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A novel flow configuration devised for investigation of active control of separated
airfoil flows using synthetic jets is presented. The configuration consists of a flat plate,
with an elliptic leading edge and a blunt trailing edge, at zero incidence in a free
stream. Flow separation is induced on the upper surface of the airfoil at the aft-chord
location by applying suction and blowing on the top boundary of the computational
domain. Typical separated airfoil flows are generally characterized by at least three
distinct frequency scales corresponding to the shear layer instability, the unsteadiness
of the separated region and the vortex shedding in the wake, and all these features are
present in the current flow. Two-dimensional Navier–Stokes simulations of this flow
at a chord Reynolds number of 6×104 have been carried out to examine the nonlinear
dynamics in this flow and its implications for synthetic-jet-based separation control.
The results show that there is a strong nonlinear coupling between the various features
of the flow, and that the uncontrolled as well as the forced flow is characterized by a
variety of ‘lock-on’ states that result from this nonlinear coupling. The most effective
separation control is found to occur at the highest forcing frequency for which both
the shear layer and the separated region lock on to the forcing frequency. The effects of
the Reynolds number on the scaling of the characteristic frequencies of the separated
flow and its subsequent control are studied by repeating some of the simulations at
a higher Reynolds number of 1 × 105.

1. Introduction
Prevention, delay or mitigation of flow separation over aircraft wings is an area

of significant interest in aeronautics. Control of boundary-layer separation is effected
by both passive and active mechanisms. Whereas passive techniques do not require
additional power but have an associated drag penalty, active mechanisms require
expenditure of energy, though much less than the energy gained by the effective control
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of separation. Some of the most widely researched active separation control (ASC)
techniques include moving walls (Prandtl 1925; Johnson, Tennant & Stamps 1975),
suction (Prandtl 1904, 1935), direct tangential injection or wall jets (Delery 1985; Katz,
Horev & Wygnanski 1992; Zhou & Wygnanski 1993), internal and external acoustic
excitation (Collins 1979; Sigurdson & Roshko 1985), periodic forcing via vibrating
flap (Neuburger & Wygnanski 1987), oscillating fence (Shepshelovich et al. 1989)
or wire (Bar-Sever 1989), oscillatory surface heating (Maestrello, Badavi & Noonan
1988), and more recently, oscillatory blowing using zero-net-mass-flux (ZNMF) or
synthetic jets (Seifert et al. 1993; Seifert, Darabi & Wygnanski 1996; Amitay et al.
1997; Seifert, Eliahu & Greenblatt 1998; Seifert & Pack 1999; Chatlynne et al. 2001).
Gad-El-Hak & Bushnell (1991) and Gad-El-Hak (2000) review the state of the art in
separation control using both passive and active mechanisms.

Experiments by Neuburger & Wygnanski (1987), Shepshelovich et al. (1989),
Bar-Sever (1989) and Seifert et al. (1993), using very different active mechanical
devices embedded in the boundary layer, strongly demonstrated that separation can
be delayed and sometimes completely prevented by introducing strong oscillations
in the region of incipient separation. Studies by Nishri (1995) show that the nature
of the device used to generate these oscillations is not important as long as the
vorticity fluctuations introduced in the region of incipient separation are similar. Of
the different techniques available for introducing such periodic perturbations into
the boundary layer, synthetic jets (or more generally, ZNMF jets) have emerged as
effective for separation control owing to the following factors: they allow independent
control of the excitation magnitude and frequency; inclusion of ZNMF actuators for
oscillatory blowing leaves the airfoil geometry almost unchanged with little weight
penalty; the actuators are fairly robust and their performance does not attenuate
with increased aerodynamic loading (Seifert et al. 1998). Research on these actuators
has primarily been directed towards understanding the associated flow physics with
the objective of identifying optimal forcing schemes and the following discussion
summarizes our current understanding and some of the outstanding issues in this
area.

1.1. Flow physics of ZNMF-based separation control

Experimental investigations (Seifert & Pack 1999; Glezer, Amitay & Honohan 2003)
have shown that accelerated or forced laminar–turbulent transition does not play
a pivotal role in synthetic-jet-based (SJ-based) separation control. A fundamental
mechanism that is often identified in SJ-based separation control is the formation
of large coherent structures in the separated shear layer due to oscillatory forcing.
These structures entrain outer high-momentum fluid into the boundary layer, thereby
delaying separation or even reattaching a separated flow. However, the effectiveness of
this mechanism relies on the receptivity of the mean flow to the imposed oscillations
which in turn depends on the stability characteristics of the separated flow. Thus,
to be effective, the perturbations have to be of appropriate frequency and sufficient
amplitude and be introduced at the right location in the boundary layer (Seifert
et al. 1996). The successful control of boundary-layer separation using SJ actuators
is determined by a multitude of parameters: the ratio of the SJ velocity to the free-
stream velocity, VJ /U∞ (or alternatively the oscillatory blowing momentum coefficient,
Cµ = ρV 2

J d/(q∞c)); the dimensionless frequency of the jet, F +
J ; relative location of

the actuator on the surface, xJ ; the shape (curvature), thickness ratio and incidence
of the airfoil that determine the adversity of the pressure gradient; the Reynolds
number and Mach number of the flow; and several other parameters thought to be
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of second-order importance such as the inclination of the actuator slot to the wetted
surface, etc.

For an SJ of a given width, the key operational parameters are the jet frequency
fJ and the jet velocity VJ . The former is usually non-dimensionalized as F +

J = fJ /fn,
where fn is a frequency associated with some intrinsic time scale in the uncontrolled
flow. The parameter VJ is some characteristic measure of the jet velocity, such as the
peak or an average velocity during the discharge phase of the cycle, and is normalized
by U∞. The control authority has been found to vary monotonically with VJ (Seifert
et al. 1993, 1996; Seifert & Pack 1999; Glezer & Amitay 2002) up to a point where
any further increase leads to a complete disruption of the boundary layer. Moreover,
the hardware limitations of typical SJ devices do not allow realization of large jet
velocities. Therefore, there is very little leeway for optimizing the SJ device with respect
to VJ . On the other hand, control authority has been found to exhibit a highly non-
monotonic variation with F +

J (Seifert & Pack 2000; Greenblatt & Wygnanski 2003;
Glezer et al. 2003), and this not only suggests the presence of rich flow physics and
a highly nonlinear multi-modal system, but also reveals the potential for optimizing
the control scheme with respect to this parameter. The various issues pertinent to the
flow physics of separation control are discussed below.

1.1.1. Constituents of a separated airfoil flow

Separation control schemes that harness large vortical structures to transfer
momentum from the outer flow into the boundary layer are based on the proposition
that the dynamics of a separated flow over an airfoil are dominated by the
characteristic frequency of the separation region denoted here by fsep . On the contrary,
in addition to fsep , there are other naturally occurring frequencies that can play an
important role in the dynamics of the flow. To examine this further, it is useful to
classify the types of separation encountered for typical airfoils, and the subsequent
discussion is drawn from classical work on stall classification by McCullough &
Gault (1951), Chang (1976), and more recent work on temporal dynamics of stalled
airfoil flows by Zaman, McKenzie & Rumsey (1989), Broeren & Bragg (1998), Bragg,
Hienrich & Khodadoust (1993), Bragg et al. (1996) and Wu et al. (1998). Based on
these previous studies, one can consider the following three situations with regards to
separation control as shown in figure 1. Case A represents attached flow over a thin
airfoil at low angle-of-attack (AOA) where the boundary layer on the suction side
develops under an adverse pressure gradient but does not separate. Such a flow has
one dominant time scale characterized by the inverse of the wake vortex shedding
frequency fwake.

In direct contrast to Case A is the situation of a massively separated post-stall flow
at high AOA, portrayed as Case C, where separation occurs near the leading edge
and the flow does not reattach (in the mean) to the airfoil surface. This flow behaves
like that past a bluff body and is consequently subject to two frequency scales, fSL

and fwake, where the former is the natural vortex roll-up frequency of the shear layer
and the latter is again the frequency corresponding to vortex shedding in the wake.
A number of experimental investigations of bluff-body wakes (Kourta et al. 1987;
Williamson, Wu & Sheridan 1995; Prasad & Williamson 1996; Wu et al. 1996) have
shown that such a local convective instability mechanism of the shear layer is indeed
important even in the presence of the global absolute instability of the wake. An
extensive survey of the literature in this area reveals that only Wu et al. (1998) have
considered both fSL and fwake in their studies. In contrast, other studies of post-stall
separation control account for fwake but do not consider fSL (He, Cary & Peters



68 R. B. Kotapati, R. Mittal, O. Marxen, F. Ham, D. You and L. N. Cattafesta

Case B

Case A

Case C

AOA

Wwake

Lsep

fSL

fSL

fwake

fwake

fwake

fsep

XTE

XTE

Vortices released
from separation bubble

Figure 1. Schematic of the three different scenarios for flow past an airfoil.

2001; Miranda, Telionis & Zeiger 2001; Chen & Beeler 2002). Finally, a majority
of studies that have examined massively separated flow past airfoils with deflected
flaps (e.g. Seifert et al. 1993, 1996; Wygnanski 1997) consider only a single frequency
corresponding to the separation region, fsep , which is not necessarily the same as
either fwake or fSL.

Finally, Case B corresponds to the situation where separation occurs at some
location downstream of the leading edge, and the separated shear layer may or may
not reattach before the trailing edge. For instance, on some thin airfoils (like the
NACA 0012), stall is manifested through the appearance of a small separation bubble
near the leading edge (Chang 1976). On the other hand, open separation zones near the
trailing edge can be found on thicker airfoils (Chang 1976; Greenblatt & Wygnanski
2003) and on the exposed portion of low-pressure turbine (LPT) blades (Mittal,
Venkatasubramanian & Najjar 2001; Postl, Gross & Fasel 2004). If the separated
shear layer reattaches before the trailing edge, there are potentially three frequency
scales: fwake, fSL, and fsep , the frequency scale corresponding to the regular expulsion
of large vortices from the separated region. The resonant interaction between these
different processes is a strong function of the distance between the separation location
and the trailing edge, xTE . It also depends on whether the separation bubble extends
to the trailing edge or closes far upstream of it. When the separated shear layer does
not reattach and the separation is of the open type, the flow is similar to Case C except
that the separation point is not fixed at the leading edge. Mittal et al. (2001) examined
the scaling of the frequencies for a PAK-B, LPT blade via large-eddy simulations and
found that the wake, indeed, plays a role in determining the dynamics of suction-side
separation.

In summary, therefore, fsep is only one of at least three potentially naturally
occurring frequencies in a separated airfoil flow. Therefore, it is quite possible that
these different processes modulate each other even as they evolve because of nonlinear
coupling between them (Wu et al. 1998). However, the current understanding of the
dynamics of these processes is quite limited.
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1.1.2. Scaling of characteristic frequencies

Consider the flow over an airfoil at incidence where the separation occurs at some
location downstream of the leading edge, and the separated shear layer may or may
not reattach before the trailing edge. For a shear layer that separates from and
reattaches to a solid surface (as in Case B in figue 1), the presence of a near-wall
reversed flow region permits upstream propagation of disturbances and alters the
stability characteristics of the shear layer. In this case, the frequency corresponding to
the separated region scales as fsep ∼ U∞/Lsep , where Lsep is the characteristic length
of the mean separation bubble. Numerical investigations of separated flow past a
wall mounted tab (Auld & Mittal 1999) and flow past a normal flat plate with a
wake splitter (Najjar & Vanka 1993) indicate a universal value of fsepLsep/U∞ ≈ 0.27
when Lsep is defined as the distance between the separation point and the centre of
the mean recirculation bubble. It is plausible that in such cases fSL locks-on to fsep

through subharmonic resonance (Ho & Huang 1982).
For a shear layer that separates and does not reattach (as in Case C in figure 1), the

shear layer instability plays an important role. The corresponding frequency scales
more like that of a free shear layer (Ho & Huerre 1984), i.e. fSL ∼ Ū/θ , where Ū

is the average velocity across the shear layer and θ is the momentum thickness. In
fact, Ho & Huerre (1984) have shown that fSLθ/Ū attains a nearly universal value of
about 0.03 for a laminar flow and about 0.04 for a turbulent flow. In the special case
where such shear layers are part of a Kármán-type vortex shedding process, as would
be the situation in Case C, the above scaling can be reformulated as fSL =AReBfwake

(Kourta et al. 1987; Williamson, Wu & Sheridan 1995; Wu, Sheridan, Hourigan &
Soria 1996) where the Reynolds number accounts for the dependence of the frequency
on the momentum thickness. For a circular cylinder, A ≈ 0.024 and B ≈ 0.67 (Prasad &
Williamson 1996).

The wake vortex shedding resulting from absolute instability, however, is active
for all cases and due to its global effect, probably plays some role in the dynamics
of the flow. The scaling for Kármán vortex shedding due to Roshko (1954) is
fwake ∼ U∞/Wwake, where Wwake is the characteristic width of the wake, and this scaling
is fundamentally different from that of fsep . In many studies (Wu et al. 1998; Miranda
et al. 2001), Wwake is assumed to be equal to c sin(α) where c is the airfoil chord length
and α is the angle of attack. In cases where the separation extends over a significant
portion of the airfoil (or a flap), it has been customary to assume Lsep = c (Bar-Sever
1989; Seifert et al. 1993; Ravindran 1999; Wygnanski 2000; Darabi & Wygnanski
2002; Funk et al. 2002; Postl et al. 2004), but this might significantly overestimate the
correct length scale in cases where the wake vortex shedding dominates the dynamics.

1.1.3. Effective forcing frequency

Given the multi-frequency nature of the separated flow system and the different
scalings of the characteristic system frequencies depending on the type of separation,
the situation with regard to the optimal forcing frequency is not quite obvious.
Experiments by Seifert et al. (1993, 1996) suggest that the frequency that will elicit
the largest response is the one for which the streamwise length of separated flow
requiring control (i.e. Lsep) is comparable to the average wavelength of the imposed
oscillations. This implies that F +

J = f/fsep = f Lsep/U∞ ∼ O(1). However, even if one
were to account for the various length scales used in the definition of F +

J , there
is still a wide variation in the observed values of optimal F +

J . For example, among
studies that have defined F +

J = f c/U∞, where c is airfoil or flap chord over which flow
is fully separated, optimal F +

J values ranging from 0.55 to 5.5 have been observed
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(Bar-Sever 1989; Seifert et al. 1993; Ravindran 1999; Wygnanski 2000; Darabi &
Wygnanski 2002; Funk et al. 2002; Margalit et al. 2002). Among studies that define
F +

J = f xT E/U∞, where xT E is streamwise distance between the actuator and the
trailing edge, optimal values of F +

J range from 0.5 to 2.0 (Greenblatt & Wygnanski
1999; Seifert & Pack 1999; Gilarranz & Rediniotis 2001). Finally, for studies that
employ F +

J = f Lsep/U∞, optimal values ranging from 0.75 to 2.0 have been reported
(Seifert et al. 1996; Pack & Seifert 2000; Pack et al. 2002). It may seem that the
magnitude of the variation in optimal value of F +

J reported in these studies is not
significant, except that in many cases the control authority of the SJ device varied
considerably with small changes in F +

J . For instance, Seifert et al. (1993) reported a
25 % variation in CL as F +

J varied between 0.25 and 1.5, while Wygnanski (2000)
found that the required Cµ increased by about 400 % for the same variation in F +

J .
For post-stall applications similar to Case C, Wu et al. (1998) have argued

that the most effective control frequency should be a superharmonic of fwake, i.e.
F +

J = f/fwake = m, where m is an integer greater than 1. Due to the ability of the
shear layer to respond to a broad range of frequencies, it is expected that a suitable
choice of m can allow both the vortex shedding and shear layer to lock on to the
forcing frequency or its superharmonic. Lack of consideration of the importance of
fwake and the associated resonant interactions with fsep in past studies (Seifert et al.
1993, 1996; Wygnanski 1997; Seifert & Pack 1999) might explain some of the spread
in optimal F +

J and corresponding Cµ values reported in the literature.
Wide disparities in the past investigations of active ASC with respect to the above

considerations motivate systematic studies in simple configurations that eliminate
confounding variables and clearly delineate various physical mechanisms that are
potentially implicated in ASC. The primary objective of this work is to employ
a novel flow configuration that allows us to (i) examine the dynamics of baseline
aft-chord separated flow to determine the nature of the nonlinear coupling between
the various instabilities that exist in the flow, (ii) investigate the effects of forcing
frequency F +

J in light of these nonlinear coupling mechanisms.

2. Flow configuration
The previous section described some of the key outstanding technical issues in the

area of ASC using SJ actuators. Past approaches to studying these issues have mostly
employed conventional airfoil geometries where the flow separation is produced by
varying AOA and/or free-stream velocity. Although this approach is grounded in
practical reality, it does not facilitate precise investigation and delineation of the
various physical mechanisms that are potentially implicated in ASC. As discussed in
the preceding section, the separated flow over an airfoil is a complex system with
potentially three different naturally occurring frequencies. In order to examine the
scaling of these frequencies as well as their potential nonlinear interactions, it would
be extremely useful to separately prescribe the extent and location of the separation
bubble as well as the Reynolds number. This is not possible through simple variation
of AOA and/or free-stream velocity for an airfoil. Therefore, a flow configuration is
needed that is simple and includes all the important features of a separated airfoil
flow such as the leading-edge boundary-layer inception, open or closed suction side
separation and a wake that includes vortices from both the suction and pressure
sides. Furthermore, such a configuration should also allow independent prescription
of the location and extent of the separation region as well as the Reynolds number. It
should be pointed out that some past studies have induced separation on a flat wall
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Figure 2. Schematic of the flow configuration (not to scale).

via modification of the upper boundary (Na & Moin 1998; Sohn, Shyne & DeWitt
1998; Postl et al. 2004) to impose adverse pressure gradient. This approach however
does allow for independent control over the location and extent of the separation
bubble but does not account for leading- and trailing-edge effects, pressure side
boundary layer and its interaction with a two-sided wake.

Here, a novel configuration that satisfies all of the above requirements and is
amenable to both computational fluid dynamics and experimentation is proposed.
The focus of the current work is on numerical simulations and figure 2 shows a
schematic of this flow configuration used in the simulations. It consists of a 5 % thick
spanwise homogeneous flat-plate airfoil of chord c with 8:1 elliptic leading edge and
blunt trailing edge at 0◦ AOA in a free stream. The blunt trailing edge is chosen
to fix the separation point of the lower- and upper-side shear layers at the sharp
corners of the trailing face, and provide unambiguous definition for the characteristic
width of the wake. The origin of the global coordinate system (x0, y0, z0) is fixed
at the lower left-hand corner in the mid-span of the computational domain that
measures Lx , Ly and Lz in X, Y and Z directions, respectively. The origin of the
local coordinate system (x, y, z) is at the leading edge of the airfoil in the same mid-
span plane. Note that x, y and z are in the streamwise, cross-stream and spanwise
directions, respectively.

A separation bubble of desired size can be induced at any location on the upper
surface of the flat plate by applying an adverse pressure gradient through suction
and blowing on the upper boundary of the computational domain. The technique
of Na & Moin (1998) is adopted wherein a zero-vorticity boundary condition of the
following form is prescribed on the upper boundary:

v(x0, Ly) = G(x0),
∂u

∂y0

∣∣∣∣
(x0,Ly )

=
dG

dx0

, (2.1)

where G(x0) is the prescribed steady suction and blowing velocity profile, and the
Neumann boundary condition on u ensures that no spanwise vorticity (ωz) is generated
due to suction and blowing. In this study, G(x0) is of the form

G(x0) = −Vtop sin

(
2π(x0 − xc)

L

)
e−α((2(x0−xc))/L)β , (2.2)
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Figure 3. Schematic of the ZNMF actuator embedded in the airfoil.

where xc is the centre of the steady suction and blowing velocity profile in the
global system and L is the length of the profile (see figure 2). The function G(x0)
allows independent prescription of the location as well as the streamwise size of the
separation region by varying xc and L. In (2.2), the sinusoidal function that models
the suction and blowing profile is multiplied by an exponential blending function
to provide continuity at the edges of the profile as it transitions to slip boundary
condition on either side. The parameters Vtop , α and β are set to 0.8U∞, 10 and
20, respectively. Thus, separation can be produced anywhere on the plate surface
and can therefore reproduce any of the three separated flow situations discussed in
§ 1.1.1. The above configuration can be used to examine the nonlinear interactions
between the shear layer, separation region and airfoil wake in controlled as well as
uncontrolled versions of these flows. It should be noted that with this configuration,
the confounding effect of curvature is eliminated, something that is usually not
possible with conventional airfoil geometries.

Rather than simply model the SJ by prescribing a localized analytical velocity
profile (Rizzetta & Visbal 2004) on the flat plate, the flow inside the SJ actuator and
the resulting SJ are simulated in the current study. This is done by embedding a
slot and cavity under the upper surface of the flat plate as shown in figure 3. The
ZNMF ‘device’ consists of a rectangular slot, of width d = 0.005c and height h = 2d ,
connected to an internal rectangular cavity of width W = 10d and height H = 2d . The
choice of these dimensions for the SJ ‘device’ is driven by the design of an actuator
used by Schaeffler, Jenkins & Hepner (2004) in the NASA LaRC 2004 workshop
on computational fluid dynamics validation of SJs and turbulent separation control.
In the experiments, the SJ through the slot is usually generated by the motion of a
piston or a piezoelectric diaphragm mounted to the sides or the bottom of the cavity.
In the computations, a simple oscillatory velocity boundary condition of the form
[u, v] = [0, V0 sin(2πfJ t)] is prescribed at the lower horizontal boundary of the cavity,
where V0 is the velocity amplitude and fJ is the oscillation frequency. This boundary
condition essentially provides a simple sinusoidal representation of the mass flux
produced in the slot by the motion of the piston or diaphragm in the experiments.

The characteristic velocity of the SJ is given by

VJ =
2

AT

∫ T/2

0

∫
A

ve(x, t) dA dt, (2.3)
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where ve(x, t) is the y component of the velocity at the exit plane of the orifice, A

is the cross-sectional area of the orifice and T = 1/fJ is the time period of the SJ
cycle. In the current incompressible simulations, the velocity amplitude at the lower
boundary of the cavity V0 is related to the characteristic jet velocity VJ through
mass conservation by V0 = (πVJ /2)(d/W ). Thus, VJ can be prescribed by applying a
suitable value of V0.

Uniform inflow free-stream velocity is prescribed at the inlet of the computational
domain. At the exit boundary, a convective outflow boundary condition (Kaltenbach
et al. 1999) is applied, with the convection speed determined by the streamwise velocity
averaged across the exit plane. This outflow boundary condition allows the vortical
structures from the separated region and the wake to exit the domain with minimal
reflections. No-slip boundary condition is applied on the airfoil surface, and slot and
cavity walls. Slip (zero-shear) boundary condition is applied over the entire length of
the lower boundary.

3. Computational method
3.1. Numerical algorithm

The two-dimensional flow field in the above flow configuration is obtained by
solving the governing unsteady incompressible Navier–Stokes equations, written in
dimensional tensor form as

∂ui

∂xi

= 0, (3.1)

∂ui

∂t
+

∂uiuj

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

, (3.2)

where xi are the Cartesian coordinates, t is the time, p is the pressure and ui are the
Cartesian velocity components.

The flow field is computed using CDP (CDP is named after Charles David
Pierce (1969–2002)), a hybrid unstructured grid finite-volume-based flow solver
being actively developed at Stanford University’s Centre for Integrated Turbulence
Simulations (CITS) as part of the US Department of Energy’s (DOE’s) Advanced
Simulation and Computing (ASC) programme. Details of the finite volume operators
and boundary condition implementation are available elsewhere (Ham, Mattson &
Iaccarino 2006). A key feature of this solver is that it uses central differences for
spatial discretization and constrains the numerical scheme to discretely conserve not
only mass and momentum, but also kinetic energy (Ham & Iaccarino 2004). This
approach minimizes nonlinear instabilities that might arise from the complete absence
of numerical dissipation at coarse-grid resolutions. For parallel implementation, the
parallel graph partitioning library ParMETIS (Karypis, Schlogel & Kumar 2003) is
used for domain decomposition and provides optimal load balancing with a minimal
surface interface between zones. Communication between processors is achieved using
Message Passing Interface (MPI) programming model.

3.2. Simulation overview

The current configuration has a number of flow parameters which can be varied to
produce a wide variety of separated flow configurations. These parameters include the
chord Reynolds number, and the location and extent of the blowing suction profile
on the top boundary of computational domain which control the location and size of
the separation bubble. The first objective of the current paper is to examine the rich
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nonlinear dynamics of this flow which we have argued is generally representative
of separated airfoil flows. The second objective is to conduct numerical flow control
experiments and interpret the results in light of the observed nonlinear dynamics of
the flow. As such, we have limited the current paper to one case where the separation
bubble is created on the aft one-third of the flat plate. From a practical point of view,
this case is representative of the aft-chord separation that is found on LPT blades.
From a fundamental flow-physics viewpoint, the proximity of the separation bubble
to the wake for this case should produce rich nonlinear interactions in the flow.

Apart from affecting the relative importance of inertial and viscous forces, the
Reynolds number has a much more direct impact on the nonlinear dynamics of the
flow. This is because, the three frequency scales in the flow have different dependencies
on the Reynolds number. Whereas the wake and separation zone time scales are
mostly independent of the Reynolds number, the frequency of the shear layer has
a strong dependence on the Reynolds number. Thus, a variation in the Reynolds
numbers (while keeping all other parameters fixed) can potentially alter the nonlinear
interaction between the different features in the flow. In the current study, we primarily
focus on a case with Re = 6 × 104. This Reynolds numbers is high enough that it
provides adequate separation between the time scales of the shear layer and the
separation bubble, and at the same time, it is low enough to allow for an accurate
high-fidelity Navier–Stokes computations. We also present results at Re =1 × 105 in
order to examine the effect of this parameter.

All of the simulations presented in the current paper are two-dimensional and do
not allow for spanwise variations in the flow. This allows us to focus on the vortex
dynamics of the large-scale vortex structures without the complicating influence of
transition and turbulence. Limited three-dimensional large-eddy simulations of the
same flow have been performed (Kotapati 2008; Kotapati, Mittal & Ham 2008) and
they indicate that the essential features of the nonlinear dynamics are not significantly
affected.

The flat-plate airfoil geometry is centred in a computational domain of size Lx ×
Ly =2c × 0.5c, and the aft-chord separation is induced by prescribing simultaneous
blowing and suction over 0.7 � x/c � 1.3 on the top boundary of the computational
domain. In all of the simulations of the baseline separated flow presented here, the
non-operational SJ ‘device’ embedded under the airfoil upper surface is left open
to the external crossflow. Comparison of the location of boundary-layer separation
obtained from such a simulation with one obtained without an embedded SJ cavity
indicates that the inclusion of an inactive SJ device open to the external crossflow in
the uncontrolled simulation does not change the separation location.

Firstly, the uncontrolled version of the flow configuration with aft-chord separation
(hereafter referred to as ‘Case 0’) is computed at Re = 6 × 104 to determine the
characteristic frequency scales in the baseline separated flow. The simulations are
performed on two different unstructured grids to ascertain the grid independency of
the simulation results with respect to the characteristic frequency scales, separation
and reattachment points, pressure and skin-friction distributions, etc. The unstructured
grids are composed of hexahedral volumes and the details of grid spacing and
resolution in key areas for these two grids are summarized in table 1. Several coarser
grid simulations were carried out to determine the resolution requirements in critical
flow regions such as the separated region, wake, etc, and this information was used
in arriving at the baseline resolution of Grid I. Based on the local gradients in the
boundary layer and the resolution characteristics of the flow solver, it was determined
that the wall-parallel spacing on the flat surface of Grid I was over-resolved while
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Attribute Grid I Grid II Grid III

Overall node count 445 746 540 650 844 180
Nodes in wake region 66 306 99 330 99 330
Nodes in separated region 70 418 76 586 157 290
Nodes in SJ slot 1554 1554 1554
Nodes in SJ cavity 11 174 8806 8806
Wall parallel spacing on flat plate, �x/c 0.0001–0.006 0.00025–0.0065 0.0001–0.006
Wall normal spacing on flat plate, �y/c 2.5 × 10−4 2.5 × 10−4 1.25 × 10−4

Table 1. Details of grids used in two-dimensional Navier–Stokes simulations.
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Figure 4. Computational mesh in the x–y plane of Grid II used in LES at Re =6 × 104.

the x-spacing in near-wake was only marginal. Therefore, Grid I was subsequently
refined in the near-wake region by 50 % in both x and y directions, and relaxed in the
over-resolved regions to yield nominal Grid II. Thus, even though the total number
of grid points for Grids I and II are different by about 20 %, the distribution of the
grid points in the critical regions such as in the wake is significantly different between
the two grids. Figure 4 shows the computational mesh in the x–y plane of Grid II
used in the simulations at Re = 6 × 104.

The simulations are advanced with a time step of �tU∞/c =2.0 × 10−4, which
corresponds to a maximum Courant–Friedrichs–Lewy (CFL) number of less than 2.8
and 1.7 on Grids I and Grid II, respectively. The simulations are typically carried out
for at least a time period of 20c/U∞, of which the last 10 time units are used for the
computation of flow statistics discussed in § 4.1. Each simulation on Grid II requires
over 500 single-node CPU hours, whereas a single simulation on Grid III takes over
800 single-node CPU hours.

The characteristic frequencies of the baseline separated flow are determined by
computing one-dimensional power spectra Evv corresponding to temporal variations
of cross-stream velocity v in the shear layer, the separated region, and the wake. Flow
state from Case 0 simulation at t = 20c/U∞ is then advanced with SJ perturbation of
the boundary layer at frequencies that are harmonically related to the characteristic
frequencies of the baseline separated system. The specific details of the forcing
frequencies and their relation to baseline characteristic frequencies are discussed in
the next section. In the simulations with SJ forcing, the time step employed is the
same as in the baseline simulations and the SJ velocity is set to VJ = 0.1U∞. The
blowing momentum coefficient of the jet is defined as

cµ =
ρV 2

J d

qc
= 2

d

c

(
VJ

U∞

)2

, (3.3)
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Figure 5. Baseline separated flow (Case 0) at Re = 6 × 104 obtained from two-dimensional
Navier–Stokes simulation on Grid II: (a) contours of instantaneous spanwise vorticity
(ωzc/U∞) at t = 20c/U∞. The plot also shows ‘probe’ locations where the time series of
cross-stream velocity v is recorded for spectral analysis. (b) Mean flow streamlines.

where q = ρU 2
∞/2 is the free-stream dynamic pressure, d is the SJ slot width and c

is the chord length. The choice of VJ =0.1U∞ fixed cµ to a value of 1.3 × 10−4. This
value of cµ is at least an order of magnitude lower than the lowest values used in the
experiments of Seifert et al. (1993, 1996), Amitay et al. (1997) and Chatlynne et al.
(2001). The simulations with SJ forcing are advanced for a total time of 15c/U∞, of
which the last 10 time units are used for the computation of time-mean flow statistics
discussed in § 4.2.

Next, the simulations of the baseline separated flow and flows with SJ forcing are
repeated at Re = 1 × 105 to investigate the effect of the Reynolds number on the
characteristic frequency scales and the response of the separated flow to SJ forcing
at this higher Reynolds number. All other simulation parameters are held at the
same values as in the simulations at Re =6 × 104. As before, the simulations at
Re = 1 × 105 are carried out on two different unstructured meshes to ascertain the
grid independency of the simulation results. The nominal grid (Grid II), used in the
Re = 6 × 104 simulations, is employed as the baseline grid to start the simulations
at Re = 1 × 105 and is subsequently refined to yield a finer Grid III which is the
nominal grid at this Reynolds number. The salient differences between these grids are
summarized in table 1.

4. Results and discussion
4.1. Baseline uncontrolled separated flow at Re= 6 × 104

4.1.1. Vortex dynamics and mean flow characteristics

Figure 5(a) shows the contours of instantaneous spanwise vorticity (ωzc/U∞)
computed at t =20c/U∞ on Grid II. The boundary-layer flow on the upper surface
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Case Grid fJ /f 0
lock F +

J = fJ c/U∞ S1 R1 Lsep Hsep

0 I None – 63.9 97.2 33.3 3.34
0 II None – 63.8 97.3 33.5 3.37
1 II 1/4 0.725 66.8 97.0 30.3 2.88
2 II 1/3 0.967 66.6 96.6 30.1 2.55
3 II 1/2 1.450 67.2 94.3 27.1 1.90
4 II 1 2.900 67.8 92.2 24.4 1.52
5 II 1.25 3.625 68.3 89.9 21.6 1.25
6 II 2 5.800 66.8 85.4 18.6 1.52
7 II 3 8.700 64.7 98.0 33.4 3.44
8 II 4 11.600 64.4 97.8 33.4 3.41

Table 2. Various cases simulated with SJ forcing of the baseline separated flow at Re =6×104

and VJ /U∞ = 0.1. Also included are the locations and sizes of the mean separation bubble
expressed as percentage of chord length c for these various cases.

of the airfoil loses momentum and thickens due to adverse pressure gradient induced
by blowing and suction on the top boundary of the computational domain. Unable
to overcome the pressure gradient, the retarded boundary-layer flow separates at
x/c =0.638. The inflection point that forms in the streamwise velocity profile at the
separation point moves farther away from the wall with downstream development,
resulting in an inviscid instability of the separated shear layer. As a consequence, the
shear layer directly rolls up into large vortices. When these large vortices are of some
size and strength, they pinch off from the shear layer and convect downstream and
interact with Kármán vortex shedding in the wake. As these vortices convect, they
entrain high-momentum fluid from the outer flow into the separated region close to
the wall. This yields a closed aft-chord separation bubble in the mean as portrayed
by the plot of mean streamlines shown in figure 5(b). Besides the distinct primary
separation and reattachment points, S1 and R1, respectively, the mean separation
bubble also shows secondary separation (S2) and reattachment (R2) of the reverse
flow driven by the roll-up of large vortices in the separated region. The streamwise
length of the mean separation bubble (Lsep) as measured from the primary separation
point S1 to the primary reattachment point R1 is 0.335c. The height of the mean
separation bubble (Hsep), defined as the maximum cross-stream distance between
the airfoil upper surface and the separating streamline (also called separatrix) is
0.0337c. The streamwise locations of primary separation and reattachment points,
their secondary counterparts, and the length and height of the mean separation
bubble have been obtained from the simulations at Re = 6 × 104 on Grids I and II
(see table 2), and they show excellent agreement with one another with a variability
of less than 1 % between them.

Figure 6(a) shows the comparison of mean pressure distribution 〈Cp〉 obtained
from two-dimensional Navier–Stokes simulations of Case 0 at Re = 6×104 on Grids I
and II. In this study, the coefficient of pressure Cp is defined as

Cp =
p − pref

q∞
, (4.1)

where p is the pressure on the airfoil surface, q∞ is the free-stream dynamic pressure
and pref is the reference pressure whose value is determined by requiring Cp = 1 at
the stagnation point. The plot shows a suction peak near the leading edge caused by
the acceleration of the flow around the elliptic section followed by a strong pressure
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Figure 6. Comparison of surface pressure and local skin-friction distribution on the airfoil
geometry obtained from two-dimensional Navier–Stokes simulations of Case 0 at Re = 6×104

on Grids I and II: −−−−, Grid I; �, Grid II.

recovery immediately downstream on the upper surface. The roll-up of the separated
shear layer into large vortices is manifested by the existence of a local low pressure
peak downstream of the plateau, followed by recovery to the value of base pressure
acting on the trailing face. On the lower surface of the airfoil, a favourable pressure
gradient exists over almost the entire length.

The distribution of streamwise local mean skin-friction coefficient 〈Cf 〉 on the airfoil
surface obtained for Case 0 on Grids I and II is plotted in figure 6(b). Throughout
this study, the streamwise local skin-friction coefficient Cf is defined as

Cf =
τw

q∞
= sgn(u)

µ

q∞

(
d|u|
dn

)
wall

, (4.2)

where τw is the wall shear stress, q∞ is the free-stream dynamic pressure, µ is
the viscosity and (d|u|/dn)wall is the normal derivative of the streamwise velocity
magnitude at the wall. With this definition, the change in the sign of Cf from positive
to negative and vice versa identifies locations of primary separation and reattachment,
respectively, except for a narrow region between the leading edge and the stagnation
point, wherein local streamwise direction of the attached flow is opposite in sense to
x direction. Highest levels of skin friction that occur near the leading edge owing to
local acceleration of the fluid around the elliptical section is not shown here. On the
lower surface of the flat plate, the skin-friction distribution has almost a constant
value. In the separated region on the upper surface, higher values of skin friction
are distinctly seen to be associated with the airfoil surface, between S2 and R1, that
is directly below the region of roll-up of the shear layer into large vortices. On the
contrary, the separated region between S1 and R2 is associated with very low values
of skin friction owing to the lower velocity of the recirculating fluid trapped in the
dead-air region between the airfoil surface and the separated shear layer. A drop in Cf

to zero value at x = 0.6 on the upper surface is an artefact arising from the presence
of SJ slot that is left open to the external crossflow in the baseline uncontrolled
simulations.

Figure 6 shows satisfactory grid convergence of the mean flow, particularly in the
unsteady separated region. This indicates that the resolution employed in Grid II is
reasonably satisfactory, and therefore we employ this grid for all of the subsequent
simulations and analysis. A more comprehensive presentation of the grid dependency
study for the baseline as well as forced flows can be found in Kotapati (2008).
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Figure 7. Temporal variations of cross-stream velocity v/U∞ in (a) the shear layer, (b) the
separation zone and (c) the wake for Case 0 at Re = 6 × 104.
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Figure 8. Power spectra corresponding to temporal variations of cross-stream velocity in
(a) the shear layer, (b) the separation zone and (c) the wake for Case 0 at Re = 6 × 104.

4.1.2. Unsteady characteristics

Time series of velocity components in the shear layer, separation zone and wake are
recorded by probing the flow field at locations shown by open circles in figure 5(a).
The temporal variations of cross-stream velocity v, at these probe locations is shown
in figure 7(a–c). These temporal variations indicate that the flow field has reached a
statistically stationary state in the time interval shown in these plots. The power spectra
Evv corresponding to these temporal variations are plotted in figure 8. Interestingly,
the spectra indicate that the shear layer, the separation zone, and the wake are
all locked on to a single frequency f 0

lockc/U∞ of around 2.9 corresponding to the
dominant peak in these plots, i.e.

f 0
lock = f 0

SL = f 0
sep = f 0

wake ≈ 2.9U∞/c.

In general, the presence of two or more basic frequencies (i.e. frequencies that are not
harmonically related or integer multiples/fractions of one another) in high-Reynolds-
number flows gives rise to sum and difference modes (Kourta et al. 1987) because
of nonlinear interactions and results in a broadband spectrum. However, the present
flow at Re = 6 × 104 appears to be dominated by a global instability and so the
spectra show one dominant peak at f c/U∞ = 2.9 and several superharmonic peaks
resulting from nonlinear interactions of this dominant mode with itself.

A number of questions arise regarding this lock-on state observed for the current
case. Firstly, has the system locked on to this single frequency due to nonlinear
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Figure 9. (a) Contours of instantaneous spanwise vorticity (ωzc/U∞) at t = 20c/U∞ (Contour
levels are the same as in figure 5), and (b) power spectra corresponding to temporal variation
of cross-stream velocity in the wake for unseparated flow (i.e. dp/dx =0) at Re = 6 × 104.

coupling mechanism or is this due to a coincidental match of the natural frequencies
of the three constituents of this flow? Secondly, if the lock-on is indeed a result of
nonlinear coupling, how does the system choose this particular frequency to lock-on
to? Does the lock-on frequency correspond to the natural frequency of one of the
constituents?

In order to gain further insight into these aspects of the flow we have carried
out a simulation of flow past the flat plate ‘without’ a separation bubble, i.e.
one in which the blowing–suction boundary condition at the top boundary of
the computational domain is replaced by slip wall. This simulation allows us to
determine the natural Kármán vortex shedding in the wake in the absence of the
separation bubble. Figure 9(a) shows the contours of instantaneous spanwise vorticity
for the case without the induced separation bubble and it clearly shows the presence
of a typical Kármán vortex street in the wake of the plate. The power spectrum
corresponding to the vertical component of velocity in the wake for this flow is shown
in figure 9(b) and this indicates that f n

wakec/U∞ ≈ 5.0. When this natural frequency
is renormalized by the width of the wake Wwake (Roshko 1954), which for this flow
is approximated by the plate thickness t , one obtains f n

wakeWwake/U∞ ≈ 0.25. This is
in line with the Strouhal number obtained for other bluff-body wakes. However the
shedding frequency in the natural wake is obviously significantly removed from the
system lock-on frequency of f 0

lockc/U∞ ≈ 2.9. Thus, the dynamics in the wake are
clearly modified due to the presence of the separation bubble. Interestingly, however,
renormalizing the wake vortex shedding frequency for Case 0 by the width of its
wake Wwake = t + Hsep , we find that f 0

wakeWwake/U∞ ≈ 0.24, which is quite close to
the value of 0.25 obtained for natural wake vortex shedding. On the other hand,
renormalization of the lock-on frequency using the free-stream velocity U∞ and
the length of the recirculation bubble Lsep associated with the separated region of
Case 0 yields f 0

sepLsep/U∞ ≈ 1. It has been demonstrated by Seifert et al. (1996)
that the most effective non-dimensional frequencies for forcing the separated region
and increasing the lift are also f Lsep/U∞ ≈ 1, thereby implying that the dominant
wavelength associated with the separated region is almost always comparable to
the streamwise length Lsep requiring control. Thus, the final lock-on state consists
of a separation bubble and wake that although locked onto the same frequency,
also simultaneously indicate that they adhere to their natural frequency scalings.
This also seems to imply that while the length of the separation bubble is primarily
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Figure 10. Contours of instantaneous spanwise vorticity (ωzc/U∞) for Cases 1–8 at
Re =6 × 104. Contours levels are the same as in figure 5.

determined by the dynamics of the separation bubble, its height, at least of this
aft-chord separation case, is affected significantly by the wake dynamics. The shear
layer, which can respond to frequencies in a broad range (Ho & Huerre 1984; Wu
et al. 1998) seems to lock on to the frequency that is chosen by the coupling between
the separation bubble and the wake.

4.2. Synthetic jet forcing of the separated flow at Re =6 × 104

In this section, the effect of forcing the baseline separated flow (Case 0) at Re =6×104

using an SJ actuator placed slightly upstream of the point of primary separation is
examined. The SJ actuator has a slot of width d = 0.0065c, flush-mounted normal
to the airfoil upper surface and centred at x/c = 0.6. The table 2 summarizes the
different cases that result from forcing the SJ actuator at the lock-on frequency and
some of its subharmonics and superharmonics.

4.2.1. Vortex dynamics

Figure 10(a–h) shows contour plots of instantaneous spanwise vorticity (ωzc/U∞)
obtained from two-dimensional Navier–Stokes simulations of Cases 1–8 at Re = 6 ×
104 on Grid II. Based on these plots, the response of the flows to SJ forcing can be
divided into three categories. The first category is the low-frequency response which
is observed for fJ /f 0

lock = 1/4, 1/3 and 1/2. Comparing these cases with the unforced
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flow (figure 5a), we note that the forcing seems to produce no noticeable change in
the formation/evolution of the vortex structures in the separation bubble or the wake.

On the other end of the spectrum is the response of the flow to high-frequency
perturbations which is characteristic of the cases with fJ /f 0

lock = 2, 3 and 4. The one
commonality between these cases is that the vortices shed from the shear layer into
the wake are quite large (larger than those for the unforced flow) and are formed by
the merger of two or more vortices emanating from the shear layer. The separated
shear layer for fJ /f 0

lock =2, 3 also shows a distinct roll-up into Kelvin–Helmholtz
(K–H) vortices whereas, for fJ /f 0

lock = 4, the vortices in the shear layer are less clearly
formed. It should be noted that linear stability analysis of the mean flow for Case 0
carried out by Kotapati et al. (2007) indicates that the preferred frequency for the
shear layer instability is 7.3U∞/c. Thus it is not surprising that forcing the shear
layer at close to these frequencies (fJ c/U∞ = 5.8 and 8.7) leads to the formation of
K–H vortices whereas forcing at a much higher frequency fJ c/U∞ = 11.6 produces
a diminished response. This issue is discussed in more detail when we examine the
temporal response of the forced flow.

The third type of response is the one that is observed for Cases 4 and 5
(fJ /f 0

lock =1, 1.25). For these two cases, we observe a significant flattening and
reduction in size of the vortices formed at the downstream end of the shear layer.
We also note that the separated shear layer stays closer to the plate surface and the
release of vortices from the separation bubble also occurs slightly further upstream
than all of the other cases.

4.3. Mean flow characteristics

Figure 11(a–h) shows mean streamlines obtained from two-dimensional Navier–
Stokes simulations of Cases 1–8 at Re =6 × 104 on Grid II. As observed in the
contour plots of instantaneous spanwise vorticity, mean streamlines show that forcing
the shear layer between the first subharmonic and the first superharmonic of the
lock-on frequency delays separation, and also reduces the length and height of the
mean separation bubble. It is important to note that SJ forcing at the baseline lock-on
frequency (Case 4) significantly reduces the size of the mean recirculation behind the
blunt trailing face and this has some implications for the pressure field which will be
discussed later. Of all the cases studied, Case 5 with forcing at 1.25f 0

lock shows the
largest reduction in the streamwise extent of reverse flow. The streamline patterns
corresponding to high-frequency forcing (Cases 7 and 8) indicate that the flow is
essentially uncontrolled and appears very similar to the baseline separated flow.

The mean pressure distribution on the airfoil surface obtained from two-dimensional
Navier–Stokes simulations of Cases 1–8 with SJ forcing is plotted in figure 12(a).
Also included in these plots is the pressure distribution for the baseline separated
flow of Case 0. SJ forcing of the separated flow at the baseline lock-on frequency
(Case 4) modifies the pressure distribution over the entire airfoil surface, an effect
that is probably associated with the noticeable reduction in the size of the mean
recirculation bubble immediately behind the blunt trailing face (see figure 11d ). With
an increase in the forcing frequency from Cases 1–4, a monotonic reduction in
the low-pressure peak and an increase in the rate of pressure recovery is noticed
in the separated region. The rate of pressure recovery over the airfoil surface from
which the boundary layer separates in the absence of control is a direct measure
of the success of separation control (Seifert & Pack 1999), and as such, it can be
used as a parameter in closed-loop ASC schemes. Case 5 with forcing at F +

J = 3.625
that resulted in the smallest mean separation bubble also has the highest rate of
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Figure 11. Mean streamlines for Cases 1–8 at Re =6 × 104.

pressure recovery in the separated region. Case 6 with forcing at F +
J = 5.8 shows the

earliest pressure recovery downstream of the pressure plateau. However, this recovery
decreases and forms a second plateau which is consistent with the development of
a secondary separation bubble close to the trailing edge, as is evident in the mean
streamline plot in figure 11(f ). The apparent ineffectiveness of control at higher
forcing frequencies (Cases 7 and 8) leaves the pressure distribution grossly unchanged
as compared to the pressure distribution of Case 0.

Next, the distribution of mean skin-friction coefficient on the suction side of the
airfoil surface for Cases 0–8 shown in figure 12(b) is examined. The streamwise
locations of the primary separation and reattachment points for the time-mean flow,
and the length of the mean separation bubble as measured by the distance between
the primary separation and primary reattachment points are summarized in table 2.
Also included is the maximum height of the mean separation bubble for Cases 1–8
determined by the streamline pattern for the mean flow. The table shows that with an
increase in the forcing frequency from Cases 1–5, the length of the separated region,
measured as the streamwise extent over which 〈Cf 〉 < 0, decreases monotonically.
Lack of control effectiveness in Cases 7 and 8 leads to very little change in the
skin-friction distribution as compared to the baseline separated flow.

Another means of assessing the effectiveness of the control and reduction in
separation bubble size is to examine the displacement thickness δ∗ of the flow for
the various cases. In the current flow, we compute the displacement thickness for the
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Figure 12. (a) Pressure 〈Cp〉, (b) skin-friction coefficient 〈Cf 〉 and (c) displacement thickness

δ∗, distribution on the airfoil surface for Cases 0–8 at Re = 6 × 104. −−−, Case 0 (no forcing);
- - - -, Case 1 (fJ = f 0

lock/4); −·−, Case 2 (fJ = f 0
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Case 4 (fJ = f 0
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lock/4); ◦−−−◦, Case 6 (fJ = 2f 0
lock); �−−−�, Case 7

(fJ = 3f 0
lock); �−−−−�, Case 8 (fJ =4f 0

lock).

mean flow as follows:

δ∗(x) =

∫ ymin<y=y|ue �ymax

y=ymin

(
1 − u(x)

ue(x)

)
dy, (4.3)

where ymin is the y-coordinate on the airfoil surface, ymax is the y-coordinate where
the streamwise velocity profile at the most downstream location on the flat plate
(i.e. x = c) has its maximum, ue is the boundary-layer edge velocity defined as
ue(x) = max{u(x, ymin < y � ymax)}, and y|ue

is the y-coordinate at which u = ue. This
redefiniton of the upper limit of the integrals from the standard form y → ∞
is necessary because u 
= U∞ as y → ∞ owing to the blowing–suction boundary
condition applied at the top boundary.

The streamwise variation of the computed displacement thickness for Cases 0–8, is
plotted in figure 12(c). In general, the larger the mean separation bubble, the larger is
its displacement thickness. The separation bubble with smallest Hsep , resulting from
SJ forcing at F +

J = 3.625 in Case 5, has the lowest displacement thickness in the
separated region. Cases 7 and 8, for which the forced flow is essentially uncontrolled,
have a very similar variation of displacement thickness as the baseline separated flow
of Case 0.

4.4. Temporal response and lock-on in forced flow

Studying the temporal response of the flow to SJ forcing can provide further insight
into the nonlinear interactions and the resulting vortex dynamics. We examine this
response by extracting the temporal variation of velocity at three distinct locations in
the flow on the upper surface of the plate. The locations are denoted by open circles in
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Figure 13. Power spectra corresponding to the temporal variations of cross-stream velocity
in (a) the shear layer, (b) the separation zone and (c) the wake for Case 2 (F+

J = 0.97) at

Re = 6 × 104.

figure 5(a). The first location is in the shear layer downstream of the mean separation
point but upstream of the locations where the vortices roll up into the separation
bubble. The second point is at the downstream end of the separation bubble where
vortices that roll up in the separation bubble are released. The third location is in
the wake at a point which is vertically aligned with the lower surface of the plate. It
should be noted that these three locations are to be considered representative of the
shear layer, separation bubble and wake dynamics and as such, other locations in the
local vicinity of these points also indicate similar behaviour.

We begin this analysis by focusing on the power spectra of the cross-stream velocity
v for three cases, namely Cases 2, 5 and 8, in figures 13–15, respectively. These three
cases are considered to be representative of the flow response to low, medium and
high-frequency SJ forcing, and thus a detailed analysis of these cases sets the stage
for us to describe the overall behaviour of the flow.

The spectrum in figure 13 corresponds to Case 2, for which F +
J = 0.97. The

plots show that the separation bubble and wake do not respond to the low-
frequency perturbation and continue to oscillate at the baseline lock-on frequency
of f 0

lock = 2.9U∞/c. On the other hand, the shear layer responds by shifting its most
energetic time scale to a frequency of f 0

SL = 3.88U∞/c which is equal to 4F +
J . Thus

for this low-frequency perturbation, the shear layer locks-on to a superharmonic
of the forcing frequency. It should however be noted that while the perturbation
provided is 1/3 of the natural lock-on frequency, the shear layer response is not at
3F +

J . This indicates a degree of decoupling of the shear layer dynamics from that of
the separation bubble and the tendency of the shear layer to respond at frequencies
that are closer to it natural frequency of f n

SLc/U∞ ≈ 7.3. Also worth pointing out
is the fact that despite the increase in the most energetic frequency of the shear
layer, the separation bubble and wake maintain the response at the unforced lock-on
frequency. This indicates that the shear layer has limited influence on the dynamics of
the separation bubble and wake. The response of this case is representative of Cases 1
and 3 which are not discussed in detail here but the data for which is provided in the
lock-on diagrams to be shown later.

Figure 14 shows the response of the flow for Case 5 for which F +
J = 3.625. This

frequency is close to the system lock-on frequency of 2.9U∞/c and for this case,
we find that all three flow constituents lock-on to the forcing frequency. A similar
response is also observed for Case 4 where the system is forced at its natural lock-on
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Figure 14. Same as figure 13 for Case 5 (F+
J =3.625).
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Figure 15. Same as figure 13 but for Case 8 (F+
J =11.6).

frequency. Figure 15 shows the response of the flow for F +
J = 11.6 which is four

times the natural lock-on frequency. For this case we find that the shear layer shows
the largest response at the forcing frequency. This is despite the fact that the most
unstable frequency of the shear layer as determined by linear stability theory in
Kotapati (2008) is f n

SLc/U∞ ≈ 7.3 which is substantially lower than forcing frequency.
This confirms the notion that the shear layer can respond over a broad range of
frequencies surrounding its own natural frequency. In contrast, the separation bubble
and the wake revert to the natural lock-on frequency of f c/U∞ ≈ 2.9. This type of
response wherein the shear layer locks onto the fundamental frequency of forcing
and the separation bubble and wake retain their natural lock-on frequencies is also
found for Cases 6–8.

The response observed for all the cases simulated in the current study are
summarized in the frequency lock-on diagrams presented in figure 16. In addition
to the eight forced cases described in detail in this section, we have also simulated
six additional cases for the express purpose of filling different regions of the lock-on
diagram. These cases have SJ frequencies corresponding to F +

J =2.175, 2.5375, 3.48,
3.7, 4.35 and 6.525. In figure 16(a–c), the non-dimensional response frequencies in the
shear layer, separated region and wake (denoted by f r

SL, f r
sep and f r

wake , respectively) are
plotted as functions of the non-dimensional forcing frequency using linear scales along
the abscissa and the ordinate. These lock-on diagrams are also reformulated in terms
of subharmonic and superharmonic of the natural lock-on and forcing frequencies
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Figure 16. Frequency lock-on diagram for the forced cases at Re = 6 × 104. Response of
(a) shear layer, (b) separation bubble and (c) wake to SJ forcing at different frequencies. The
horizontal and vertical dotted lines correspond to the natural lock-on frequency f 0

lock . The
oblique dashed lines in these plots denote lock-on to subharmonic (1/2), harmonic (1) and
superharmonics (2, 3, 4, 5) of the forcing frequency. (d ) Lock-on plot for all three constituents
expressed in terms of superharmonics and subharmonics.

and presented in figure 16(d ). These plots indicate a number of interesting behaviours
which are now described in detail.

Firstly, there are a number of regions in the forced response where one or more
constituents of the flow lock-on to the fundamental forcing frequency, a situation we
term as ‘harmonic lock-on’. In particular, the shear layer shows the largest range of
lock-on from fJ = 1.25f 0

lock to 4f 0
lock which is the highest forcing frequency employed

in the current study. The separation bubble shows the next largest region of harmonic
lock-on from fJ = f 0

lock to 2f 0
lock . Finally, the wake shows the smallest region of

harmonic lock-on which extends from fJ = 0.9f 0
lock to 1.25f 0

lock . Interestingly, there is
only a very small region centred around fJ = 1.25f 0

lock where all three constituents
show a harmonic lock-on. The most obvious effect of such a perfect frequency lock-on
in the forced flow is the absence of sum and difference modes owing to the presence
of only one basic frequency in the system. This results in a well-organized vortical
flow, as was also observed previously by Wu et al. (1998).

It is also interesting that whereas the unforced flow exhibits lock-on of all three
constituents at f 0

lock , the lock-on for the forced flow occurs at 1.25f 0
lock . In fact, forcing

at fJ = f 0
lock leads to a situation where the wake and separation bubble lock on to the
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forcing frequency whereas the shear layer shifts its response to the first superhamonic
of the forcing frequency, i.e. 2fJ . This by no means violates the flow physics since
the perturbation being provided by the SJ is not infinitesimal and the nonlinear
interaction allows the system to jump to a different lock-on state despite the fact that
the forcing frequency is the same as the natural lock-on frequency.

In addition to the small region where all three constituents of the forced flow
exhibit harmonic lock-on, there are regions where only two constituents concurrently
show harmonic lock-on. For instance, in the region from fJ = f 0

lock to 1.25f 0
lock , both

the separation bubble and the wake show harmonic lock-on whereas in the region
from fJ = 1.25f 0

lock to 2f 0
lock , the shear layer as well as the separation bubble show

harmonic lock-on. For high-frequency forcing, the flow also exhibits a range beyond
fJ = 2f 0

lock where only the shear layer exhibits harmonic lock-on whereas both the
separation bubble and wake revert to the undisturbed lock-on frequency. Locking-in
of the shear layer to the forcing frequency for high-frequency forcing at fJ = 3f 0

lock

and 4f 0
lock (Cases 7 and 8) leads to the amplification of K–H type instabilities and

subsequent roll-up of the shear layer into discrete vortices. Since the forcing frequency
at which the shear layer undergoes discretization is now at least twice as large as the
baseline lock-on state that continues to persist in the separated region, the shear layer
vortices undergo subharmonic pairing in order to reduce their characteristic frequency
to that imposed by the separated region. Given the separation in the time scales of
the shear layer and the separation bubble, the coalescence of small vortices into
larger ones takes place in an almost stationary manner, setting up a strong localized
reverse flow that further deteriorates the separated region and rendering SJ forcing
ineffective. However, as discussed by Wu et al. (1998), these large vortices formed by
the coalescence of smaller K–H type vortices can be used beneficially to enhance lift
on post-stall airfoils as these lifting vortices carry more favourable circulation above
the airfoil surface with a low-pressure core than even attached boundary layers at such
high angles of attack. A final note regarding the high-frequency forcing is that both
the separation bubble and the wake show a tendency to lock on to the subharmonic
of the forcing frequency (1/3fJ and 1/4fJ for Cases 7 and 8, respectively). In keeping
with the terminology used here, this can be termed as ‘subharmonic lock-on’.

The response at forcing frequencies below the natural lock-on frequency is
considerably more complicated. Whereas the wake seems to decouple from the
forcing frequency and lock on to its unforced shedding frequency of f 0

lock , the
separation bubble and shear layer lock on to the superharmonics of the forcing
frequency, a state we term as ‘superharmonic lock-on’. In particular, the forcing
frequency fJ = (f 0

lock, f
0
lock/2, f 0

lock/3, f 0
lock/4) maps to shear layer response fSL = (2fJ ,

3fJ , 4fJ , 5fJ ) respectively. Given the relatively high natural frequency of the shear
layer, the tendency of the shear layer to lock-on to high superharmonics of low
forcing frequencies is not surprising. For low-frequency forcing, the resulting shear
layer frequency is always less than twice the frequency of the separated region. This
means that discrete vortices (if any) resulting from the amplification of K–H instability
in the shear layer do not undergo subharmonic pairing as they convect downstream.
Instead, the shear layer either directly rolls up into large vortices in the separated
region or undergoes discretization into small vortices whose wavelength increases
(frequency decreases) to a value imposed by the separated region as they convect
downstream. These dynamic effects are consistent with the vortex dynamics observed
in figure 10(a–c) and with previous observations of Seifert et al. (1996) in airfoil flows.

Thus the primary conclusion from examining the temporal response is that the
flow does not respond in a smooth and continuous manner to forcing at different
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Figure 17. Baseline separated flow (Case 0) at Re = 1 × 105 obtained from two-dimensional
Navier–Stokes simulation on Grid III: (a) contours of instantaneous spanwise vorticity
(ωzc/U∞) at t = 20c/U∞. Contours levels are the same as in figure 5. (b) Mean flow streamlines.

frequencies. Instead the response is characterized by the appearance of well-defined
and distinct subharmonic, harmonic and superharmonic lock-on states. While the
final state of the flow is determined by complex nonlinear interactions between
the constituents of the flow, the linear response of each constituent also has some
influence on this final state. Thus, for instance, the receptivity of the shear layer
to high-frequency forcing is directly related to its linear response which naturally
occurs at high frequencies. Similarly, the wake tends to have a limited response to SJ
perturbations and is governed primarily by its own global instability mechanism.

5. Effects of the Reynolds number
The Reynolds number is one of the key parameters in this flow. Whereas the

natural frequency of the shear layer depends directly on the Reynolds number, this
is not the case for the separation bubble and the wake, and therefore changing the
Reynolds number should have an effect on the lock-on phenomena observed in this
flow. As such we have carried out an additional set of simulations at a significantly
higher Reynolds number of 1 × 105. The objective of these simulations is to examine
the extent to which the general observations made regarding the temporal response
of this flow at the lower Reynolds number are valid for this higher Reynolds number.
Both unforced and forced flow configurations are computed at this Reynolds number
and the key observations are described briefly. Simulations at this Reynolds number
were carried out on Grids II and III. The salient results were found to be quite
insensitive to the grid and the results shown here correspond to Grid III.

Figure 17 shows contours of instantaneous spanwise vorticity (ωzc/U∞) at
t = 20c/U∞ and mean streamlines for the uncontrolled separated flow (Case 0) at
Rec =1 × 105. The flow field at this higher Reynolds number appears qualitatively
very similar to that at Rec = 6 × 104, with the separated shear layer directly rolling up
into large vortices without any subharmonic pairing of smaller vortices. The resulting
closed mean separation bubble shows distinct primary separation and reattachment
points (S1 and R1) as well as secondary separation and reattachment points (S2 and
R2) induced by vortex roll-up. The location and size of the mean separation bubble
obtained for this Case 0 on Grid III is shown in table 3. In general, the separation point
on a continuous surface moves downstream with increase in Rec owing to increased
inertia. However, a comparison of the data for Case 0 in table 3 with those obtained
at Rec = 6 × 104 (see table 2) indicates that, with the chosen flow configuration, fixing
the amplitude and the cross-stream distance of the blowing–suction velocity profile
from the airfoil surface to the same values while only increasing Rec induces earlier
suction leading to slightly earlier separation. Notwithstanding this earlier separation,
the length and the height of the mean separation bubble reduce by 15 % and 30 %,
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Case fJ /f 0
lock F +

J = fJ c/U∞ S1 R1 Lsep Hsep

0 None – 63.0 91.6 28.6 2.35
1 1/4 0.95 67.9 90.9 23.0 1.07
2 1/3 1.27 67.9 90.5 22.6 0.91
3 1/2 1.9 68.2 88.2 19.9 0.78
4 1 3.8 68.8 84.2 15.4 0.55
5 2 7.6 69.0 83.9 14.9 0.53
6 3 11.4 64.2 93.1 28.9 2.44
7 4 15.2 63.7 91.9 28.2 2.34

Table 3. Various cases with ZNMF forcing of the baseline separated flow at Rec =1 × 105

and VJ /U∞ =0.1. Also included are the locations and sizes of the mean separation bubble
expressed as percentage of chord length c for these various cases computed on Grid III.
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Figure 18. Power spectra corresponding to temporal variations of cross-stream velocity in
(a) the shear layer, (b) the separation zone and (c) the wake from simulation of Case 0 at
Rec = 1 × 105.

respectively, as Rec increases from 6 × 104 to 1 × 105. This reduction in the size
of the mean separation bubble with increase in Rec is attributed to the decrease in
displacement and momentum thicknesses of the shear layer that rolls up to form large
vortices which in turn define the extent of the separated region.

The power spectra corresponding to temporal variations of the cross-stream velocity
v in the shear layer, the separated region, and the wake obtained for Case 0 at
Rec = 1 × 105 on Grid III are shown in figure 18. While the spectra for Case 0 at
Rec = 6×104 indicated that the entire system was locked on to a single frequency, the
spectra at Rec = 1×105 indicate that while the shear layer and separation region show
lock-on, the wake shedding is not locked on to either one of them. This difference from
the Rec =6 × 104 case is likely due to the fact that in this higher Reynolds number
case, the separation bubble closes further upstream of the wake and therefore the
separation bubble does not get influenced by the wake to the same extent as it does
for the previous case. From the spectra in figure 18, one determines

f 0
lock = f 0

SL = f 0
sep = 3.8U∞/c and f 0

wake = 3.05U∞/c.

Renormalizing the frequency f 0
sep by the characteristic length Lsep of its mean

separation bubble yields f 0
sepLsep/U∞ ≈ 1, again confirming that fsep scales with

the characteristic length of the separation bubble. Similarly, when the wake vortex
shedding frequency for Case 0 is renormalized by the wake width Wwake = t + Hsep ,
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Figure 20. Mean streamlines for selected cases at Rec = 1 × 105.

one finds that f 0
wakeWwake/U∞ ≈ 0.22. This value closely agrees with the value of 0.24

obtained for Rec = 6 × 104, indicating that the simple definition of the characteristic
width as Wwake = t + Hsep works quite well for the current flow.

The uncontrolled baseline separated flow at Rec = 1 × 105 is now subjected to SJ
forcing at the frequencies indicated in table 3. Figure 19(a–d ) shows contours of
instantaneous spanwise vorticity obtained for some selected cases on Grid III at
t = 35c/U∞. The vortex dynamics at this higher Rec is qualitatively very similar to
that at Rec = 6 × 104, with the separated shear layer responding favourably to SJ
forcing in Cases 1–5. In particular, SJ forcing in Cases 4 and 5 result in a train
of evenly spaced vortices close to wall that continuously sweep the low-momentum
fluid off the surface and enhance mixing with the outer flow. On the other hand, as
previously observed at Rec = 6 × 104, forcing at fJ � 3f 0

lock in Case 6 (as well as
Case 7 not shown in the figure) essentially leaves the flow uncontrolled because of
subharmonic pairing of K–H type vortices in the separated shear layer.

Mean streamlines obtained at Rec = 1 × 105 on Grid III are plotted for some
selected cases in figure 20(a–d ). In going from Case 1 to Case 5, the size of the mean
separation bubble diminishes monotonically with increase in the forcing frequency.
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Figure 21. Frequency lock-on diagram for the forced cases at Re = 1 × 105.

However, streamlines for Case 6 (as well as Case 7 not shown here) indicate that
SJ forcing in these cases is ineffective, resulting in a similar separation bubble as in
Case 0, complete with secondary separation induced by the reverse flow. The location
and size of the mean separation bubble obtained for Cases 1–7 at Rec =1 × 105 are
summarized in table 3.

As with the previous case, we have examined the frequency spectra in the various
regions of this flow to determine the response frequencies for the shear layer,
separation region and the wake. Figure 21 shows the lock-on map constructed
from these spectra and we can see immediately that the overall behaviour has
similarities to the previous case. At high forcing frequencies, the shear layer locks on
to the forcing frequency itself whereas the separation bubble and wake do not. In
fact, the wake again shows evidence of subharmonic lock-on by locking on to (1/5)th
of the forcing frequency when the forcing frequency is 4f 0

lock . There is a range that at
least extends between fJ = f 0

lock and fJ = 2f 0
lock where the separation bubble locks on

to the forcing frequency, and it is at the higher end of this range that the maximum
reduction in separation is observed. At lower forcing frequencies, both the separation
bubble and the shear layer lock on to the superharmonics of the forcing frequency.
Note that as before, the tendency of the separation bubble and the shear layer is to
select high superharmonics such that their response frequency ends up being higher
than f 0

lock . For instance, for forcing at 1/2f 0
lock and 1/4f 0

lock the shear layer locks on
to 4fJ , and 6fJ , respectively. Similarly, for forcing at 1/2f 0

lock , 1/3f 0
lock and 1/4f 0

lock

the separation bubble locks on to 3fJ , 4fJ and 5fJ , respectively. In the case of the
shear layer, this is clearly due to the fact that the natural frequency of the shear layer
is significantly higher than f 0

lock and thus the forced shear layer naturally locks on to
higher frequencies if possible. In the case of the separation bubble, the lock-on to high
frequencies is at least partially tied to the fact that the forcing tends to reduce the
length scale of separation bubble which decreases the time scale of this constituent
of the flow. The fact that the lock-on states are much more dramatic for the lower
Reynolds number is probably because of the smaller scale separation between the
various components at this Reynolds number than at the higher Reynolds number.
As the Reynolds number is increased, the time scale associated with the shear layer
decreases whereas the time scales associated with the separation bubble and the
wake stay relatively independent of the Reynolds number. Thus the scale separation
between the shear layer and the other two components increases for fixed separation
bubble size and location. This would tend to modify, and in some cases mitigate these
lock-on phenomena.
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6. Conclusions
A novel flow configuration has been proposed to investigate SJ-based separation

control in canonical separated airfoil flows. These flows are generally characterized
by distinct frequency scales corresponding to the shear layer instability fSL, the
unsteadiness in the separated region fsep and the vortex shedding in the wake fwake.
The proposed configuration attempts to reproduce this behaviour in a simpler more
easily studied flow. In this configuration, separation is induced on the upper surface
of a flat plate with an elliptic leading edge and a blunt trailing edge, by inducing an
adverse pressure gradient on the top surface of the plate. Unlike an actual airfoil, the
current configuration allows prescription of the location and extent of the separation
bubble in a manner which is fairly independent of parameters such as AOA and the
Reynolds number. This allows us to study the nonlinear dynamics of separated airfoil
flows in a way that eliminates many confounding variables.

Highly resolved two-dimensional Navier–Stokes simulations have been carried out
for this canonical separated flow with the focus being on studying the dynamics of
aft-chord separation. The effect of the forcing frequency on the associated separation
control is studied systematically in order to determine the effective frequencies for
SJ forcing and the nonlinear interactions between the various constituents of this
flow. Simulations of the baseline uncontrolled flow for this particular case at a chord
Reynolds number Rec of 6 × 104 indicate that the entire system, comprising of the
shear layer, the separation zone and the wake, is locked on to a single frequency of
f 0

lockc/U∞ = 2.9. In this separated flow, it was found that f 0
sepLsep/U∞ ≈ 1, where Lsep

is the characteristic length of the mean separation bubble, and f 0
wakeWwake/U∞ ≈ 0.24,

where Wwake is the characteristic width of the wake. Kotapati (2008) used linear
stability analysis of the mean flow to estimate the natural frequency of the shear
layer to be 7.3U∞/c, whereas the natural wake frequency (in the absence of the
separation bubble) was determined to be 5.0U∞/c. The fact that the separated
flow locks on to a frequency corresponding to 2.9U∞/c, clearly demonstrates that
nonlinear interactions play a crucial role in determining the dynamics of this
flow.

The separated flow at Rec = 6 × 104 is subjected to periodic forcing in the region
slightly upstream of the separation point using an SJ actuator embedded on the airfoil
upper surface. The forcing frequencies cover a range from one-forth to four times
the baseline lock-on frequency f 0

lock . Spectral analysis of the forced flow shows that
the flow does not respond in a smooth and continuous manner with variation in the
forcing frequency. Instead, the response is characterized by the appearance of distinct
lock-on states in the three constituents of the flow. These lock-on states usually involve
one or more constituents of the flow locking onto either the forcing frequency or its
subharmonics or superharmonics. Thus, a number of different lock-on states can be
found for the forced flow. It should be noted that while the final state of the flow
is determined by complex nonlinear interactions between the flow constituents, the
linear response of each constituent also has some influence on this final state. Thus,
for instance, the receptivity of the shear layer to high-frequency forcing is directly
related to its linear response which naturally occurs at high frequencies. Similarly, the
wake tends to have a limited response to SJ perturbations and is governed primarily
by its own global instability mechanism. Simulations of both the unforced and forced
flow conducted at a higher Reynolds number of 1 × 105 indicate similar lock-on
regimes. However, given the variety of lock-on states available to this flow, the flow at
these two Reynolds numbers do not show exactly the same lock-on states at similar
forcing frequencies. The conclusion in this regard is that although the Reynolds
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number modulates the lock-on behaviour (as expected), the general tendency of the
flow to exhibit well-defined lock-on states remains unchanged.

At both Reynolds numbers, the most effective separation control, as measured by
the extent of the mean separation bubble, occurs at the highest forcing frequency
for which both the shear layer and the separated region are able to lock on to the
fundamental forcing frequency. Note that although for the current flows, the most
effective lock-on frequency ranged from 1.75f 0

lock to 2.0f 0
lock , there is no reason to

expect that this range could not be larger for different flows. In the current study,
high-frequency forcing results in the formation of a train of K–H vortices which
undergo vortex merger to form a large separation bubble vortex which renders the
SJ forcing ineffective and sometimes even counter productive.

The current study provides insights that have clear implications for active control
of separated airfoil flows. It is found that (i) the nonlinear interactions play a key role
in determining the final stationary state of these flows; (ii) the stationary state usually
involves some type of lock-on between one or more constituents of the flow; (iii) the
variation in any governing parameter of the flow (which may include the Reynolds
number, the location and size of separation as well as the forcing frequency) can lead
to the flow jumping from one lock-on state to another; (iv) the objective of separation
control therefore should be to make the system jump from its natural lock-on state
to one that is most desirable (from the view of reduced separation), and do so with
the least amount of input energy.

A number of caveats regarding the study need to be kept in mind. Firstly, the
simulations are two-dimensional and therefore three-dimensional effects, including
turbulence are not included. A limited set of three-dimensional large-eddy simulations
of the same flow (Kotapati 2008; Kotapati et al. 2008) however indicate that the
essential nonlinear dynamics of the two-dimensional flow are retained even in the
presence of three dimensionality. Furthermore, experiments (which include three-
dimensional effects) with an actual airfoil at Re =1 × 105 by Tian, Cattafesta &
Mittal (2006) also show the presence of nonlinear coupling between the shear layer
and the separated wake region. Despite this experimental and computational evidence,
it is possible that three-dimensionality could modulate the nonlinear interactions
between the different constituents of the flow in ways that are not apparent in a
two-dimensional study. Secondly, although we have attempted to cover a wide range
of forcing frequencies, the frequency range, especially on the high end, is limited by
the expense of these simulations. It is possible that there are other effects (such as
virtual aero-shaping) that might appear at much higher frequencies. Similarly, we have
limited ourselves to one actuator location (with respect to the separation point) and
one location of the separation bubble. Thus, many more configurations are possible
and indeed worth investigating since they represent different types of flow separations.
Some of the above configurations and effects can be investigated using simulations
but experiments probably offer the most practical way of addressing these effects in a
comprehensive manner. Finally, while the current configuration does serve as a useful
canonical model of separated airfoil flows, there are some clear differences between
the two configurations. Thus, it is highly desirable that the studies of this canonical
configuration be augmented by studies of actual airfoil flows.
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