Mapping the Cardiac Acousteome: Biosensing and Computational Modeling Applied to Smart Diagnosis Rajat Mittal (PI), Jung Hee Seo, Hani Bakshaee and Chi Zhu (Mechanical Engineering) and Monitoring of Heart Conditions Andreas Andreou (Co-PI), Gaspar Tognetti, Guillaume Garreau (Electrical Engineering) William Reid Thompson (Co-PI, Pediatric Cardiology) IIS1344772

Motivation

□ Cardiac Auscultation: science and art of diagnosing heart conditions via the stethoscope

- Potent, non-invasive diagnostic modality limited by:
- o incomplete understanding between cause effect (sound)
- human-in-the-loon
- sequential (uni-site) measurement technique
- high level of noise
- large array of heart sounds
- declining auscultatory skills [1]
- □ Vision: Rescue this valuable diagnostic modality from obsolescence by deploying new tools and ideas from computational science, biosensing and signal processing.

Objectives

Goal: Develop an approach to automated heart sound measurement and localization via a compact acoustic sensor array (the "StethoVest")

- 1. Develop image-based computational hemoacoustic models (CHM).
- 2. Validate CHMs and develop/test generative (model based) statistical pattern recognition algorithms for abnormal heart conditions using thoracic phantoms
- 3. Investigate the physics of murmurs associated with aortic valve (AV) disease using integrative biosensing-CHM approach.
- 4. Evaluate acousteome-map based screening for hypertrophic obstructive cardiomyopathy (HOCM)

Impact

Revolutionize the management of heart disease

- Inexpensive, non-invasive, accurate
- o Screening of wide range of heart conditions
- 24/7 continuous, at-home health monitoring
- Deployable in rural and underserved areas Leverages telemedicine, bioinformatics & wearable sensor revolution
- Health care: reactive, expensive and hospital-centric
- → smart, proactive, patient-centric and cost-e ffective
- □ Advance medicine, mechanics and modeling, computing, electrical engineering, biosensing, and BIGDATA science.
- □ Training of undergraduates, graduate students and postdocs in a highly cross-disciplinary environment

Technical Approach

High-Fidelity Hemoacoustic Modeling and Simulation

Biophysics of auscultation involves

Thoray model derived

from the CT scan data

 flow perturbation · propagation of acoustic wave through thorax (lung, bone, muscle, fat) sensing by stethoscope

 Integrated multiphysics analysis required to understand the physical based of auscultation

Sound Measurement, Localization and Pattern Classification

Bioinspired Source localization using Gradient Flow (GF) [3] $S(\mathbf{r}, t) = A(\mathbf{r})s(t + \tau(\mathbf{r}))$ t(r) $s(t + \tau(\mathbf{r})) = s(t) + \tau(\mathbf{r})\dot{s}(t) + \frac{1}{2}\tau(\mathbf{r})^{2}\ddot{s}(t) +$ Time delayed source of traveling way e is separated into a static mixtures o Sub-wavelength scale f the time-differentiated sources acoustic senor array $\tau \dot{s}(t)$

Year Two Progress

agation

Re=UD/v=400 St=fD/i

Experimental Study [4]

Experimental Set-up

Generation-2 Thoracic phantom (silicone gel and Foam) Modeling tissue and lung

8

Monitored surface vibrations

Sim,

7/D

Energy mapping at different locations do stream of the constriction

References & Misc. Information

References

hinkLabs

20 - 2000

H · 24

0.04 - 30

0

- 1) Kumar K, Thompson WR. Evaluation of cardiac auscultation skills in pediatric residents. Clin. Pediatr (Phila). 2013 Jan; 52(1):66-73. doi: 10.1177/0009922812466584. Epub 2012 Nov 26.
- Seo, J. H. and Mittal, R. (2011) A High-order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow Induced Sound in Complex Geometries, J. Comput. Phys. Vol. 230, 1000-1019. 3) Julian P, Andreou AG et al (2004) A comparative study of sound localization algorithms for energy aware sensor network nodes, IEEE
- Trans Circuits Syst 1: Reg Papers, 51(4):640-648. 4) Bakhshaee H, Garresu G et al, Mechanical design, instrumentation and measurements from a hemoacoustic cardiac phantom, DOI
- 10.1109/CISS 2015 2086901 Other Collaborators: Albert C. Lardo (BME, JHU), Richard George (Cardiology, JHU), Sharon Gerecht and Michael Blatchley (Chemical and
- bimolecular engineering ,JHU), Emad Boctor (Radiology, JHU), Fereshte Alamifar (Electrical Engineering,JHU) Undergrad Students: Nate Welsh

Comparison of Frequency Spectra

Project homepage: http://engineering.jhu.edu/fsag/nsf_sch_project_homepage/

BIOPAC

D:29 H:6 D:25 H:20 D:35 D:50 H:40

Densh Denshi

Packare

D:28 H:29

0.02 - 2000 35 - 3500 20 - 600

Photograp

Manufact

Physical

(mm)

(Hz)