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Abstract- This paper treats the question of adaptive
control of a biorobotic autonomous underwater vehi-
cle (BAUV) in the yaw plane using biologically-inspired
pectoral-like fins. The fins are assumed to be oscillating
harmonically with a combined linear (sway) and angular
(yaw) motion. The bias (mean) angle of the angular mo-
tion of the fin is used as a control input. Oscillatory fins
produce periodic time-varying control forces and mo-
ments. It is assumed that the physical parameters, the
hydrodynamic coefficients, and the fin force and moment
are not known to the designer. Using a discrete-time state
variable representation of the BAUV, an adaptive sam-
pled data control system for the trajectory control of the
yaw angle using state feedback is derived. The param-
eter adaptation law is based on the normalized gradient
scheme. In the closed-loop system, time-varying yaw an-
gle reference trajectories are tracked and all the signals
in the closed-loop system remain bounded. Simulation
results for the set point control and sinusoidal trajectory
tracking are presented, which show that the control sys-
tem accomplishes precise trajectory control in spite of
the parameter uncertainties, and the inter sample seg-
ments of the yaw angle trajectory remain close to the
discrete-time reference trajectory.

I. INTRODUCTION

Aquatic animals have splendid ability to move smoothly
through water using a variety of control surfaces for propul-
sion and maneuvering [1, 5, 16, 23, 24]. Increasing demand
for efficient maneuvering of autonomous underwater vehi-
cles has led researchers to investigate the potential for in-
corporating control surfaces resembling those of biological
systems. As such presently there exists considerable inter-
est in designing flapping foils for propulsion and control of
BAUVs [ 2, 3, 4, 10, 19].

Several studies have been conducted on fish morphology,
locomotion, and application of biologically inspired control
surfaces for the control of AUVs [ 10, 20, 24, 25]. Labo-
ratory experiments have been performed to measure forces
and moments produced by oscillating foils [ 4, 8, 20, 25].
These experimental results confirm that pectoral fins under-
going simultaneous lead-lag, feathering, and flapping mo-
tions have the ability to produced large lift, side force, and
thrust, which can be used for the propulsion and control of
AUVs. Attempts have also been made to characterize the
forces and moments produced by oscillating fins using com-
putational methods [ 11, 14, 22]. An analytical representa-
tion of unsteady hydrodynamics of flapping foils has been
obtained using Theodorsen theory [7].

An oscillating fin propulsion control system using
neural network has been developed and tests have been
performed [25]. The guidance and control of a fish robot
equipped with mechanical pectoral fins has been considered
and rule-based fuzzy control system has been tested in
laboratory experiments [ 8, 9]. An adaptive control law
for the control of undersea vehicles using dorsal fins have
been considered, in which the control force is generated
by cambering the fin [12]. The optimal and inverse control
laws have been designed for regulation, and depth and
yaw angle trajectory control using mechanical pectoral
fins [ 17, 13]. For the derivation of these control laws,
a parameterization of periodic fin forces using the CFD
analysis has been obtained. But the pectoral fin control
laws of [17] and [13] have been derived on the assumption
that the model parameters are completely known. This
is rather a stringent requirement since, in a real case, the
vehicle parameters and the hydrodynamic coefficients are
not precisely known. Especially the precise knowledge
of the forces and moments of unsteadily moving foils is
extremely difficult. Furthermore, the parameterization of
the fin forces using the Fourier series of [17] and [13]
depends on the order of truncation of the Fourier expansion,
and as such different input matrices are obtained as the
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additional harmonic functions are included in the series
representation. Apparently, it is important to design control
systems for the control of AUVs using oscillating foils in
the presence of parametric uncertainties.

The contribution of this paper lies in the design of an
adaptive control system for the yaw plane maneuvering of
a biorobotic AUV using biomimetic mechanism resembling
the pectoral fin of fish. The pair of fins attached to the AUV
are assumed to undergo combined oscillatory linear (sway)
and angular (yaw) motion, and consequently generate pe-
riodic forces and moments. In this paper, the bias (mean)
angle of the yaw motion of the fin is treated as a control
variable. The model of the AUV considered here is similar
to that of [17] and [13], in which the fin forces and mo-
ments are parameterized using computation fluid dynamics
(CFD) analysis. For the purpose of design, it is assumed that
the vehicle’s physical parameters, the hydrodynamics coef-
ficients, and the fin forces and moments are not known. It
may be pointed out that the control laws [17] and [13] have
been developed by assuming that the systems parameters are
completely known. A discrete-time model of the vehicle is
obtained and a sampled-data adaptive control law is derived
for the trajectory control of the yaw angle. Unlike the deriva-
tion of [17] and [13], the control law is independent of the
number of harmonics retained in the truncated Fourier ex-
pansion of the fin force and moment. The adaptation law
for tuning the controller parameters is derived using the nor-
malized gradient method. In the closed-loop system, the yaw
angle asymptotically tracks time-varying reference trajecto-
ries, and all the signals in the closed-loop system remain
bounded. Simulation results for the set point and sinusoidal
trajectory control are presented. These results show that the
adaptive control system accomplishes precise yaw angle tra-
jectory control in spite of the parameter uncertainties, and
the yaw angle trajectory remains close to the discrete refer-
ence trajectory between the sampling periods.

The organization of the paper is as follows. The AUV
model and the problem formulation are presented in Section
II. An adaptive law for yaw angle control is derived in Sec-
tion III, and Section IV presents the simulation results.

II. AUV MODEL AND CONTROL PROBLEM

Figure 1 shows the schematic of a typical AUV. Two
fins resembling the pectoral fins of fish are symmetrically
attached to the vehicle. The vehicle moves in the yaw plane
(XI − YI plane), whereOIXIYI is an inertial coordinate
system.OBXBYB is body-fixed coordinate system with its
origin at the center of buoyancy.XB is in the forward direc-
tion. Each fin has two degrees of freedom (sway and yaw)
and oscillates harmonically.

A. Fin force and moment
We assume that the combined sway-yaw motion of the

fin is described as follows:

δ(t) = δmsin(2πft)

θy(t) = β + θymsin(2πft + ν) (1)

Figure 1:AUV model with pectoral fins

whereδ andθy correspond to sway and yaw angle of the fin,
δm andθym are the amplitudes of linear and angular oscilla-
tions,β is the bias (mean) angle,f (Hz) is the frequency of
oscillations, andν is the phase difference between the sway
and yaw motion. Based on the CFD analysis, it has been
shown in [17] and [13] that the periodic lateral force(fy)
and yawing moment(my) generated by the oscillating fin
can be described by the Fourier series given by

fy(t) =
N

∑

n=0

[fs
n(β)sin(nωf t) + fc

n(β)cos(nωf t)]

my(t) =
N

∑

n=0

[ms
n(β)sin(nωf t) + fc

n(β)cos(nωf t)] (2)

wherefa
n and f b

n, a ∈ {s, c} are the Fourier coefficients,
and N is an arbitrarily large integer such that the neglected
harmonics have insignificant effect. (The control law de-
signed here does not depend on N.) The Fourier coefficients
are nonlinear functions of the bias angle. Assuming thatβ
is small, fin force and moment can be approximated as (k =
1,2,3.....).

fa
k (β) = fa

k (0) + (
∂fa

k (0)

∂β
)β

ma
k(β) = ma

k(0) + (
∂ma

k(0)

∂β
)β (3)

where a∈ {s, c}. Defining a vectorφ(t) of sinusoidal signals

φ(t) = [1, sinωf (t), cosωf (t), ......, sinNωf (t), cosNωf (t)]T

∈ R2N+1 (4)

and using (2) - (4), one obtains

fy(t) = φT (fa + βfb)

my(t) = φT (ma + βmb) (5)

wherefa, fb, ma, andmb are approximate vectors, which
can be obtained from (2) and (3).
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B. Yaw Dynamics
We assume that vehicle’s forward speedU is held con-

stant by some control mechanism. The equations of motion
of a neutrally buoyant vehicle is described by Fossen [6]

m(v̇+Ur+XGṙ−YGr2) = Yṙ ṙ+(Yv̇ v̇+YrUr)+YvUv+Fy

Iz ṙ + m(XGv̇ + XGUr + YGvr) = Nṙ ṙ + (Nv̇ v̇

+NrUr) + NvUv + My

ψ̇ = r (6)

whereψ is the heading angle,r = ψ̇ is the yaw rate,v is
the lateral velocity along theYB-axis, (XG, YG) = (XG, 0)
is the coordinate of the center of gravity with respect toOB ,
m is the mass, andIz is the moment of inertia of the vehicle.
Yν̇ , Nṙ, Yν , etc are the hydrodynamic coefficients, andFy

andMy are the net fin force and moment.
For small motion of the vehicle, linearizing (6) gives





m − Yv̇ mXG − Yṙ 0
mXG − Nv̇ Iz − Nṙ 0

0 0 1









v̇
ṙ

ψ̇



 =





YvU YrU − mU 0
NvU NrU − mXGU 0

0 1 0









v
r
ψ





+





Fy

My

0



 (7)

Defining the state vectorx = (v, r, ψ)T ∈ R3 and using (7)
gives the state variable form

ẋ = Ax + Bv

[

Fy

My

]

(8)

whereA andBv are appropriate matrices. The net lateral
force and moment due to two fins is given byFy = 2fy

andMy = 2(dgf · fy + my), respectively, wheredgf is the
moment arm due to the fin location. Then substituting the
fin force and moment from (5) in (8), gives the state variable
representation

ẋ = Ax + BΦ(t)fc + BΦ(t)fvβ

y(t) =
[

0 0 1
]

x(t) = Cx(t) (9)

where y=ψ is selected as the controlled output variable,
B is an appropriate matrix satisfyingB[fy,my]T =
Bv[Fy,My]T , fc = (fT

a ,mT
a )T ∈ R4N+2, fv =

(fT
b ,mT

b )T ∈ R4N+2 and

Φ(t) =

[

φT (t) 0
0 φT (t)

]

(10)

For the purpose of design, we assume that the system ma-
tricesA andB, and the parameter vectorsfc andfv are not
known. We assume that the state vector is available for feed-
back. Letym(t) be a given yaw angle reference trajectory.
We are interested in designing an adaptive control law such
that in the closed-loop system, all the signals are bounded,
and the yaw angleψ asymptotically tracksym(t).

III. ADAPTIVE CONTROL LAW

This section presents the derivation of an adaptive con-
trol law using the state variable feedback. The system (9) is
time-varying but periodic. The design of control system for
a time-varying unknown system is not simple. Moreover, in
order to obtain a meaningful use of the parameterization of
the fin force and moment using the CFD analysis, we pro-
ceed to design a sampled-data adaptive control system.

We assume that the bias angle changes at a regular inter-
val T = moTo, wheremo is an integer andTo = 1/f is the
fundamental period. That is, the bias angle switches after the
completion ofmo cycles of the oscillation of the fins, and is
kept constant between the switching instants. Discretizing
the state (9) yields a time-invariant system given by

x[(k + 1)T ] = Adx(kT ) + Bdβk + du

y(kT ) = Cx(kT ) (11)

whereAd, Bd anddu are constant vectors,βk (a constant)
is the bias angle overt ∈ [kT, (k + 1)T ), and k = 0,1,2,....
We assume that the matricesAd, Bd anddu are unknown
to the designer. Here we treatdu as a constant disturbance
input vector.

In the sequel, z denotes the z-transform variable or an
advance operator (i.e.zq(kT ) = q[(k + 1)T ]). Solving
(11), the output y(z) can be written as

y(z) = C(zI − Ad)
−1Bdβk(z) + C(zI − Ad)

−1du(z)

∆
= kp

n(z)

d(z)
βk(z) +

nd(z)

d(z)
du(z) (12)

wheren(z) andd(z) are monic polynomials of degree 2 and
3, respectively, andnd(z) is a polynomial. For the derivation
of the control law, the following assumptions are needed:
Assumption 1:
(A.1) The discretized system(Ad, Bd, C) is controllable and
observable.
(A.2) The system is minimum phase.
(A.3) The sign ofkp is known and the upper boundko

p of
|kp| is known.

For the vehicle modeln(z) is a stable polynomial ( i.e.
its both the roots are strictly within the unit disk in the com-
plex plane), but the denominator polynomiald(z) is unsta-
ble. Furthermore,n(z) andd(z) are coprime, and therefore,
the pair (Ad, Bd) is controllable and (C,Ad) is observable.
We point out that the stability of the polynomialn(z) de-
pends on the choice of fin location on the vehicle, and it is
found that for smalldgf (distance from point of attachment
of fin to center of gravity) the system is minimum phase. The
Assumption 1 can be verified by computingAd, Bd, kp, n(z)
andd(z) for some nominal values of the parameters. Then
the assumption remains valid for the perturbations around
the nominal condition.

The relative degree of the system is one, therefore we
choose a reference model of the form.

ym(kT ) = Wm(z)r(kT ), k = 0, 1, 2, .... (13)
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wherer(kT ) is a discrete-time command input and

Wm(z) =
1

z
(14)

is the delay operator (i.e.,ym[(k + 1)T ] = r[kT ]).

First we consider the existence of the control law assum-
ing that the system parameters are exactly known. Then this
control law is modified for the case when the parameters are
known. The design of the control law follows the steps de-
scribed in [18]. Consider a control law

u∗(kT ) = θ∗T
1 x(kT ) + θ∗2r(kT ) + θ∗3 (15)

whereθ∗1 ∈ R3, andθ∗2 , θ∗3 ∈ R are to be chosen properly.
Then in the closed-loop system (11) and (15), solving for
y(kT ) gives

y(kT ) = C(zI − Ād)
−1Bdθ

∗

2r(kT ) + ∆(z)

+CAd
−kx(0) (16)

where

∆(z) = [C(zI − Ād)
−1Bdθ

∗

3 + C(zI − Ād)
−1du]

z

z − 1

andθ∗1 is chosen such that̄Ad = (Ad + Bdθ
∗T
1 ) has stable

eigenvalues.
Now the computation ofθ∗i for the yaw angle trajectory

control is done. This is accomplished by model matching.
Let us choose the feedback gainsθ∗i (i = 1, 2) such that
θ∗2 = k−1

p and

C(zI − Ad − Bdθ
∗T
1 )Bdθ

∗

2 = Wm = z−1 (17)

This is possible because the system (11) is controllable and
minimum phase. Then in the closed-loop system, (16) takes
the form

y(kT ) = Wm(z)r(kT ) + ∆(z) + CĀd
k
x(0) (18)

where∆(z) simplifies to

∆(z) == [θ∗−1
2 θ∗3Wm(z)+C(zI − Ād)

−1du]
z

z − 1
(19)

Note that (17) has been used to obtain (19). SinceĀd is a
stable matrix, ask → ∞, (19) gives

∆(∞) = limz→1[(z − 1) ∆(z)]

= (θ∗2)−1θ∗3 + C(I3×3 − Ād)
−1du (20)

From (20), it follows that∆(∞) becomes zero if one
chooses

θ∗3 = −θ∗2C(I3×3 − Ād)
−1du (21)

Using these values ofθ∗i , and ignoring the exponentially de-
caying signals,(18) gives

y(kT ) = Wmr(kT ) (22)

This implies that the tracking errore(kT ) = y(kT ) −
ym(kT ) = Wm[0] tends to zero ask → ∞.

For the system with unknown parameters, the control law
is chosen as

u(kT ) = θT
1 (kT )x(kT ) + θ2(kT )r(kT ) + θ3(kT ) (23)

whereθ1(kT ) ∈ R3, θ2(kT ) ∈ R, andθ3(kT ) ∈ R are the
time-varying estimates ofθ∗i , i = 1, 2, 3. We are interested
in deriving an adaptation law such that the tracking error
asymptotically tends to zero. With the control law (23), the
closed-loop system takes the form

x[(k + 1)T ] = Adx(kT ) + Bd[θ
T
1 (kT )x(kT )

+θ2(kT )r(kT ) + θ3(kT )] + du

= [Ad + Bdθ
∗T
1 ]x(kT ) + Bdθ

∗

2r(kT )

+Bdθ
∗

3 + Bdθ̃
T (kT )w(kT ) + du (24)

where
θ∗ = [θ∗T

1 , θ∗2 , θ∗3 ]T ∈ R5,

w(kT ) = [xT (kT ), r(kT ), 1]T ∈ R5,

θ(kT ) = (θT
1 (kT ), θ2(kT ), θ3(kT ))T , and θ̃(kT ) =

(θ(kT ) − θ∗) is vector of parameter error. In view of (16),
(17) and (19), the output computed from (24) takes the form

y(kT ) = Wmr(kT ) + Wmρ∗θ̃(kT )w(kT ) + ∆(z)

+CĀd
k
x(0) (25)

whereρ∗ = kp = θ∗−1
2 . Since∆(z) tends to zero askT →

∞, ignoring the exponential decaying signals, (25) yields

e(kT ) = ρ∗Wm[θ̃T (kT )w(kT )] (26)

For the derivation of the adaptation law according to
[18], one needs to obtain an augmented error beginning from
(26). Define a signal

ξ(kT ) = θT (kT )w[(k − 1)T ] − θT [(k − 1)T ]w[(k − 1)T ]
(27)

and the augmented error

ǫ(kT ) = e(kT ) + ρ(kT )ξ(kT ) (28)

whereρ(t) is an estimate pfρ∗ = kp. Then substituting the
tracking error (26) in (28) and using (27) gives

ǫ(kT ) = ρ∗{Wm(θT (kT )w(kT )) − θ∗T w[(k − 1)T ]}

+ρ(kT )ξ(kT )

= ρ∗{θT (kT )w[(k − 1)T ] − ξ(kT ) − θ∗T w[(k − 1)T ]}

+ρ(kT )ξ(kT )

= ρ∗θ̃T (kT )w[(k − 1)T ] + ρ̃(kT )ξ(kT ) (29)

whereρ̃(kT ) = ρ(kT )− ρ∗ is the parameter error. This lin-
early parameterized augmented error equation is important
for the derivation of the adaptation law.
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Figure 2:Adaptive set point control: Frequency of flap-
ping 8Hz for ψ∗ = −5 (deg) and Parameter uncertainty
50%
(a) Yaw angle,ψ, (solid) and reference yaw angle (stair-
case) (deg) (b) Bias angle (deg) (c) Yaw rate (deg/sec)
(d) Lateral velocity (m/sec) (e) Lateral force(N) (f) Mo-
ment(Nm)

Now following [18], the normalized gradient based control
law is chosen as

θ[(k + 1)T ] = θ(kT ) −
sign(ρ∗)Γw[(k − 1)T ]ǫ(kT )

m2(kT )

ρ[(k + 1)T ] = ρ(kT ) −
γξ(kT )ǫ(kT )

m2(kT )
(30)

where the symmetric positive definite adaptation gain matrix
Γ satisfies0 < Γ = ΓT < 2

ko

p

I5×5, 0 < γ < 2, and

m2(kT ) = 1 + wT [(k − 1)T ]w[(k − 1)T ] + ξ2(kT )

For the stability analysis one chooses the Lyapunov function

V (θ̃, ρ̃) = |ρ∗|θ̃T (kT )Γ−1θ̃(kT ) + γ−1ρ̃2(kT ) (31)

and following [18] shows that

V [(k + 1)T ] − V (kT ) ≤ −α1
ǫ2(t)

m2(t)
(32)

whereα1 > 0. This implies thatθ(kT ), ρ(kT ), ǫ(kT )
m(kT ) ∈

L∞ (the set of bounded functions), andǫ(kT )
m(kT ) , (θ[(k +

1)T ] − θ(kT )), (ρ[(k + 1)T ] − ρ(kT )) ∈ L2 (the set of
square integrable functions). Furthermore, one can show
thate(kT ) → 0 and all the signals in the closed-loop system
are bounded. This completes the derivation of the adaptive
control law for the yaw plane maneuvering.

IV. SIMULATION RESULTS FOR YAW
MANEUVERS

In this section, simulation results using the MAT-
LAB/SIMULINK for yaw angle control are presented. Var-
ious time-varying reference trajectories are considered for
tracking, and the performance of the adaptive controller in
the presence of parameter uncertainties is examined.

The parameters of the model are taken from [15]. The
AUV is assumed to be moving with a constant forward ve-
locity of 0.7 (m/sec). The vehicle parameters arel = 1.391
(m), mass=18.826 (kg),Iz= 1.77 (kgm2), XG = −0.012,
YG = 0. The hydrodynamic parameters for a forward veloc-
ity of 0.7 m/sec derived from [15] areYṙ = −0.3781, Yv̇ =
−5.6198, Yr = 1.1694,Yv = −12.0868, Nṙ = −0.3781,
Nv̇ = −0.8967, Nr = −1.0186, andNv = −4.9587. It is
assumed thatdfg=0.01 (m) and the fin oscillation frequency
is f = 8Hz. The vectorsfa, fb, ma, andmb are found to
be [13]

fa = (0,−40.0893,−43.6632,−0.3885, 0.6215, 6.2154,

−10.17,−0.1554, 0.6992)

fb = (68.9975, 0.4451,−16.4704, 64.1009,−19.5864,

−0.8903,−2.2257, 2.2257, 4.8966)

ma = (0.0054, 0.6037, 0.4895, 0,−0.0054, 0,−0.0925,

0,−0.0054)

mb = (−0.5297,−0.3739,−0.0935,−0.2493, 0.1246,

0.0312,−0.0312, 0.0935, 0)

It is pointed out that these parameters are obtained using
the Fourier decomposition of the fin force and moment, and
are computed by multiplying the Fourier coefficients by
1
2ρ.Wa.U∞

2 and 1
2ρ.Wa.chord.U∞

2, respectively, where
Wa is the surface area of the foil. For simulation, the initial
conditions of the vehicle are assumed to bex(0) = 0.

The closed-loop system (9) and (23) with the update
law (30) is simulated. The bias angle is changed to a
new value everyT = To seconds, whereTo = 1/f is
the fundamental period offp and mp. For the set point
control, the terminal value of the yaw angle is taken as
ψ∗ = −5 deg. Thus one desires to control the BAUV
to a heading angle of -5 deg. For the update law, the
adaptation gains are selected asΓ = 0.4(2/ko

p)I5×5 and
γ = 1, whereko

p = 0.08 ≥ |kp|. Using the values of
AUV model, it is found that the actual feedback gains are
θ∗1 = (1.2139 − 13.0228 − 104.6334)T , θ∗2 = −104.6334
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Figure 3: Adaptive sinusoidal trajectory control: Fre-
quency of flapping 8Hz for ym = 3.5 sin 2πfkT (deg)
and Parameter uncertainty 50%
(a) Yaw angle,ψ (solid) and reference yaw angle (stair-
case) (deg) (b) Bias angle (deg) (c) Yaw rate (deg/sec)
(d) Lateral velocity (m/sec) (e) Lateral force(N) (f) Mo-
ment(Nm)

andθ∗3 = 0.2122 andρ∗ = kp = −0.0096. The open-loop
zeros and poles of the discretized system are (-0.8990,
0.4667) and (1.0000, 1.0864, 0.8715), respectively. There-
fore, the transfer function is minimum phase. Simulation
results are presented for the parameter uncertainty of 50%.

Case A: Adaptive set point control: Parameter un-
certainty 50% off-nominal for Yaw angle -5 (deg).
For smooth control, the reference inputr(kT ) (in rad) is
selected as

r(kT ) = [1 − exp(−0.35(k − 1)T )](−5π/180)

where the sampling time isT = 0.125 (sec). Thus the
control law is is updated at the completion of each cycle of
oscillation. Assuming 50% uncertainty, the initial estimates
θ(0) and ρ(0) are set to0.50θ∗ and 0.50ρ∗. This way
the control law gains are 50% lower than the exactθ∗.
Fig. 2 shows the simulated results. It can be seen that the
adaptive controller achieves accurate heading angle control
to the target set point in about 15 sec. The control input
(bias angle) magnitude required is about 15 deg, which can
be provided by the pectoral fins. The plots of the lateral
force and moment produced by the fins are also provided
in the figure. In the steady-state, the lateral fin force and

moment exhibit bounded periodic oscillations. It is found
that the control magnitude can be reduced by using slower
commandr(kT ) if desired.

Case B: Adaptive sinusoidal trajectory control: Pa-
rameter uncertainty 50 % off-nominal
In order to examine, time-varying tracking ability of the
controller, a sinusoidal reference trajectory is generated
using the command inputrm(kT ) = 3.5× (π/180) sin(kT )
(rad). It is assumed thatθ(0) = 0.50θ∗ andρ(0) = 0.50ρ∗

giving 50% uncertainty. The responses are shown in Fig. 4.
It is seen that, after the initial transients, the heading angle
smoothly tracks the sinusoidal command trajectory. The
control input (bias angle) magnitude required is about 20
deg.

Simulations for other off-nominal choices of(θ(0), ρ(0))
have been performed. It is found that although, theoretically,
asymptotic tracking can be accomplished for any choice of
initial estimates of(θ(0), ρ(0)), larger control inputs are re-
quired for higher uncertainties. Furthermore, the control
system performs relatively well for the choice of under-
estimated initial values of the control gains(θ(0), ρ(0)). Of
course, the responses also depend on the choice of the com-
mand generator and the adaptation gain matrixΓ andγ of
the update law.

CONCLUSION

In this paper, the design of an adaptive control system
for the yaw plane control of a BAUV using pectoral-like fins
was considered. The bias angle was treated as the control
input. The periodic fin force and moment were parame-
terized using CFD analysis, and a discrete-time AUV dy-
namic model was used for control system design. The sys-
tems parameters were assumed to be unknown. A sampled-
data adaptive control law was derived for the control of the
yaw angle. The control system included a normalized gra-
dient adaptation law for tuning the controller gains. In the
closed-loop system, it was shown that the yaw angle asymp-
totically follows prescribed time-varying yaw angle trajec-
tories. The performance of the designed control system was
examined using numerical simulations. From these results,
one concludes that in the closed-loop system precise yaw
angle trajectory control can be accomplished in the presence
of model uncertainties. This is important because in a real
situation, one does not have the knowledge of the system
parameters. Especially, the precise characterization of the
pectoral fin forces, and moments is not easy. There exist
flexibility in the choice of the design parameters, which can
be selected to obtain desirable response characteristics in the
closed-loop system.
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