Mechanical Design, Instrumentation and Measurements from a Hemoacoustic Cardiac Phantom

Hani Bakhshaee+, Guillaume Garreau*, Gaspar Tognetti*, Kourosh Shoele+, Ronann Carrero+, Thomas Kilmar+, Chi Zhu+
William R. Thompson++, Jung Hee Seo+, Rajat Mittal+, Andreas G. Andreou*
*Department of Electrical and Computer Engineering, Johns Hopkins University, ++Department of Pediatrics, Johns Hopkins University School of Medicine +Department of Mechanical Engineering, Johns Hopkins University,

Outline

- Brief overview
- Phantom design
- Hemoacoustic computational simulations
- Comparison between experimental and computational results
- Future versions of the phantom

Overview

- Heart disease:
 - Most consequential disease in the industrialized world
 - Annual US expenditure on heart disease exceeds half a trillion dollars
- Cardiac auscultation:
 - Been around for 200 years
 - Limitations: subjective, inaccurate
- Automated cardiac auscultation via a wearable acoustic array (the"StethoVest"):
 - Expensive \rightarrow Cost-effective
 - Reactive- \rightarrow Proactive,
 - Hospital centric \rightarrow Patient centric

Developing the thoracic phantom

- The phantom will be used to validate the codes and to examine the sensors
- To design the phantom the following items should be considered :
 - Tissue mimicking homogeneous material and characterization
 - Murmur generating embedded fluidcircuit
 - Measurements : Variety of acoustic sensors

Material selection

- Acoustic and mechanical properties should be similar
- Examples of previous tissue-mimicking materials in the literature
 - Agar
 - Silicone
 - Polyvinyl alcohol gel (PVA) and
 - Polyacrylamide gel (PAA)

Acoustic property of the material

Table 2. Sound velocities, densities, impedances, and acoustic attenuation coefficients of silicone, agar, PVA and PAA in comparison to the values of human tissues and literature values.

	Material	Velocity, $c_{\rm S}$ (10 ³ m s ⁻¹)	Density, ρ (10 ³ kg m ⁻³)	Impedance z (10 ⁶ kg m ⁻² s ⁻¹)	Acoustic attenuation coefficient, α (dB cm ⁻¹)	Frequency (MHz)	References
	Human breast tissue	1.43-1.57	0.99-1.06	1.42–1.66 ^b	9.5 - 12.6	7	Duck 1990
	Human skin	1.54 ^a	1.11-1.19	1.71–1.83 ^b	9.2 ± 2.2	5	Duck 1990
<	Silicone	$1.03 \pm 0.06^{\circ}$	1.07 ± 0.03	$1.10 \pm 0.05^{\circ}$	14.0 ± 1.4	5	our measurement
					14.7 ± 1.6	7	
	PVA	$1.57 \pm 0.02^{\circ}$	1.10 ± 0.05	$1.74 \pm 0.08^{\circ}$	2.9 ± 0.1	5	our measurement
					3.2 ± 0.1	7	
		1.58 ± 0.03	1.07 ± 0.02	1.71 ± 0.06	2.1	5	Kharine et al 2003
	PAA (10%)	$1.58 \pm 0.05^{\circ}$	1.09 ± 0.09	$1.73 \pm 0.08^{\circ}$	0.7 ± 0.1	5	our measurement
					0.7 ± 0.1	7	
		_	1.02 ± 0.01	_	0.4 ± 0.1	5	Prokop et al 2003
	Agar 2%	$1.50 \pm 0.03^{\circ}$	1.04 ± 0.11	$1.57 \pm 0.08^{\circ}$	0.4 ± 0.1	5	our measurement
					0.5 ± 0.1	7	
		1.54	_	_	_	_	Browne et al 2003

Mechanical Property

Table 1. Soft materials used in the study.						
No.	Material, manufacturer, city, state	Density (g ml ⁻¹)	Softener volume range ^a (%)	Modulus range ^a (kPa)	Approximate cost per gallon	
1	SR-1610, Douglas and Sturgess, San Francisco, CA	1.15	0–58 ^b	25-660	\$100	
2	Dragon skin, Smooth-On, Easton, PA	1.08	0–78 ^b	20-850	\$85	
$3 \leq$	Ecoflex 00-10, Smooth-On, Easton, PA	1.03	0–50 ^b	15-110	\$105	
4	HS-IV, Dow Corning, Midland, MI	1.11	0–48 ^b	20-570	\$140	
5	Candle Gel, Endless Possibilities, Oklahoma City, OK	0.98	n/a	50	\$35	
6	Tin-Sil, US Composites, West Palm Beach, FL	1.07	0–82 ^b	10-1400	\$200	
7	Semicosil 921, Wacker Solutions, Adrian, MI	1.10	n/a	25	\$110	
8	8116SS plastic, M-F Manufacturing, Ft. Worth, TX	0.99	0–56 ^c	15-200	\$40	
9	CF11, Nusil Technologies, Carpinteria, CA	1.04	n/a	204	\$240	

Silicone rubber

- Silicone rubber, Ecoflex 010 (Smooth-on)
 - Easy to produce,
 - extremely stable
 - non-toxic and
 - negligible shrinkage
- Procedure to make :
 - Mixing Part A part B,
 - Adding Silicon thinner,
 - Degassing for 3-4 min in (-29 in Hg) to remove air bubbles

JOHNS HOPKINS U n i v e r s i t y

Material characterization

Speed of sound

UNIVERSITY

Murmur generating

Fluid Flow Circuit

Bipac sensor attached to the Micromanipulaor

HP sensor attached to the Micromanipulaor

Micromanipulators

Measurements

- Different acoustic sensors used in the phantom tests.
 - A: Commercially available electronic stethoscope.
 - B: Accelerometers
 - C: HP 21050A sensor mounted on a micromanipulator.
 - D: Biopac sensors

Sensor selection ...

- Pump was turned on and off
- Clear difference between two diagrams for HP and Biopac
- Poor SNR for stethoscope and the accelerometer

Effect of Indentation

To compare the effect of indentation :

- Reference position :Sensors touching the sample
- Gradual increase in the indentation
- Indentation = 0, 0.03, 0.06, 0.09, 0.12 and 0.15 in ~ 0 : 0.76 :3.81 mm
- After 0.12, no differences were observed

Distance after the constriction

HP1 & Biopac

Computational model

By Dr. Jung-Hee Seo

Hemoacoustic Simulation

Structural wave eq. For viscoelastic material

Generalized Hooke's law Kelvin-Voigt model

High-order IBM, 6th order Compact Finite Difference Scheme, 4 stage Runge-Kutta method

Hemodynamic Simulation Results

Pressure fluctuation is responsible for the murmur generation

Strong pressure fluctuations are observed beyond 2D downstream of the stenosis

3D Elastic Wave Simulation

Radial velocity fluctuation

Surface Velocity Fluctuations

Surface Acceleration Spectrum

Comparison

• The frequency spectrum of the measured acceleration at the downstream location is plotted along with the computational ones

Future versions

- Adding lung to the phantom
- Foam is used to model the lung
- Non-axisymmetric model

Summary

- Different steps to make the Cardiothoracic phantom were explained
 - Material selection and characterization
 - Murmur generating embedded fluid-circuit
 - Measurements options
- Hemoacoustic simulation results were presented and compared with those from experiment
 - Good agreement was seen based on the preliminary results

Acknowledgment

- Dr. Emad Boctor and Fereshteh Alamifar
- NSF for funding

Thank you

Sensor selection

JOHNS HOPKINS <u>un</u>iversity

Model for the Aortic Stenosis Murmur

For the joint computational/experimental study

Re=UD/v=4000 St=fD/U EcoFlex-10

 ρ =1040 kg/m³ K=1.04 GPa (c_b=1000.0 m/s) G=18.39 kPa (c_s=4.2 m/s) μ =14 Pa s

U=0.25 m/s D=1.5875 cm D_T=9.84 cm (gelA), 16.51 cm (gelB)

c.f.

Biological soft tissue: K=2.25 GPa (c_b =1500 m/s) G=0.1 MPa (c_s =10 m/s) μ =0.5 Pa s

UNIVERSITY