 
by Ingard and Labate [12].  More recently, Smith et 
al. [13] provided additional data that suggests that 

>1 for jet formation.  However, the Stokes 
number range covered by these studies is limited to 
high Stokes numbers.  An extension of the 
experimental data to low Stokes number range is 
desired and would prove useful in applications 
involving engine nacelle acoustic liners [14]. 

0 /L d

Before the jet formation criterion can be 
validated experimentally, the synthetic jet flowfield 
device must first be characterized using flow 
visualization.  A piezoelectric-driven synthetic jet is 
used with an orifice plate of diameter 1.65 mm and a 
thickness of 1.65 mm.  The synthetic jet is mounted 
inside a large glass tank and operated over a usable 
range of Stokes numbers from 3-30, and the voltage 
amplitude was varied to define the envelope of jet 
formation.   
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Figure 9 shows a schematic of the flow 
visualization setup.  An argon ion laser is used in 
conjunction with optical lenses to form a thin light 
sheet centered on the orifice axis.  Atomized fog fluid 
is introduced into the tank to seed the flow, and a 14-
bit cooled CCD camera is employed to acquire 
detailed, long exposure images to capture the time-
averaged behavior of the jet.  Figure 10 shows a 
typical image at low excitation amplitude (V =1 V, 

=24), revealing no significant mean axial flow 
along the jet axis.  Stationary recirculation patterns 
are present on both sides of the orifice, suggesting 
this flow pattern is characteristic of “Region 1” as 
defined by Ingard and Labate [12].  In contrast, 
Figure 11 (V =4.5 V, =24) shows strong mean jet 
behavior, at a slightly higher amplitude.  Therefore, a 
transitional region is defined as occurring between 
the case of no mean jet and clear mean jet (which is 
assumed to correspond to vortex shedding).  Images 
were obtained over a range of amplitudes 
encompassing the transition region at a given Stokes 
number.  This process was repeated over a Stokes 
number range of 3-30.  The images are in good 
qualitative agreement with the mean flow regimes 
described by Ingard and Labate [12]. 

ac

S

ac S

Velocity Field Measurement 
In contrast with the Stokes number, estimating 

the Reynolds number is difficult because the average 
velocity during the expulsion part of the cycle must 
be measured.  Since the orifice used for the current 
study is small (d=1.65 mm) to achieve low Stokes 
numbers, a velocity measurement technique with 
high spatial resolution is required.  Furthermore, a 
non-intrusive technique is desired to avoid altering 
the flow properties.  Laser Doppler Velocimetry 
(LDV) is ideally suited for such a task.  A schematic 
of the LDV setup is shown in Figure 12.  A three-
beam combiner is used to permit velocity 
measurements very close to the surface of the orifice.  
For the current study, velocity measurements are 
acquired at 0.3 orifice diameters away from the 
surface to avoid problems associated with scattered 
light off of the orifice.  Since a beam combiner is 
used, the LDV system acquires velocity data in two 
directions, LDA 1 and LDA 2, as shown in Figure 13.  
A coordinate transformation matrix is then applied to 
acquire velocity in the radial and axial directions. 

A scaled figure of the probe volume and orifice 
is shown in Figure 14.  The dimensions of the probe 
volume are   and 

  A Bragg cell is used to generated a 
40 MHz shifting frequency, through which one beam 
for each measurement direction passes, to eliminate 

directional ambiguity.  Table 1 summarizes the 
important parameters of the experimental setup. 

0.0782 mm,dx =
m.

0.078 mm,dy =
0.932 mdz =

A phase-locked velocity survey is performed 
across the orifice for six cases identified from the 
flow visualization images as corresponding to the 
onset of jet formation for Stokes numbers 5, 10, …, 
30.  A total of 37 velocity measurements are made 
across the orifice giving an overlap of 43%.  For each 
position, approximately 10,000 phase-locked 
coincident velocity measurements are acquired in a 
backscatter mode.  The data is transformed into radial 
and axial components, and then statistical outlier 
rejection is employed.  Dividing the data into 18 
phase angle bins yields approximately 500 
measurements per bin.   

Figure 15 shows a typical phase-locked velocity 
profile across the orifice.  The velocity is non-zero at 
the edge of the orifice, and the average velocity over 
the entire cycle is also non-zero.  This is due to the 
finite distance of the measurement location from the 
surface.  The local dc component of velocity is 
calculated and subtracted from each measurement 
location.  The time averaged, spatially averaged 
velocity U  across the orifice during the expulsion 
part of the cycle is then found by integrating the 
experimentally determined velocity profile across the 
orifice extent and over half the cycle.  The Reynolds 
number is then calculated.  Because of flow 
entrainment, the Reynolds numbers so obtained are 
higher than what would be obtained at the orifice 
surface.  However, this is not a serious deficiency 
given the wide range of Stokes and Reynolds 
numbers in the jet formation criterion. 
 
LDV System LDA 1 LDA 2
Wavelength (nm) 514.5 488
Focal length (mm) 160 160
Beam diameter (mm) 1.35 1.35
Expander ratio 1 1
Beam spacing (mm) 38 38
Number of fringes 25 25
Fringe spacing (µm) 3.0744 2.9161
Bean half-angle (deg) 4.7998 4.7998
Probe volume - dx (mm) 0.0779 0.0739
Probe volume - dy (mm) 0.0776 0.0736
Probe volume - dz (mm) 0.9279 0.8801

Synthetic Jet
Orifice diameter (mm)
Orifice height (mm)
Cavity volume (m3)
Diaphragm diameter (mm)

7.1094E-06
37

1.65
1.65

Table 1. Experimental measurement details. 
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Table 2 shows the ratio of the average velocity  
U  to the centerline velocity .  Since the velocity 
profile is only a function of the centerline velocity 
and Stokes number [15], these data can be used to 
convert measured velocity centerline data at the same 
Stokes number (but lower amplitude) to average 
velocity.  This is done for other cases corresponding 
to “no jet formation,” as in Figure 10, in order to 
estimate the lower bound of the jet formation 
Reynolds number. 

0u

 
Stokes Number uav g/ucenterline

5 0.3
10 0.46
15 0.58
20 0.82
25 0.80
30 0.81

6

 
Table 2. Measured velocity profile characteristics. 

Axisymmetric data obtained from Ingard and 
Labate [12] and Smith et al. [13] are compared to the 
data acquired for this study in Figure 16.  By 
inspection, the constant K for this case is taken to 
be .  The jet formation criterion agrees 
reasonably well with the available data.  Specifically, 
flow visualization images are used to “bracket” the 
jet formation to define the transitional region.  The 
current data agrees quite well with the criterion 
except for the case of Stokes number = 5.  The reason 
for deviation from the criterion at this level is not 
known at this time.  However, because the flow is 
fully viscous at low Stokes numbers, it is possible 
that the vortex shedding definition of jet formation is 
not applicable. 

~ 0.16

The deviation of Ingard and Labate’s data at the 
four lowest Reynolds numbers is interesting.  Ingard 
and Labate report “particle velocity” measurements 
but do not provide any description of the method or 
accuracy of the data.  These four points correspond to 
very low particle velocities in the range of 10-60 
cm/s.  Furthermore, it is unclear whether the reported 
particle velocities represent centerline or average 
velocities. 

It should also be noted that Ingard and Labate 
present data that clearly indicate a dependence of the 
jet formation criterion on the orifice thickness-to-
width aspect ratio, .  Their data and the data in 
[15] suggest an approximate guideline that  
for the jet formation criterion to be independent of 

. 

/w d
/ 2w d >

/w d

Conclusions and Future Work 
A jet formation criterion for both two-

dimensional and axisymmetric synthetic jets has been 

presented and evaluated.  The jet formation depends 
on the dimensionless stroke length (i.e., Strouhal 
number) or, alternatively, the Reynolds number and 
Stokes number.  The available data in the literature 
has been unified and supplemented with current 
computational and experimental data.  The available 
data support the theoretical jet formation criterion 
curve , where the constant 2Re/ S K> K  is 
approximately 2 and 0.16 for two dimensional and 
axisymmetric synthetic jets, respectively.  This 
criterion is valid for relatively thick orifice plates 
with , in which the orifice flow is 
conjectured to be nearly fully developed. 

/ 2w d >

In future work, additional accurate velocity 
measurements will be acquired over a wider range of 
test conditions and closer to the surface of the 
synthetic jet orifice using off-axis receiving optics.  
These data will provide improved estimates of jet 
Reynolds numbers. 
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Figure 1:  Schematic of a synthetic jet. 
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Figure 2:  Schematic of synthetic jet formation 

criterion. 

 

 
Figure 3:  A fixed non-uniform Cartesian grid used in 
the two-dimensional synthetic jet calculations.  Every 

third grid point is shown. 
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Figure 4:  Vorticity plots of a synthetic jet simulation 

(no jet, Re=190, S=15.8). 

 

 
Figure 5:  Vorticity plots of a synthetic jet simulation 

(transitional region, Re=254, S=15.8). 
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Figure 6:  Vorticity plots of a synthetic jet simulation 

(clear jet formation, Re=480, S=15.8). 

 

 
Figure 7:  Results of computational jet formation 

criterion study. 

 

 
Figure 8:  Two dimensional jet formation criterion. 
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Figure 9:  Flow visualization setup. 
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Figure 10:  Image of flow field without mean jet 
formation.  White horizontal lines show orifice 

diameter (V = 1 V, =24)). ac S

 

 
Figure 11:  Image of flow field with mean jet 

formation.  White horizontal lines show orifice 
diameter (V = 4.5 V, =24). ac S
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Figure 12:  LDV measurement setup. 
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Figure 13:  LDV coordinate transformation. 

 

 8



AIAA-2003-0636 

orifice

1.65 mm

0.93 mm

0.078 mm

probe
volume

 
Figure 14:  LDV probe volume dimensions. 
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Figure 16:  Jet formation criterion for axisymmetric 

case. 
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