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Biorobotic AUV Maneuvering by Pectoral
Fins: Inverse Control Design Based

on CFD Parameterization
Sahjendra N. Singh, Senior Member, IEEE, Aditya Simha, Student Member, IEEE, and Rajat Mittal

Abstract—Biologically inspired maneuvering of autonomous un-
dersea vehicles (AUVs) in the dive plane using pectoral-like oscil-
lating fins is considered. Computational fluid dynamics are used to
parameterize the forces generated by a mechanical flapping foil,
which attempts to mimic the pectoral fin of a fish. Since the oscil-
lating fins produce periodic force and moment of a variety of wave
shapes, the essential characteristics of these signals are captured
in their Fourier expansions. Maneuvering of the biorobotic AUV
in the dive plane is accomplished by periodically altering the bias
angle of the oscillating fin. Based on a discrete-time AUV model,
an inverse control system for the dive-plane control is derived. It is
shown that, in the closed-loop system, the inverse control system ac-
complishes accurate tracking of the prescribed time-varying depth
trajectories and the segments of the intersample depth trajectory
remain close to the discrete-time reference trajectory. The results
show that the fins located away from the center of mass toward the
nose of the vehicle provide better maneuverability.

Index Terms—Biorobotic autonomous underwater vehicle
(BAUV), computational fluid dynamics (CFD), inverse control,
pectoral fins.

I. INTRODUCTION

DENIZENS of the aquatic world have a splendid ability to
perform swift, complex, and intricate maneuvers that em-

ploy oscillating fins [1], [2]. This has compelled researchers to
design flapping foils for propulsion and control of biorobotic
autonomous underwater vehicles (BAUVs) [3]–[6]. Research
has been conducted on fish morphology, locomotion, and appli-
cation of biologically inspired control surfaces to rigid bodies
[2], [3], [6]–[8]. Extensive effort has been made to measure
the forces and moments produced by oscillating fins in labo-
ratory experiments [3], [5], [9]–[11]. Observations yield that
pectoral fins undergoing a combination of lead–lag, feathering,
and flapping motions also have the ability to produce large lift,
side force, and thrust, which can then be used for the control
and propulsion of autonomous underwater vehicles (AUVs) [8],
[10], [11].
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Computational methods have also been used in several
of these studies to obtain forces and moments of flapping
foils [12]–[17]. An analytical representation of the unsteady
hydrodynamics of oscillating foils have been obtained using
Theodorsen’s theory [18]. Fuzzy controllers and neural net-
works have also been suggested [9]–[11]. The design of open-
and closed-loop control systems of a BAUV in the dive plane
using optimal control theory has been considered [19].

For time-varying trajectory control, the inversion (decou-
pling) control technique provides a valuable tool [20]–[22].
However, for exact output trajectory control, the system must be
minimum phase. But for nonminimum phase systems, approx-
imate trajectory control can be accomplished by constructing
a modified output such that the new system is minimum phase
[7], [22], [23].

Considerable research is available in the literature for the
design of control systems for undersea vehicles. These con-
ventional controllers use continuously deflecting control sur-
faces for maneuvering. Fish produce propulsive and maneu-
vering forces and moments by flapping their fins. Oscillating
fins produce periodic forces. Therefore, for fish-like control of
BAUVs it is of interest to develop control algorithms that are
based on oscillatory (periodic) control forces.

The contribution of this paper lies in the design of an inverse
control system for the time-varying depth trajectory tracking
of AUVs in the dive plane using oscillating pectoral fins. It
is assumed that the fins undergo a combined heaving–pitching
mode of oscillation with the pitch-bias angle as the key con-
trol parameter. A Fourier series expansion of the forces and
moments produced by the pectoral fins based on data obtained
from computational fluid dynamics (CFD) is derived. A dis-
crete-time model of the AUV is derived for the purpose of de-
sign. However, it turns out that the AUV model is nonminimum
phase [the transfer function relating the output (depth) and input
(bias angle) has unstable zeros]; therefore, one cannot design
an inverse control system for exact tracking of the output tra-
jectory. It is found that the number of unstable zeros is a func-
tion of the location of the pectoral fins on the BAUV. To over-
come the obstruction created by unstable zeros, an approximate
discrete-time system (that depends on the fin location) is ob-
tained by essentially eliminating the unstable zeros from the
pulse transfer function. An analytical expression of the output
matrix of the approximate minimum phase system is derived.
Then, an inverse control law is derived for the control of the
new output variable. Interestingly, the controller designed based
on the new output variable accomplishes accurate trajectory fol-
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lowing of the prescribed time-varying depth trajectory. Simula-
tion results are obtained for the tracking of sinusoidal reference
depth trajectories. It is noted that the methodology developed
here differs from the conventional approaches in which control
surfaces are continuously deflected for control. Here, we use os-
cillating fins for fish-like maneuvers of BAUVs.

II. DIVE-PLANE DYNAMICS

Let the vehicle be moving in the dive plane ( plane)
where is an inertial coordinate system.
is a body fixed-coordinate system, is in the forward di-
rection, and points down. In the moving coordinate frame

, fixed at the vehicle’s geometric center, the equa-
tions of motion for neutrally buoyant vehicle are given by

(1)

where is the pitch angle; , ,
, body length, density; and is the depth.

and denote the net force and moment acting on the ve-
hicle due to the pectoral fins (see [7] and [24] for notation). The
primed variables are the nondimensionalized hydrodynamic co-
efficients. Here, and denote the coor-
dinates of the center of buoyancy and center of gravity (cg), re-
spectively. It is assumed that the forward velocity is held steady

by a control mechanism. In this study, only small ma-
neuvers of the vehicle are considered. As such linearizing the
equations of motion about , , , and , one
obtains

(2)

where . Here, we have introduced new parameters
( , , etc.), which are obtained using the nondimensional-
ized (primed) hydrodynamic coefficients [7], [24].

Defining the state vector , solving (2),
one obtains a state variable representation of the form

(3)

Fig. 1. Schematic of the AUV.

for appropriate matrices and , where
(depth) is the controlled output variable.

Given a reference depth trajectory , we are interested in
developing a control system so that the depth trajectory
of the BAUV follows the prescribed reference trajectory .

III. FIN FORCE AND MOMENT PARAMETERIZATION

It is assumed that the BAUV model has one pair of pec-
toral fins that are arranged symmetrically around the body of
the AUV. Fig. 1 shows a schematic of a typical AUV. Each fin
is assumed to undergo a combined pitch-and-heave motion de-
scribed as

(4)

(5)

where and correspond to the heave motion and pitch angle,
respectively; the pitching is assumed to occur about the center-
chord location. Furthermore, , , and are the frequencies
and amplitudes of oscillations, is pitch bias angle, and is
the phase difference between the pitching and heaving motions.

As a result of this flapping motion, each fin experiences a
time-varying hydrodynamic force [that can be resolved into
a thrust component and a lift (or pitch) component ] and a
pitching moment . The hydrodynamic forces on the pectoral
fin also produce rolling and yawing moments on the BAUV,
which affect its dynamics. However, since dive-plane dynamics
and maneuvering is assumed to be affected by the pitching force
and moment only, we limit our discussion to these components.

Since and are periodic functions, they can be
represented by the Fourier series

(6)



SINGH et al.: BIOROBOTIC AUV MANEUVERING BY PECTORAL FINS 779

where it is assumed that the fins produce dominant har-
monically related components and the harmonics of higher fre-
quencies are negligible. The Fourier coefficients and ,

, capture the characteristics of the time-varying sig-
nals and . Parameterization of these coefficients is,
therefore, needed in order to complete the equations that govern
the motion of the BAUV in the dive plane.

The following are the key nondimensional parameters that
govern the performance of a rigid, rectangular, flapping foil:

, , , , , , and where ,
, is the foil chord and is the foil span. For sim-

plicity, a quasi-steady assumption has often been employed in
order to relate the hydrodynamic and aerodynamic forces to the
foil parameters [18], [25]. For instance, the lift on a pitching-
heaving foils has been estimated as [25]

(7)

where denotes the instantaneous angle of attack, is the lift
coefficient per unit angle of attack, and is a known constant.
The above parameterization assumes that the instantaneous lift
force generated by a flapping foil is equal to that produced by
a static foil at an equivalent angle of attack. This is a reason-
able approximation for low amplitude wing flutter, where such
approximations have been employed in the past. However, it is
well known [26], [27] that unsteady mechanisms dominate the
flow over flapping foils undergoing large amplitude motions and
that quasi-steady estimates can be significantly erroneous. In
the current effort, we therefore conduct a first-of-its-kind study
where CFD is used to parameterize the performance of these
flapping foils.

In order to understand the scope of this problem, consider
that the force coefficients , , , and are function of all
the major nondimensional parameters; that is, for some function

(8)

where and . It should be noted that the
first five parameters in (8) ( , , , , and ) could be
employed to control the trajectory and motion of the BAUV.
The Reynolds number parameter, on the other hand, depends on
the velocity of the BAUV relative to the surrounding fluid and
is controlled primarily by the main propulsor. Finally, the last
parameter is a design parameter and is assumed to be fixed
for a given pectoral fin. Thus, a complete parameterization of
the performance of the flapping foil for the BAUV conceptual
model requires that the CFD simulations extract the dependence
of the force coefficients on the first four parameters as well as
the Reynolds number.

Clearly, these five parameters represent a large parameter
space, which pose a significant challenge to any CFD based
parameterization effort. However, our focus on the dive-plane
maneuvering and dynamics allows us to narrow the scope of
the problem. Maneuvering in the dive plane requires manipu-
lation of only the pitching force and moment; it is plausible to

accomplish this through the variation of only one control input.
Indeed, the recent experimental study of [28] indicates that
the pitch-bias angle would be an appropriate parameter for
affecting such maneuvers. Motivated by this, we have chosen

as the primary control variable and have proceeded to
extract the dependence of foil performance on this parameter
through CFD.

A Cartesian grid method [13]–[15] is employed for the cur-
rent simulations. The distinguishing feature of this method is
that the governing equations are discretized on a Cartesian grid,
which does not conform to the immersed boundary. This greatly
simplifies grid generation and also retains the relative simplicity
of the governing equations in Cartesian coordinates. Therefore,
this method has distinct advantages over the conventional
body-fitted approach in simulating flows with moving bound-
aries and/or complicated shapes [29]. The framework of this
method can be considered to be Eulerian–Lagrangian, wherein
the immersed boundaries are explicitly tracked as surfaces in a
Lagrangian fashion, while the flow computations are performed
on a fixed Eulerian mesh. The method employs a second-order
central difference scheme in space and a second-order accurate
fractional-step method for time advancement.

IV. DISCRETE-TIME REPRESENTATION

In this section, the design of a dive-plane feedback control
law is considered. We assume that bias angle (control input)

is varied periodically and that the remaining oscillation
parameters are constant. It has been experimentally shown that
the mean values of the normal force and the pitching moment
vary almost linearly with and that the amplitudes of the fin
force and moment are functions of [5], [28].

Expanding the fin force and moment of each fin in a Taylor
series about gives

(9)

where denotes higher order terms. We assume here that
for a fixed , , and

, ( denotes the fundamental period). Then,
the partial derivatives of and with respect to are also
periodic functions of time. Using (6), one can approximately
express and as

(10)
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where terms are ignored in the series expansion. We de-
fine

(11)

where , , , . Using (10) and (11), we get

(12)

The vehicle has two attached fins; therefore, the net force and
moment are and , where

is the moment arm due to the fin location (positive for-
ward). The dive-plane dynamics (3) can be written as

(13)

where ,
, and , where

(14)

For the purpose of control, the bias angle is periodically changed
at a sampling interval of , where is an integer multiple of
the period , i.e., , where is a positive integer.
In this way, one switches the bias angle at an uniform rate of
seconds at the end of cycles.

For the derivation of the control law, the transients introduced
due to switching are ignored in this study. Since the bias is
changed periodically, it will be convenient to express the contin-
uous-time system (13) as a discrete-time system. The function

now has piecewise constant values for
, . The solution of (13) is given by

(15)
Taking and , one has

(16)

Let . Then, noting that

(17)

(15) gives

(18)

where and ,
, and .

The output variable is

(19)

The transfer function relating the output and the input
(assuming that ) is given by

(20)

where denotes the Z-transform variable, are
real or complex numbers, and and are real
numbers.

It is assumed that the pectoral fins are attached between the cg
and the nose of the vehicle. For the AUV model under consid-
eration, the number of unstable zeros (i.e., the zeros outside the
unit disk in the complex plane) depends on the distance
of the pectoral fins from the cg. It has been found that there
exists a single unstable zero if the fins are attached closer to the
cg, but two unstable zeros appear if the attachment distance
exceeds a critical value. Thus, the transfer function has at
least one unstable zero and is nonminimum phase. Of course, the
continuous-time AUV model has only two zeros, but the pulse
transfer function has three zeros. For this nonminimum
phase AUV model, it is not possible to synthesize an inverse
controller. Here, we modify the controlled output variable so
that the new transfer function is minimum phase and then derive
the inverse control law for approximate depth trajectory control.

V. MINIMUM PHASE SYSTEM

In this section, the derivation of a minimum phase approxi-
mate model for an th-order single-input–single-output (SISO)
nonminimum phase system is considered. For this purpose, the
original transfer function is simplified by ignoring its unstable
zeros. We consider a SISO of the form (18) and (19) with
(denoted as ), where , , and
suppose that the system has stable and unstable zeros. The
transfer function relating the output and the input of
the system (assuming that ) is

(21)

where the th-order characteristic polynomial is

(22)
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and the numerator polynomial is

(23)

where and are constants and
and are unstable

and stable zeros of the transfer function; that is, and
.

For obtaining a minimum phase-approximate system, one re-
moves the unstable zeros of but retains the zero-frequency
[direct current (dc)] gain. Thus, the approximate transfer func-
tion takes the form

(24)

The approximate transfer function now has stable ze-
roes, but the poles of and coincide.

We are interested in deriving a new controlled output variable
such that

(25)

and

(26)

where is a new output matrix that is yet to be determined.
Using the expression of the resolvent matrix [inverse of

], one can write as [30]

(27)

The relative degree of is and, therefore, one
must have

(28)

Using (28) in (27) gives

(29)

Noting that , using (28) and equating the numerator
polynomials of (24) and (29) gives

...

(30)

Collecting (28) and (30), one obtains the matrix equation

(31)

where and the
matrix is obtained by comparing matrix equation (31) with
(30). Assuming that the system (18) is controllable, one has that
rank [31]. In view of (31), it
follows that the columns of are independent. Then, solving
(31) gives

(32)

To this end, a question arises: How close is the new output
to ? In view of (21) and (24), it is seen that

the modified output and the actual depth are
related as

(33)

According to (33), the actual output is obtained by passing
through a filter that has the frequency response (amplitude and
phase response) given by

(34)

Apparently, if the zero locations and the frequency are
such that

(35)

then it follows that

(36)

That is, the gain of is 1 and

(37)
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When asymptotically converges to a constant value ,
one can take and, in this case, the actual output con-
verges to . Thus, it follows that if (36) is valid, then the syn-
thesis of the inverse controller designed for the trajectory con-
trol of the modified output accomplishes accurate control of
the depth trajectory. In the next section, an inverse control law
is designed for the tracking control of the modified output .

VI. INVERSE CONTROL LAW

Now consider a new system

(38)

where , , and are scalars and the output
is the modified value of . Suppose that a ref-

erence trajectory is given, which is to be tracked by
. In view of (38), using it recursively one has that

(39)
...

(40)

The system has relative degree . Therefore, the input ap-
pears for the first time in for .

We are interested in tracking the reference trajectory
. For this purpose, we choose the control input as

(41)
where the signal is selected as

(42)

where are real numbers. Defining the
tracking error and using the
control law (41) and (42) in (40) gives

(43)

The tracking error satisfies an th-order difference equation.
The characteristic polynomial associated with (43) is

(44)

The parameters are chosen such that the roots of (44) are
strictly within the unit disk. Then, it follows that for any ini-
tial condition , as and the controlled

Fig. 2. Spanwise vorticity contours and velocity vectors for flow past the
flapping foil for two different bias angles of 0 and 20 . Note that velocity
vectors are shown on every fourth grid point in either direction.

output asymptotically converges to the reference se-
quence . Furthermore, as described in the previous sec-
tion, according to (36) for slowly varying , fol-
lows accurately.

VII. SIMULATION RESULTS

A. CFD Parameterization

In the current simulations we employ a two-dimensional
(2-D) 12% thick foil with an elliptic cross section.
The Reynolds number is fixed at a relatively low value of
300, which alleviated the grid requirements for the simulation.
In addition, , , , and are fixed at value equal to
0.35, 30 , 90 , and 0.4, respectively. A nonuniform 161 111
Cartesian mesh is employed in the simulations where the grid
is clustered in the region around the flapping foil and in the foil
wake.

Fig. 2 shows the computed flow for the and 20
cases at the time instant when the foil is at the center of its heave
motion. The plots show contours of spanwise vorticity (which is
the curl of the velocity field) as well as the velocity vectors. For

, it is observed that the flapping foil produces a vortex
street in the wake, which is comprised of counter-rotating vor-
tices. The occurrence of such vortex streets is quite well known
[32] for these flows. The vortex street is along the direction of
the flow and produces a jet-like flow in the streamwise direction.
For the flow, the vortex street it oriented at an angle
to the freestream and results in a vectored jet.

Fig. 3 shows the time variation of the resultant pitching force
and moment on the foils for these two cases. These

quantities are presented as nondimensional coefficients wherein
the force and moment are nondimensionalized by and
with . The plots clearly show that both the
force and moment are periodic in time with the magnitude of
variation in the pitching force being much larger than that of
the moment. These force and moment coefficients can then be
decomposed into their Fourier decomposition. Tables I and II
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Fig. 3. Fin force and moment for (a) � = 0 and (b) � = 20 (deg).

show the nondimensionalized force and moment coefficients for
the bias of zero and 20 , respectively.

In addition to these two cases, two other cases with
and have been simulated (data not shown here) and

these data are used in the simulation of the BAUV dynamics,
as described in the subsequent section.

B. Dive-Plane Trajectory Control

In this section, simulation results using MATLAB and
SIMULINK are presented. The parameters of the model are
taken from [7]. The key vehicle parameters are m,
mass kg, kg m , , and

; the hydrodynamic parameters are taken
as , , ,

, , ,
, and . The uniform

forward velocity of the vehicle is 0.7 m/s. Two cases [(S1) and
(S2)] of pectoral fin attachments are considered. In (S1), fins
are attached at a distance of m ahead of the cg. In
(S2), . The fins are assumed to undergo heaving and
pitching motion and the frequency of oscillation is taken to be
4 Hz [ rad/s]. Thus, the period of oscillation is

s, but the sampling period is taken as s
(twice the period of oscillation). The initial condition chosen is

.
Smooth reference trajectories are generated by command

generators for cases (S1) and (S2), which are

and

TABLE I
VARIOUS COMPONENTS OF FORCE AND MOMENT COEFFICIENT FOR

THE � = 0 CASE

TABLE II
VARIOUS COMPONENTS OF FORCE AND MOMENT COEFFICIENT FOR

THE � = 20 CASE

where denotes the advance operator
and the parameters are chosen to be zero so that the

poles of the command generator are at . These two ref-
erence trajectory generators are simulated using their state vari-
able forms with states and

, respectively. For generating sinusoidal refer-
ence trajectories, the command input chosen is

, where rad/s and m is the
amplitude of the sinusoidal depth trajectory. The initial condi-
tion of the command generator is . The Fourier se-
ries representations of the fin force and moment obtained using
CFD have four dominant harmonics; therefore, one has

. Of course,
the design approach does not limit the number of harmonics for
control law derivation. The Fourier coefficients in (10) and (11)
that are derived using CFD are used for simulation.

The zeros of the pulse transfer function depend on the fin
attachment distance m. The transfer function

for case (S1) has the zeros at 1.0206, 0.2343, and 1.2731,
but for (S2), the zeros are 0.8695, 1.5464, and 0.3299.

The new output in (25) is computed using the solution of
(32). For the AUV model, the relative degree of the modified
output for (S1) is three, but for (S2) is two; therefore, the control
law (41) depends on the fin location and they are not identical for
cases (S1) and (S2). For case (S1), the tracking error equation
takes the form

but for case (S2) one has second-order error dynamics

where for simulation it is assumed that for (S1) ,
, and . For (S2), and .

This gives the poles of the error dynamics at for each
case, which are well within the unit disk in the complex plane.

C. Sinusoidal Trajectory Control (S1) and (S2)

The sinusoidal reference trajectory is generated by setting
as the depth command input with

m. For case (S1), the fin oscillation period, sampling
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Fig. 4. Sinusoidal trajectory control case (S1).

Fig. 5. Sinusoidal trajectory control case (S2).

period, and are taken as 0.25 s, 0.5 s, and 0.15 m. The re-
sponses are shown in Fig. 4. We observe that the response of the
modified output converges quickly to the command
trajectory . The actual depth, modified depth, and ref-
erence trajectories remain very close. The depth response in the
intersample period has oscillations of minor amplitudes, but it
tracks the command trajectory. The maximum pitch angle and
pitch rate are less than 20 and 50 /s, respectively, and the max-
imum value of does not exceed 0.75 m/s. The maximum bias
angle is about 1.2 . The control force is about 30 N and the con-
trol moment is less that 0.4 Nm.

Simulation is performed using a different value of
for case (S2). Fig. 5 shows the selected responses. We observe
that the controller accomplishes accurate trajectory control. The
depth response is smoother, but the bias angle is larger. Further-
more, the bias angle undergoes more switchings.

VIII. CONCLUSION

In this paper, biologically inspired maneuvering of a
biorobotic AUV using pectoral-like fins was considered. The

pitch bias was updated at regular intervals (multiple of the fun-
damental period). CFD and Fourier series expansion were used
to parameterize the effect of this control input on the hydrody-
namical force and moment produced by the flapping foil. For
the purpose of design, a discrete-time model was obtained and
a nonminimum phase representation was derived for controller
design. Then, an inverse control law for the trajectory control of
the modified output was derived. In the closed-loop system, the
modified output and the actual depth trajectory are sufficiently
close to the desirable depth commands. Numerical results for
the sinusoidal reference trajectory tracking were obtained.
From these results, one concludes that accurate depth control
along time-varying paths with desirable pitch angle response
can be accomplished using oscillating fins. Interestingly, the
control system gave better performance when the fins were
attached away from the cg toward the nose.

ACKNOWLEDGMENT

The authors would like to sincerely thank Dr. P. R. Bandy-
opadhyay for providing many useful suggestions for this re-
search.

REFERENCES

[1] A. Azuma, The Bio-Kinetics of Flying and Swimming. New York:
Springer-Verlag, 1992.

[2] M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, “Review of fish swim-
ming modes for aquatic locomotion,” IEEE J. Oceanic Eng., vol. 24, pp.
237–253, Apr. 1999.

[3] P. R. Bandyopadhyay, J. M. Castano, J. Q. Rice, R. B. Philips, W. H.
Nedderman, and W. K. Macy, “Low-speed maneuvering hydrodynamics
of fish and small underwater vehicles,” ASME J. Fluids Eng., vol. 119,
pp. 136–144, 1997.

[4] G. S. Triantafyllou and M. S. Triantafyllou, “An efficient swimming ma-
chine,” Sci. Amer., vol. 272, pp. 64–70, 1995.

[5] C. B. Martin, F. S. Hover, and M. S. Triantafyllou, “Maneuvering per-
formance of a rolling and pitching wing untethered submersible tech-
nology,” presented at the 12th Int. Symp. UAVs, Durham, NH, 2001.

[6] P. R. Bandyopadhyay, J. M. Castano, and J. Dick, “Biologically-inspired
bodies under surface waves—Part 1: Load measurement,” ASME J.
Fluids Eng., vol. 121, pp. 469–478, 1999.

[7] P. R. Bandyopadhyay, S. N. Singh, and F. Chockalingam, “Biologically-
inspired bodies under surface waves—Part 2: Theoretical control of ma-
neuvering,” ASME J. Fluids Eng., vol. 121, pp. 479–487, 1999.



SINGH et al.: BIOROBOTIC AUV MANEUVERING BY PECTORAL FINS 785

[8] P. R. Bandyopadhyay, “Manuevering hydrodynamics of fish and small
underwater vehicles,” Integr. Comp. Biol., vol. 42, pp. 102–117, 2002.

[9] I. Yamamoto, Y. Terada, T. Nagamatu, and Y. Imaizumi, “Propulsion
system with flexible/rigid oscillating fin,” IEEE J. Oceanic Eng., vol.
20, pp. 23–30, Apr. 1995.

[10] N. Kato, “Pectoral fin controllers,” in Neurotechnology for Biometric
Robots. Cambridge, MA: MIT Press, 2002, pp. 325–350.

[11] , “Perfomance in the horizontal plane of a fish robot with mechan-
ical pectoral fins,” IEEE J. Oceanic Eng., vol. 25, pp. 121–129, Jan.
2000.

[12] R. Mittal, Y. Utturkar, and H. S. Udaykumar, “Computational modeling
and analysis of biometric flight mechanisms,” in Proc. AIAA 40th
Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 2002, AIAA
2002-0865.

[13] H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, “A sharp
interface Cartesian grid method for simulating flows with complex
moving boundaries,” J. Comput. Phys., vol. 174, pp. 345–380, 2001.

[14] T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, “An accurate cartesian
grid method for simulation of viscous incompressible flows with com-
plex immersed boundaries,” J. Comput. Phys., vol. 156, pp. 209–240,
1999.

[15] F. M. Najjar, R. Mittal, P. Rampunggoon, and A. Khanna, “Simulations
of complex flows and fluid-structure interaction problems on fixed Carte-
sian grids,” in Proc. ASME–JSME Joint Fluids Engineering Conf., Hon-
olulu, HI, July 2003, FEDSM2003-45 577.

[16] R. Ramamurti, R. Lohner, and W. Sandberg, “Computation of the un-
steady-flow past a tuna with caudal fin oscillation,” Adv. Fluid Mech.
Ser., vol. 9, pp. 169–178, 1996.

[17] J.-S. Lee, C. Kim, and O.-H. Rho, “The modification of airfoil shape for
optimal aerodynamic performance on flapping-airfoil in low Reynolds
number flow,” in AIAA 41st Aerospace Sciences Meeting and Exhibit,
Reno, NV, Jan. 2003, AIAA 2003-421.

[18] K. A. Harper, M. D. Berkemeier, and S. Grace, “Modeling the dynamics
of spring-driven oscillating-foil propulsion,” IEEE J. Oceanic Eng., vol.
23, pp. 285–296, July 1998.

[19] S. N. Singh and A. Simha, “Open-loop and feedback pectoral fin control
of biorobotic AUV,” presented at the Int. Symp. Untethered Submersible
Technology (UUST03), Durham, NH, 2003.

[20] S. N. Singh and W. J. Rugh, “Decoupling in a class of nonlinear systems
by state variable feedback,” Trans. ASME J. Dynam. Syst., Measurem.,
Control, vol. 94, pp. 323–329, 1972.

[21] A. Isidori, Nonlinear Control Systems. New York: Springer-Verlag,
1989.

[22] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[23] L. Benvenut, M. D. DI. Bendetto, and J. W. Grizzle, “Approximate
output tracking for nonlinear nonminimum phase system with an
application to flight control,” Int. J. Robust Nonlinear Control, vol. 4,
pp. 397–414, 1994.

[24] R. Cristi, F. A. Papoulias, and A. J. Healy, “Adaptive sliding mode
control of autonomous underwater vehicles in the dive plane,” IEEE J.
Oceanic Eng., vol. 15, pp. 152–160, July 1990.

[25] S. N. Singh and L. Wang, “Output feedback form and adaptive stabiliza-
tion of a nonlinear aeroelastic system,” J. Guidance, Control, Dynam.,
vol. 25, no. 4, pp. 725–733, 2002.

[26] C. P. Ellington, “The aerodynamics of hovering insect flight,” Philos.
Trans. R. Soc. Lond., B, vol. 305, pp. 79–113, 1984.

[27] M. H. Dickinson, F. O. Lehmann, and S. P. Sane, “Wing rotation and
the aerodynamic basics of insect flight,” Sci., vol. 284, pp. 1954–1960,
1999.

[28] M. Triantafyllou, A. Techet, and F. Hover, “Review of experimental
work in biomimetic foils,” presented at the 13th Int. Symp. Unmanned
Untethered Submersible Technology (UUST), Durham, NH, Aug. 2003.

[29] R. Mittal, “Computational modeling in bio-hydrodynamics: Trends,
challenges and recent advances,” presented at the 13th Int. Symp.
Unmanned Untethered Submersible Technology (UUST), Durham,
NH, Aug. 2003.

[30] H. H. Rosenbrock, State-Space and Multivariable Theory. New York:
Wiley, 1970.

[31] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[32] M. M. Koochesfahani, “Vertical patterns in the wake of an oscillating

airfoil,” presented at the AIAA 25th Aerospace Sciences Meeting and
Exhibit, Reno, NV, Jan. 1987, AIAA 87-0111.

Sahjendra N. Singh (M’78–SM’86) received the
M.E. degree (with distinction) in applied electronics
and servomechanism from the Indian Institute of
Science, Bangalore, India, in 1968 and the Ph.D.
degree in electrical engineering from The Johns
Hopkins University, Baltimore, MD, in 1972.

He currently is a Professor in the Department of
Electrical and Computer Engineering, University
of Nevada, Las Vegas (UNLV). Prior to coming to
UNLV in 1986, he did research at the Indian Space
Research Organization and the National Aeronautics

and Space Administration (NASA) Langley Research Center in the areas
of space vehicle stability and control, space robotics, flight control systems,
and control of large space structures. He has done research at the Air Force
Research Laboratory, Edwards Air Force Base, CA; the Naval Air Warfare
Center, Warminster, PA; the Naval Undersea Warfare Center, Newport, RI; the
Naval Air Warfare Center, Patuxent, MD; the Air Force Research Laboratory,
Wright-Patterson Air Force Base; and the NASA Dryden Flight Research
Center, Edwards, as a NASA and Office of Naval Research Summer Faculty
Fellow in the areas of flight control of advanced fighter aircraft, nonlinear
systems, adaptive and neural control, turbulence control, and biologically in-
spired maneuvering of agile undersea vehicles, formation flying of UAVs, and
aeroelasticity and control. He has published over 250 journal and conference
papers in these areas. He has served as an Associate Editor for the Journal of
Guidance, Control, and Dynamics.

Dr. Singh is an Associate Fellow of the American Institute of Aeronautics
and Astronautics (AIAA).

Aditya Simha (S’02) received the B.S. degree
in electrical and electronics engineering from
Visveswaraiah Technological University, India, in
2002 and is currently working toward the M.S.
degree in electrical engineering at the University of
Nevada, Las Vegas.

Rajat Mittal was born in New Delhi, India, on
April 6, 1967. He received the B.Tech. degree in
aeronautical engineering from the Indian Institute
of Technology, Kanpur, in 1989, the M.S. degree
in aerospace engineering from the University of
Florida, Gainesville, in 1991, and the Ph.D. degree
in applied mechanics from The University of Illinois,
Urbana-Champaign, in 1995.

He joined the Center for Turbulence Research,
Stanford University, Stanford, CA, as a Postdoctoral
Fellow, where he conducted research in the area

of turbulent flows. Subsequently, he joined the Department of Mechanical
Engineering, University of Florida, as an Assistant Professor, where he taught
from 1996 to 2001. He currently is an Associate Professor in the Department of
Mechanical and Aerospace Engineering, The George Washington University,
Washington, DC. His research interests include computational fluid dynamics,
vortex dominated flows, fluid-structure interaction, flow control, and biofluid
dynamics.

Dr. Mittal is a Member of the American Institute of Aeronautics and As-
tronautics, the American Society of Mechanical Engineers, and the American
Physical Society.


	toc
	Biorobotic AUV Maneuvering by Pectoral Fins: Inverse Control Des
	Sahjendra N. Singh, Senior Member, IEEE, Aditya Simha, Student M
	I. I NTRODUCTION
	II. D IVE- P LANE D YNAMICS

	Fig.€1. Schematic of the AUV.
	III. F IN F ORCE AND M OMENT P ARAMETERIZATION
	IV. D ISCRETE -T IME R EPRESENTATION
	V. M INIMUM P HASE S YSTEM
	VI. I NVERSE C ONTROL L AW

	Fig.€2. Spanwise vorticity contours and velocity vectors for flo
	VII. S IMULATION R ESULTS
	A. CFD Parameterization


	Fig. 3. Fin force and moment for (a) $\beta_{\psi}=0$ and (b) $\
	B. Dive-Plane Trajectory Control

	TABLE€I V ARIOUS C OMPONENTS OF F ORCE AND M OMENT C OEFFICIENT
	TABLE€II V ARIOUS C OMPONENTS OF F ORCE AND M OMENT C OEFFICIEN
	C. Sinusoidal Trajectory Control (S1) and (S2)
	Fig.€4. Sinusoidal trajectory control case (S1).
	Fig.€5. Sinusoidal trajectory control case (S2).

	VIII. C ONCLUSION
	A. Azuma, The Bio-Kinetics of Flying and Swimming . New York: Sp
	M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, Review of fish 
	P. R. Bandyopadhyay, J. M. Castano, J. Q. Rice, R. B. Philips, W
	G. S. Triantafyllou and M. S. Triantafyllou, An efficient swimmi
	C. B. Martin, F. S. Hover, and M. S. Triantafyllou, Maneuvering 
	P. R. Bandyopadhyay, J. M. Castano, and J. Dick, Biologically-in
	P. R. Bandyopadhyay, S. N. Singh, and F. Chockalingam, Biologica
	P. R. Bandyopadhyay, Manuevering hydrodynamics of fish and small
	I. Yamamoto, Y. Terada, T. Nagamatu, and Y. Imaizumi, Propulsion
	N. Kato, Pectoral fin controllers, in Neurotechnology for Biomet
	R. Mittal, Y. Utturkar, and H. S. Udaykumar, Computational model
	H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, A sha
	T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy, An accurate cart
	F. M. Najjar, R. Mittal, P. Rampunggoon, and A. Khanna, Simulati
	R. Ramamurti, R. Lohner, and W. Sandberg, Computation of the uns
	J.-S. Lee, C. Kim, and O.-H. Rho, The modification of airfoil sh
	K. A. Harper, M. D. Berkemeier, and S. Grace, Modeling the dynam
	S. N. Singh and A. Simha, Open-loop and feedback pectoral fin co
	S. N. Singh and W. J. Rugh, Decoupling in a class of nonlinear s
	A. Isidori, Nonlinear Control Systems . New York: Springer-Verla
	J.-J. E. Slotine and W. Li, Applied Nonlinear Control . Englewoo
	L. Benvenut, M. D. DI. Bendetto, and J. W. Grizzle, Approximate 
	R. Cristi, F. A. Papoulias, and A. J. Healy, Adaptive sliding mo
	S. N. Singh and L. Wang, Output feedback form and adaptive stabi
	C. P. Ellington, The aerodynamics of hovering insect flight, Phi
	M. H. Dickinson, F. O. Lehmann, and S. P. Sane, Wing rotation an
	M. Triantafyllou, A. Techet, and F. Hover, Review of experimenta
	R. Mittal, Computational modeling in bio-hydrodynamics: Trends, 
	H. H. Rosenbrock, State-Space and Multivariable Theory . New Yor
	T. Kailath, Linear Systems . Englewood Cliffs, NJ: Prentice-Hall
	M. M. Koochesfahani, Vertical patterns in the wake of an oscilla



