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Large-eddy simulations (LES) are used to study the effects of three-dimensionality on
synthetic-jet forcing of a separated flow in a configuration previously devised by Mittal
et al1 for investigating active separation control using zero-net-mass-flux jets. Large-eddy
simulations of the baseline separated flow show that the boundary layer separates earlier
and the separated shear layer rolls up farther away in three-dimensional simulations than in
two-dimensional (2-D) direct simulations. However, similar to two-dimensional simulations,
LES of the baseline separated flow indicates that the entire system, comprised of the shear
layer, separation zone and wake, locks on to a single frequency. Zero-net-mass-flux forcing
of the separated flow at the superharmonics of this baseline lock-on frequency results in
two-dimensionalization of the bulk flow yielding similar spectral dynamics and lock-on
states as the 2-D simulations. In particular, most effective separation control is found
to occur at the first superharmonic of the baseline lock-on frequency for which the shear
layer, the separated region and the wake lock on to the fundamental forcing frequency. The
existence of such a harmonic lock-on state due to forcing is found to be associated with a
more regularized flow than the non-resonant case, thereby resulting in effective separation
control.

Nomenclature

Cµ ZNMF jet momentum coefficient, Cµ = 2(d/c)(VJ/U∞)2.
Cf Mean skin-friction coefficient, Cf = 2τw/(ρU2

∞).
Cp Pressure coefficient, Cp = (p − p∞)/q∞.
Evv One-dimensional energy spectrum of v.
H Height of the ZNMF actuator cavity.
Lx, Ly, Lz Computational domain sizes in x, y, and z directions, respectively.
Nx, Ny, Nz Number of grid cells in x, y, and z directions, respectively.
W Width of the ZNMF actuator cavity.
XTE Distance between the separation location and the trailing edge.
F+

J Non-dimensional forcing frequency, F+ = fJc/U∞.
Hsep Height of the separation bubble.
Lsep Length of the separation bubble.
Rec Reynolds number based on free-stream velocity and chord length, Rec = U∞c/ν.
U∞ Free-stream velocity.
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VJ Characteristic velocity of the ZNMF jet.
fJ Forcing frequency of the ZNMF jet “device”.
fsep Separation bubble frequency.
fSL Shear layer frequency.
fwake Wake vortex shedding frequency.
c Airfoil chord.
d Width of the ZNMF jet slot.
h Height of the ZNMF actuator slot.
p Pressure.
q∞ Free-stream dynamic pressure, q∞ = (1/2)ρU2∞.
t Time.
u, v, w Streamwise, cross-stream and spanwise velocity components, respectively.
ui General notation for velocity components: u1 ≡ u, u2 ≡ v.
ve(x, t) y-component of the velocity at the exit plane of the ZNMF jet orifice.
xJ Streamwise location of ZNMF forcing.
xi General notation for spatial coordinates: x1 ≡ x, x2 ≡ y, x3 ≡ z.
xsep Streamwise location of primary separation.

Subscripts
i Directional index, i = 1, 2, 3.

Conventions
| · | Magnitude of a tensor quantity, e.g. | S |= √

2SijSij

〈·〉 Time-averaged quantity
(·) Grid-filtered quantity
(̂·) Test-filtered quantity; Complex Fourier coefficient; An intermediate time level in fractional-step

method

Symbols
ν Kinematic viscosity.
ωx, ωy, ωx Vorticity components in x, y, z directions, respectively.
ρ Density.
τw Wall shear stress.

Superscripts
∗ Dimensionless variable.
0 Baseline flow conditions.

I. Introduction

A novel numerical configuration was earlier proposed by Mittal et al1 for investigating zero-net-mass-
flux (ZNMF) or synthetic jet based separation control in canonical separated airfoil flows. Using this

configuration, a separation bubble of prescribed size can be created at a desired location on the upper surface
of a flat-plate airfoil at zero-incidence by imposing an adverse pressure gradient through blowing and suction
on the top boundary of the computational domain. Mittal et al.1 carried out two-dimensional simulations of
this flow configuration with separation induced at different streamwise stations to show that these canonical
separated flows are characterized by at least three distinct frequency scales corresponding to the shear layer
instability fSL, the unsteadiness of the separated region fsep and the vortex shedding in the wake fwake.
The resonant interaction between these different scales is generally dependent on the distance between the
separation zone and the trailing edge. Kotapati et al.2 investigated the dynamics of mid-chord separation
and its control at a chord-based Reynolds number Rec of 6×104. They used two-dimensional simulations to
study the effect of varying the actuation frequency, duty cycle and actuator location on separation control.
Kotapati et al.3 further extended this work by investigating the dynamics and control of aft-chord separation
in the vicinity of vortex shedding in the wake. Their studies indicated that the entire system, comprising
the shear layer, the separated region and the wake, locks on to a single frequency and that forcing the shear

2 of 28

American Institute of Aeronautics and Astronautics



Hsep

ZNMF
device

Transient
separation bubble

Zero-vorticity 
blowing-suction 

Wake

xo

yo

x

y

xc

L

Ly

Lx

L

TEX

sepxJ

xsep

x

Slip boundary 

Slip boundary 

Figure 1. Schematic of the flow configuration (not to scale).

layer close to this lock-on frequency or its first superharmonic yields effective control of the mean separation
bubble.

It has been well acknowledged by the CFD community that two-dimensional (2-D) numerical simula-
tions of intrinsically three-dimensional flows, even below critical Reynolds numbers, over nominally two-
dimensional bluff bodies lead to inaccurate prediction of aerodynamic forces, whereas three-dimensional
(3-D) simulations lead to accurate predictions. Even though the airfoil geometry employed in the previous
studies was not a bluff body and the objective of the numerical experiments was separation control rather
than direct enhancement of the lift-to-drag ratio, it would still be useful to investigate the effect of spanwise
instability mechanisms on the scaling of the characteristic frequencies of the separated system and its subse-
quent control. To this end, large-eddy simulations (LES) of the flow configuration with aft-chord separation
are carried out at Rec = 6 × 104 to assess the effect of three-dimensionality on the scaling of characteristic
frequencies of the separated system and its subsequent control.

II. Flow Configuration

Figure 1 shows a schematic of the flow configuration used in the simulations. It consists of a 5% thick,
spanwise homogeneous, flat-plate airfoil of chord c with 8:1 elliptic leading edge and blunt trailing edge at
0◦ angle-of-attack in a free-stream. The blunt trailing edge is chosen to fix the separation point of the lower-
and upper-side shear layers at the sharp corners of the trailing face, and provide an unambiguous definition
for the characteristic width of the wake. The origin of the global coordinate system (x0, y0, z0) is fixed at
the lower left-hand corner in the mid-span of the computational domain that measures Lx, Ly and Lz in
x0, y0 and z0 directions, respectively. The origin of the local coordinate system (x, y, z) is at the leading
edge of the airfoil in the same mid-span plane. Note that x, y and z are in the streamwise, cross-stream and
spanwise directions, respectively.

A separation bubble of desired size can be induced at any location on the upper surface of the flat
plate by applying an adverse pressure gradient through suction and blowing on the upper boundary of the
computational domain. The technique of Na & Moin4 is adopted wherein a zero-vorticity boundary condition
of the following form is prescribed on the upper boundary:

v(x0, Ly) = G(x0),
∂u

∂y0

∣∣∣∣
(x0,Ly)

=
dG

dx0
, (1)

where G(x0) is the prescribed steady suction and blowing velocity profile, and the Neumann boundary
condition on u ensures that no spanwise vorticity (ωz) is generated due to suction and blowing. In this
study, G(x0) is of the form:

G(x0) = −Vtop sin
(

2π(x0 − xc)
L

)
e−α

(
2(x0−xc)

L

)β

, (2)
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Figure 2. Plot of function G(x0) for the case of aft-chord separation induced by prescribing suction and blowing
over 1.2 ≤ x0/c ≤ 1.8 on the top boundary of the computational domain.
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Figure 3. Schematic of the ZNMF actuator embedded in the airfoil. The contours of spanwise vorticity show
attached and separated boundary layers on the lower and upper surfaces of the airfoil, respectively.

where xc is the center of the steady suction and blowing velocity profile in the global system and L is the
length of the profile (see figure 1). The function G(x0) allows independent prescription of the location as
well as the streamwise size of the separation region by varying xc and L. In equation 2, the sinusoidal
function that models the suction and blowing profile is multiplied by an exponential blending function to
provide continuity at the edges of the profile as it transitions to slip boundary condition on either side. The
parameters Vtop, α and β are set to 0.8U∞, 10 and 20, respectively. Figure 2 shows the plot of function
G(x0) for the case of aft-chord separation induced by prescribing suction and blowing over 1.2 ≤ x0/c ≤ 1.8
on the top boundary of the computational domain. Thus, separation can be produced anywhere on the plate
surface and the above configuration can be used to examine the nonlinear interactions between the shear
layer, separation region, and airfoil wake in controlled as well as uncontrolled versions of these flows. It
should be noted that with this configuration, the confounding effect of curvature is eliminated, something
that is usually not possible with conventional airfoil geometries.

Rather than simply model the ZNMF jet by prescribing a localized analytical velocity profile on the flat
plate, the flow inside the ZNMF actuator and the resulting synthetic jet are simulated in the current study.
This is done by embedding a slot and cavity under the upper surface of the flat plate as shown in figure 3.
The ZNMF ‘device’ consists of a reactangular slot, of width d = 0.005c and height h = 2d, connected to an
internal rectangular cavity of width W = 10d and height H = 2d. The choice of these dimensions for the
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ZNMF ‘device’ is driven by the design of a ZNMF actuator used by Schaeffler et al.5 in the NASA LaRC
2004 workshop on CFD validation of synthetic jets and turbulent separation control. In the experiments,
the ZNMF jet through the slot is usually generated by the motion of a piston or a piezoelectric diaphragm
mounted to the sides or the bottom of the cavity. In the computations, a simple oscillatory velocity boundary
condition of the form [u, v] = [0, V0 sin(2πfJ t)] is prescribed at the lower horizontal boundary of the cavity,
where V0 is the velocity amplitude and fJ is the oscillation frequency. This boundary condition essentially
provides a simple sinusoidal representation of the mass flux produced in the slot by the motion of the piston
or diaphragm in the experiments.

The characteristic velocity of the ZNMF jet is given by

VJ =
2

AT

∫ T/2

0

∫
A

ve(x, t) dAdt, (3)

where ve(x, t) is the y component of the velocity at the exit plane of the orifice, A is the cross-sectional
area of the orifice, and T = 1/fJ is the time period of the synthetic jet cycle. In the current incompressible
simulations, the velocity amplitude at the lower boundary of the cavity V0 is related to the characteristic jet
velocity VJ through mass conservation by V0 = (πVJ/2)(d/W ). Thus, VJ can be prescribed by applying a
suitable value of V0.

III. Governing Equations

The flow field over the proposed canonical configuration is modeled by unsteady incompressible Navier–
Stokes equations, written in non-dimensional tensor form as

∂u∗
i

∂x∗
i

= 0, (4)

∂u∗
i

∂t∗
+

∂u∗
i u

∗
j

∂x∗
j

= − ∂p∗

∂x∗
i

+
1

Re
∂2u∗

i

∂x∗
j∂x∗

j

, (5)

where x∗
i are the Cartesian coordinates, t∗ is the time, p∗ is the pressure, and u∗

i are the Cartesian velocity
components. All the coordinate variables, time, velocity components, and pressure are non-dimensionalized
by chord length c, convective time scale c/U∞, inflow free-stream velocity U∞, and ρU2

∞, respectively.
The Reynolds number is defined as Re = U∞c/ν. For the sake of brevity, the superscript ∗ denoting
nondimensional variables in the above equations will be dropped in the remainder of this section.

In LES methodolgy, the Navier–Stokes equations are spatially filtered, the energy-carrying large scales are
explicitly resolved, and the influence of more universal and homogeneous subgrid scales (SGS) on the resolved
scales is modeled or parameterized using closures of various degrees of complexity. When the Navier–Stokes
equations are spatially filtered (denoted by the overbar) using a filter that commutes with the spatial and
temporal derivatives, one obtains the following LES equations:

∂ūi

∂xi
= 0 (6)

∂ūi

∂t
+

∂ūiūj

∂xj
= − ∂p̄

∂xi
− ∂τij

∂xj
+

1
Re

∂2ūi

∂xj∂xj
, (7)

where τij = uiuj − ūiūj is the subgrid-scale (SGS) stress tensor that must be modeled.
The SGS stress tensor is parameterized by the dynamic Smagorinsky model (Germano et al.6):

τij − δij

3
τkk = −2νT Sij = −2C∆

2|S|Sij (8)

where δij is the Kronecker delta (δij = 1, if i = j; δij = 0, if i �= j), ∆ denotes the grid-filter width,
Sij = (∂ūi/∂xj +∂ūj/∂xi)/2 denotes the filtered strain-rate tensor, and |S| = (2SijSij)1/2 is the magnitude
of the strain-rate tensor. The model coefficient C is computed dynamically using the least-squares approach
proposed by Lilly7 :

C = −1
2
〈LijMij〉
〈MklMkl〉 (9)
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Figure 4. Schematic of the three-dimensional node-based unstructured mesh (adapted from Ham et al.10

where

Lij = ̂̄uiūj − ̂̄ui ̂̄uj (10)

and

Mij = −∆̄2|S̄|S̄ij + ∆̂2|̂̄S|̂̄Sij . (11)

The above dynamic procedure requires the application of a test filter of characteristic width ∆̂, signified by a
caret (̂) over the overbar, to the filtered Navier–Stokes equations. The ratio of test filter to grid filter widths
is set to be ∆̂/∆ = 2 as was found to be optimal by Germano et al.6 The grid-filter width is defined as V 1/3

where V denotes the volume of the grid cell. In equation 9, the angular brackets denote local averaging in
space.

A. Numerical algorithm

Upwind-biased numerical schemes that make the solution procedures robust over a wide range of Reynolds
numbers by providing numerical dissipation to control aliasing errors are not suitable for high-fidelity methods
like DNS and LES. Mittal & Moin8 have shown that upwind-biased schemes adversely affect the acuracy of
the LES predictions since the numerical dissipation produced in the coarse-grid regions often overwhelms the
contributions of the SGS model and molecular viscosity, besides depriving the solution of the proper Reynolds
number sensitivity. An alternative to achieving robustness is to develop non-dissipative numerical schemes
that control aliasing errors by enforcing discrete conservation of kinetic energy in addition to conservation
of mass and momentum. Discrete energy conservation in incompressible flows refers to the fact that the
convective and pressure terms in the discrete energy equation are expressible in divergence form (i.e. solely
in terms of contributions from the flow boundaries).

The flow field is computed using CDPa, an unstructured grid finite-volume-based flow solver being actively
developed at Stanford University’s Center for Integrated Turbulence Simulations (CITS) as part of the
U.S. Department of Energy’s (DOE’s) Advanced Simulation and Computing (ASC) program. The solver
uses a non-staggered formulation on hybrid unstructured grids that eliminates the shortcomings of extending
the discrete energy-conserving algorithm of Harlow & Welch9 for structured grids to unstructured grids.
Figure 4 illustrates the location of primitive variables in this formulation. The full Cartesian velocity vector
ui and pressure p are located at the control volume nodes (e.g. P and nb). The volume associated with

aCDP is named after Charles David Pierce (1969–2002)
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each node is computed by summing the sub-volumes of the tetrahedra, each formed by a cell center, a face,
an edge and a node as shown in figure 4. This approach makes volume and surface normal calculations
unambiguous and the resulting algorithm supports meshes of arbitrary convex polyhedral elements.

An overview of the unstructured finite volume method and fractional step time advancement is now given.
Details of the finite volume operators and boundary condition implementation are available elsewhere.10 A
second-order fractional-step algorithm based on this non-staggered arrangement with good kinetic energy
conservation properties11, 12 proceeds as follows:

1. The subgrid-scale viscosity νt is computed at all nodes based on the nodal velocity field un
i associated with

the current time level tn. The unstructured filtering operator required by the dynamic procedure consists
of averaging node-based quantities to surrounding cells, then averaging the resulting cell values back to
neighboring nodes. For the case of uniform hexahedral meshes, this corresponds to a top-hat spatial filter
with trapezoidal rule integration.13

2. The edge-based normal velocity components at the new time level tn+1 is predicted using second-order
Adams–Bashforth extrapolation:

Ûe = 2Un
e − Un−1

e (12)

Note that because both Un
e and Un−1

e satisfy the discrete divergence property
∑

e UeAe = 0 (where Ae is
the edge area), so will Ûe.

3. The following momentum equation is then solved for the node-based velocity vector ui to get the predicted
velocity ûi using the Jacobi iteration method:

V
ûi − un

i

∆t
+

∑
e

Ue
t
ui

et
Ae = −V

δp

δxi

n−1/2

+
∑

e

ν + νt
e

⎛
⎝δui

δn
+

δun

δxi

et
⎞
⎠Ae, (13)

where V is the dual volume associated with the node (see figure 4), the averaging operator ()
t

corresponds
to an equally weighted average in time of the known value at tn and the predicted value at tn+1, and the
averaging operator ()

e
corresponds to the equally weighted spatial average of the two node values associated

with edge e. The discrete cell-based gradient operator δ/δxi is based on Green–Gauss reconstruction and
the node-based normal derivative operator δ/δn includes non-orthogonal corrections as described in Ham et
al.10

4. The old pressure gradient is subtracted from the velocity predictor and then averaged to the edges and
the edge-normal component taken:

u∗
i − ûi

∆t
=

δp

δxi

n−1/2

(14)

U∗
e = u∗

i

e
ni (15)

5. The following Poisson equation for pressure is solved using an algebraic multigrid method and the starred
velocity fields are corrected:

∑
e

δp

δn

n+1/2

Ae =
1

∆t

∑
e

U∗
e Ae (16)

Un+1
e − U∗

e

∆t
= − δp

δn

n+1/2

(17)

un+1
i − u∗

i

∆t
= − δp

δxi

n+1/2

(18)

A key feature of this solver is that it uses central differences for spatial discretization and constrains the
numerical scheme to discretely conserve not only mass and momentum, but also kinetic energy.14 This ap-
proach minimizes nonlinear instabilities that might arise from the complete absence of numerical dissipation
at coarse-grid resolutions.
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IV. Simulation overview

The flat-plate airfoil geometry is centered in the x-y plane of the computational domain of size Lx×Ly =
2c × 0.5c and spans the length Lz of the domain in the z-direction. The aft-chord separation is induced by
prescribing blowing and suction over 0.7 ≤ x/c ≤ 1.3 on the top boundary of the computational domain.
In all simulations of the uncontrolled separated flow presented here, the nonoperational ZNMF ‘device’
embedded under the airfoil upper surface is left open to the external crossflow. Comparison of the location
of boundary layer separation obtained from such a simulation with one obtained without an embedded
ZNMF cavity indicates that the inclusion of an inactive ZNMF device open to the external crossflow in the
uncontrolled simulation does not change the separation location. The simulations of the baseline separated
flow are performed on two different grids to ascertain not only the grid independency but also the spanwise
domain-size independency of the computed solutions. The spanwise domain size Lz and the number of cells
in the spanwise (z) direction Nz for these grids are summarized in table 1.

Table 1. Grid parameters in LES at Rec = 6 × 104.

Attribute Grid I Grid II
Overall node count 14, 486, 745 8, 920, 725
Overall cell count 14, 164, 416 8, 599, 456

Lz 0.3c 0.2c

Nz 64 32
Nodes in the wake region/Nz 66, 306 99, 330
Spanwise grid spacing ∆z/c 4.6875× 10−3 6.25 × 10−3

No-slip boundary conditions are applied on the airfoil surface, and slot and cavity walls. Slip (zero-shear)
boundary condition is applied over the entire length on the lower boundary. Uniform inflow free-stream
velocity is prescribed at the inlet of the computational domain. At the exit boundary, the convective outflow
boundary condition is applied, with the convection speed determined by the streamwise velocity averaged
across the exit plane. This outflow boundary condition allows the vortical structures from the separated
region and the wake to exit the domain with minimal reflections. Consistent with the spanwise homogeneity
of the flow configuration, periodic boundary conditions are prescribed on the spanwise boundaries in the
z-direction. The simulations are advanced with a time step of ∆tU∞/c = 2.0×10−4, which corresponds to a
maximum Courant–Friedrichs–Lewy (CFL) number of around 1.6 and 2.6 on Grid I and Grid II, respectively.

First, LES of the baseline separated flow are carried out for a total time of 20c/U∞, of which the first
10 time units are used to allow initial transients to exit the domain, and the time-mean flow statistics are
collected over the remaining 10 time units. After confirming the grid and spanwise domain-size independency
of the characteristic frequencies and mean flow properties from the LES of baseline separated flow configu-
ration, the separated flow on the smaller grid (Grid II) at t = 20c/U∞ is advanced with ZNMF perturbation
of the boundary layer at selected frequencies for a total time of 15c/U∞. The first 5 time units are used to
allow initial transients to exit the domain and the subsequent 10 time units are used for the computation of
time-mean flow statistics.

The characteristic frequencies of the uncontrolled separated flow are determined by computing one-
dimensional power spectra Evv corresponding to temporal variations of crosss-stream velocity v in the shear
layer, the separated region, and the wake. Flow state from Case 0 simulation at t = 20c/U∞ is then
advanced with ZNMF perturbation of the boundary layer at frequencies that are harmonically related to
the characteristic frequencies of the uncontrolled separated system. In the simulations with ZNMF forcing,
the time step employed is the same as in the baseline simulations and the ZNMF jet velocity is set to
VJ = 0.1U∞. The blowing momentum coefficient of the jet is defined as

cµ =
ρV 2

J d

qc
= 2

d

c

(
VJ

U∞

)2

(19)

where q = ρU2∞/2 is the free-stream dynamic pressure, d is the ZNMF jet slot width and c is the chord
length. The choice of VJ = 0.1U∞ fixes cµ to a value of 1.3× 10−4. The simulations with ZNMF forcing are
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Figure 5. Computational mesh in the x–y plane of Grid II used in the large-eddy simulations.
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Figure 6. Domain decomposition of the mesh, shown in figure 5, obtained using ParMETIS for parallel
implementation on 128 processors.

advanced for a total time of 15c/U∞, of which the first 5 time units are used to allow initial transients to
exit the domain and the subsequent 10 time units are used for the computation of time-mean flow statistics.

For parallel implementation, the parallel graph partitioning library ParMETIS15 is used for domain de-
composition and provides optimal load balancing with a minimal surface interface between zones. Communi-
cation between processors is achieved using Message Passing Interface (MPI) programming model. Figure 5
shows the computational mesh in the x–y plane of Grid II used in LES at Rec = 6× 104, and figure 6 shows
the corresponding domain decomposition obtained using ParMETIS for parallel implementation on 128 pro-
cessors. Each zone in figure 6 is assigned to a separate processor for time advancement of the flow variables,
and MPI is used for exchange of data at the interface between the zones during the iterative solution of the
linear systems.

V. Results and Discussion

The contours of instantaneous vorticity magnitude (|ω|c/U∞), in the spanwise mid-plane, obtained from
LES of the baseline uncontrolled separated flow (hereafter referred to as ‘Case 0’) at Rec = 6 × 104 on
Grid II are presented in figure 7. As compared to its two-dimensional counterpart shown in figure 8, the
LES result shows a striking difference in that the separated shear layer rolls up farther away than in 2-
D simulations resulting in an open mean separation bubble as shown in the plot of mean streamlines in
figure 9(a), while the 2-D direct simulations result in a closed bubble (see figure 9b). This discrepancy is in
accordance with the numerical studies of flow over elliptic and circular cylinders by Mittal & Balachandar,16

who observed that Kármán vortices roll up closer to the cylinder in 2-D simulations than in 3-D simulations
resulting in increased Reynolds stresses and pressure fluctuations closer to the cylinder which in turn lead
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Figure 7. Contours of instantaneous vorticity magnitude (|ω|c/U∞) at t = 20c/U∞, in the spanwise mid-plane,
obtained from LES of Case 0 at Rec = 6 × 104 on Grid II.
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Figure 8. Contours of instantaneous spanwise vorticity (ωzc/U∞) at t = 20c/U∞ for the baseline separated flow
at Rec = 6 × 104 obtained from 2-D direct simulations on Grid II by Kotapati et al.3
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Figure 9. Mean streamlines, in the spanwise mid-plane, obtained from LES of Case 0 at Rec = 6 × 104 on
Grid II. Also shown are the mean streamlines obtained from 2-D direct simulations3 on Grid II.

Table 2. Comparison of the location and size of the mean separation bubbles obtained

from LES and 2-D direct simulations3 of Case 0 at Rec = 6 × 104. S1, S2, R1, and
R2 denote primary and secondary separation points, and primary and secondary
reattachment points, respectively.

Simulation type S1 R1 S2 R2 Lsep = R1 − S1 Hsep

LES - Grid I 0.625c 1.084c 1.000c 0.947c 0.459c 0.0647c

LES - Grid II 0.626c 1.086c 1.000c 0.946c 0.460c 0.0643c

2-D - Grid II 0.638c 0.973c 0.811c 0.771c 0.335c 0.0337c

to overprediction of the drag force in 2-D simulations. Mittal & Balachandar16 explained this discrepancy
by arguing that three-dimensional vortex stretching in 3-D simulations changes the vorticity distribution in
the wake which in turn affects velocity field around the body. This results in reduced vorticity production
in the attached boundary layer upstream of separation leading to the formation of weaker shear layers and
the delayed roll-up in 3-D simulations.

The rolled-up vortices regularly shed from the shear layer to become one of the pair of oppositely signed
vortices that constitute the Kármán vortex street in the absence of vortex shedding from the upper edge
of the blunt trailing face. The vortex shedding from the upper edge of the trailing face is precluded by the
presence of the secondary separation of the reverse flow induced by the vortex roll-up (see figure 9a). Since
the open mean separation bubble obtained from LES does not have the primary reattachment point on the
airfoil surface but extends beyond the trailing edge, a virtual reattachment point R1 is defined by extending
the flat plate section into the wake as shown in the plot of mean streamlines in figure 9. Table 2 compares
the locations and sizes of the mean separation bubble computed using LES on Grids I and II as well as
using 2-D direct simulations on Grid II. First, one finds that the data obtained on the two grids using LES
are in excellent agreement with each other, thereby comfirming the independency of the simulation results
with respect to the spanwise domain size, and in-plane and spanwise grid resolutions. Second, the boundary
layer is found to separate earlier in the 3-D simulations than in the 2-D simulations, and the characteristic
length Lsep and height Hsep of the mean separation bubble in the 3-D simulations are larger than their 2-D
counterparts by 37% and 90%, respectively.

The one-dimensional power spectra Evv corresponding to temporal variations of cross-stream velocity v
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in the shear layer, separated region and wake, obtained from LES of Case 0 on Grids I and II are shown in
figure 10. The spectrum at a given (x, y) location is obtained by averaging the power over five uniformly
spaced points across the span. Also included in some of these plots are the slopes corresponding to F−5/3

and F−7 variations. While the F−5/3 variation is associated with the inertial subrange,17 the F−7 variation
characterizes the dissipation range18 where most of the turbulent kinetic energy is dissipated by the action of
the viscosity. Note that Taylor’s hypothesis19 is invoked, whereby the spatial correlations are approximated
by temporal correlations. Figures 10(a)–(c), in that order, show the downstream development of convective
instabilities in the laminar shear layer. At the streamwise location of x/c = 0.75, the spectra on both the
grids show a peak at fc/U∞ = 2.14 corresponding to the dominant frequency of the shear layer instability
at this station. With the downstream development, the superharmonics at fc/U∞ = 4.28 and 6.42 appear
due to nonlinear interactions and grow in strength, and in particular, the superharmonic at fc/U∞ = 6.42
becomes as strong as the instabililty at fc/U∞ = 2.14. Also, in going from station x/c = 0.9 to station
x/c = 1.0, the spectra undergo a fundamental change in the slope indicating the onset of transition of the
shear layer.

The spectra in figures 10(d) and 10(e) measured downstream of the location of roll-up of shear layer
show distinct peaks at fc/U∞ = 2.14 corresponding to the shedding of rolled-up vortices from the shear
layer as a result of an absolute instability.20 The spectra in the wake region traversed by vortices shed from
the lower edge of the trailing face, shown in figure 10(f ), also indicate a strong peak at fc/U∞ = 2.14. This
implies that vortex shedding from the separated shear layer and from the lower edge of the trailing face,
both resulting from an absolute instability,20 lock-on and evolve together as they would in a regular Kármán
vortex street in the absence of a separation bubble. Since this absolute instability is a global instability, it
affects the separated shear layer upstream and modulates it at the same frequency of fc/U∞ = 2.14. The
other dominant superharmonic at fc/U∞ = 6.42 evident in the shear layer spectra is probably close to the
natural frequency of the shear layer instability and since the shear layer has a rich spectrum of response to
various disturbances, it could have shifted to a superhamonic of the global wake instability. Thus,

f0
lock = f0

SL = f0
sep = f0

wake ≈ 2.14U∞/c.

Renormalizing the frequency f0
sepc/U∞ associated with the separated region of Case 0 by the characteristic

length Lsep of its mean separation bubble yields f0
sepLsep/U∞ ≈ 1 as in the 2-D simulations of Kotapati

et al,3 wherein f0
lock ≈ 2.90U∞/c. This confirms that the scaling fsep ∼ U∞/Lsep has approximately the

same constant of proportionality in the 3-D simulations as in the 2-D simulations, and so the apparent
decrease in f0

sepc/U∞ with increase in Lsep in going from 2-D to 3-D simulations. Similarly, when the wake
vortex shedding frequency for Case 0 is renormalized by the wake width Wwake = t + Hsep, one finds that
f0

wakeWwake/U∞ ≈ 0.24 which is the same value as that obtained in the 2-D simulations of Kotapati et al.
A noticeable inertial subrange and dissipation range in the spectra in figures 10(e) and 10(f ) indicate

completion of transition and emergence of well-developed turbulent flow at these stations. The above spectra
can also be used to assess the resolutions of the two grids used in LES. The point at the higher frequencies
where the spectra deviates from the F−7 line represents the grid cut-off, below which the frequency scales
are adequately resolved, and above which they are parameterized by the SGS model. Since Grid II has twice
as many points in the x–y plane than Grid I in the wake region (see table 1), the spectra in the wake show
that the simulation on Grid II resolves scales much deeper into the dissipation range than the simulation
on Grid I. A similar assessment can be made of the grid resolution at the other stations by looking at the
corresponding spectra. Also, the overall agreement between the LES results obtained on Grids I and II with
respect to the dominant frequencies and the energy levels in the range of adequately resolved frequencies
further demonstrates the grid and spanwise domain size independency of the simulation results.

VI. ZNMF forcing of the separated flow

The ZNMF jet adopted in the LES produces a strictly two-dimensional mode of excitation in the absence
of spanwise modulation of amplitude or phase so as to facilitate direct comparison of the LES results with
their two-dimensional counterparts.3 Further justification for adopting a two-dimensional mode of excitation
over a three-dimensional mode is provided by the work of21 that suggests that the two-dimensional mode
generates the highest lift-to-drag ratio L/D at the highest Cl and produces a milder post-stall behavior than
the three-dimensional mode, therefore making it a better candidate for hysteresis prevention and dynamic
stall suppression in practical configurations.
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Table 3. Various LES cases resulting
from ZNMF forcing of the baseline sep-
arated flow obtained from LES at Rec =
6 × 104 and VJ/U∞ = 0.1.

Case fJ/f0
lock−on F+

J = fJc/U∞
1 1 2.14
2 2 4.28
3 3 6.42
4 4 8.56
5 10 21.40

Because of the enormous computational cost associated with these 3-D simulations, in what follows, the
effect of ZNMF forcing on the separated flow in the 3-D simulations is studied using only Grid II which
has higher resolution in the wake and yet a smaller overall grid size owing to smaller spanwise extent and
lower spanwise resolution as compared to Grid I. Based on the control effectiveness observed in the 2-D
simulations,3 the separated flow obtained by LES of Case 0 is subjected to ZNMF forcing at only five
representative frequencies as shown in table 3.

Figures 11(a)–(e) show the contours of instantaneous vorticity magnitude (|ω|c/U∞), in the spanwise
mid-plane, obtained from LES of Cases 1–5, respectively, on Grid II. As compared to Case 0, ZNMF forc-
ing in Cases 1–4 is clearly seen to advance the discretization and/or roll-up of the separated shear layer,
besides reducing the height of the separated region significantly. Comparing ZNMF forcing in Cases 1–4
at fJ/f0

lock−on = 1, 2, 3 and 4 in the 3-D simulations with their 2-D counterparts3 (see figures 12), one
finds that even though 3-D solution shows a wide range of spatial scales owing to three-dimensional vortex
stretching, the large scale features are very similar in both 2-D and 3-D simulations, therefore implying
two-dimensionalization of the gross flow due to ZNMF forcing.

The shear layer is also seen to undergo earlier transition to turbulence in Cases 1–4 than in Case 0.
However, this accelerated laminar–turbulent transition does not play as significant a role in separation
control as the large coherent structures that result from the discretization of the shear layer due to ZNMF
forcing. For instance, the separated region beyond x/c = 0.85 in Case 4 is turbulent (as will also be shown
later using power spectra), yet the corresponding plot of mean streamlines in figure 13(d) shows a large mean
separation bubble similar to that observed with forcing at fJ = 4f0

lock in 2-D simulations. On the other
hand, even though the separated shear layer in Cases 1 and 2 is laminar or only transitioning to turbulence,
the large coherent structures generated by ZNMF forcing entrain high-momemtum fluid from the outer flow
into the near-wall region, thereby reducing the size of the mean separation bubble dramatically as shown in
figures 13(a) and 13(b) for Cases 1 and 2, respectively. In particular, of the five cases considered, the forcing
at fJ = 2flock in Case 2 generates a train of vortices close to the wall that leads to regularization of the
flow field and most effective separation control. On the other hand, high-frequency forcing in Case 5 has no
effect on the separated shear layer, resulting in same flow dynamics as Case 0.

Although the purpose of these large-eddy simulations is to study the effect of three-dimensionality on the
scaling of the characterictic frequencies of the separated flow and its subsequent control, it is nevertheless
insightful to assess the role played by the dynamic SGS model in the simulations. Figures 14(a)–(f ) show
contour plots of mean normalized SGS eddy viscosity 〈νT /ν〉, in the spanwise mid-plane, for Cases 0–5,
respectively. The corresponding contour plots of the turbulent kinetic energy 〈uiui〉/(2U2

∞) are shown in
figures 15(a)–(f ), respectively. First, the highest values of the SGS eddy viscosity for Case 0 occur in
the wake where, as will be shown using power spectra in the following pages, the separated shear layer
and the vortices shed from the pressure side undergo transition to turbulence. These locations where SGS
eddy viscosity peaks also correspond to where the turbulent kinetic energy shown in figure 15(a) reaches
its maximum. Thus, the dynamic SGS model, whose primary function is to mimic the drain of turbulent
kinetic energy associated with the energy cascade, introduces dissipation in regions of significant turbulent
fluctuations to remove the energy from the resolved scales and limits SGS eddy viscosity to near-zero values
in regions where the flow is unsteady but not turbulent.

Next, because the ZNMF forcing in Cases 1, 3 and 4 leads to earlier transition to turbulence in the
separated region and particularly higher strain rate in Case 4 due to subharmonic pairing of vortices, highest
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Figure 11. Contours of instantaneous vorticity magnitude (|ω|c/U∞) at t = 35c/U∞, in the spanwise mid-plane,
obtained from LES of Cases 1–5 on Grid II.

values of SGS eddy viscosity are seen in the separated region. However, for Case 2, since ZNMF forcing
results in regularization of the flow field leading to maximal flow attachment, the eddy viscosity levels in the
separated region are considerably lower than those for other cases. Also, the two distinct strands seen in the
contour plot of 〈νT /ν〉 in the wake region for cases 0 and 5 indicate a well-organized Kármán vortex street.
The apparent reduction in the intensity of turbulent kinetic energy for Cases 1–4 shown in figures 15(b)–(e),
respectively, is caused by ZNMF forcing that suppresses random unsteadiness and increases coherence of the
flow structures.

The mean pressure 〈Cp〉 distribution on the spanwise mid-section of the airfoil obtained from LES of
Cases 0–5 is plotted in figure 16. Also plotted in this figure is the distribution for Case 0 computed on
Grid I. First, the distributions for Case 0 computed on Grids I and II show reasonable agreement, confirming
the independency of the surface pressure with respect to spanwise domain size, and in-plane and spanwise grid
resolutions. Second, as compared to 〈Cp〉 from the 2-D simulations shown in the figure 17, 〈Cp〉 distribution
computed using LES shows much lower suction peak. As explained by,16 this lower suction peak in 3-D
simulations is attributed to the establishment of three-dimensionality in the wake that changes the wake
vorticity distribution, which in turn affects the entire velocity field and reduces the vorticity distribution
and production on the surface. Since the tangential pressure gradient, and therefore the mean pressure
distribution, is determined by the vorticity source strength on the surface, reduced vorticity production
in the 3-D simulations leads to reduced pressure distribution. As discussed earlier, this reduced vorticity
production also leads to delayed roll-up of the separated shear layer, which in turn, closes this cycle of
processes. 〈Cp〉 for Case 0 from LES also shows a large pressure plateau corresponding to the separated
region.

The pressure distributions for Cases 1 and 2 with ZNMF forcing at fJ = f0
lock and 2f0

lock, respectively, look
very similar to their 2-D counterparts in figure 17, implying that the ZNMF forcing in the 3-D simulations
drives the bulk flow toward its two-dimensional state. Although forcing at fJ = 4f0

lock in Case 4 closes the
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Figure 12. Contours of instantaneous spanwise vorticity (ωzc/U∞) at t = 35c/U∞ from direct simulations of
Cases 1–4 on Grid II.
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Figure 13. Mean streamlines, in the spanwise mid-plane, obtained from LES of Cases 1–3 at Rec = 6 × 104 on
Grid II.
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Figure 14. Contours of mean SGS eddy viscosity 〈νT /ν〉, in the spanwise mid-plane, obtained from LES of
Cases 0–5 on Grid II.
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Figure 15. Contours of mean turbulent kinetic energy 〈uiui〉/(2U2∞), in the spanwise mid-plane, obtained from
LES of Cases 0–5 on Grid II.
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Figure 16. Mean pressure coefficient 〈Cp〉, on the spanwise mid-section of the airfoil surface, obtained from
LES of Cases 0–3 at Rec = 6 × 104. Grid I: ◦ , Case 0. Grid II: , Case 0 (No forcing); , Case 1
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Figure 17. Pressure distribution Cp on the airfoil surface obtained from direct simulations of Cases 0–4 on
Grid II by Kotapati et al.3 , Case 0 (No forcing); , Case 1 (fJ = f0

lock); , Case 2 (fJ = 2f0
lock);

, Case 3 (fJ = 3f0
lock); , Case 4 (fJ = 4f0

lock).

mean separation bubble upstream of the trailing edge, lack of effectiveness of further control results in only a
marginal pressure recovery in the aft-section. On the other hand, dramatic reduction in the size of the mean
separation bubble due to forcing at fJ = f0

lock and 2f0
lock in Cases 1 and 2, respectively, results in increased

pressure distribution on the entire airfoil owing to increased circulation around the airfoil, and in particular,
higher rates of pressure recovery in the aft-section. Using the rate of pressure recovery as a measure of
separation control, one finds forcing at fJ = 2f0

lock to be the most effective of the five cases considered.
Figure 18 shows the distributions of streamwise local mean skin-friction coefficient 〈Cf 〉, in the aft-chord

region of the spanwise mid-section of the airfoil, obtained from LES of Cases 0–5 on Grid II. Distribution of
〈Cf 〉 for Case 0 computed on Grid I is also included and shows excellent agreement with the data obtained
on Grid II. A drop in the value of 〈Cf 〉 for all cases at x/c = 0.6 indicates the presence of ZNMF slot at
that location. It should be pointed out that the change in the sign of 〈Cf 〉 for Case 0 at x/c ≈ 0.94 does
not correspond to primary reattachment point R1, but to secondary reattachment point R2 of the separated
flow induced by the roll-up of the shear layer immediately downstream of the trailing edge (see figures 7b
and 9a). Therefore, the streamwise extent 0.63 ≤ x/c ≤ 0.94 in Case 0 corresponds to the so-called ‘dead air’
region, where the reversed flow has very low streamwise velocity, thereby resulting in low negative values of
〈Cf 〉. However, high-speed secondary recirculation induced by vortex roll-up results in large positive values
of 〈Cf 〉 near the trailing edge. On the other hand, 〈Cf 〉 = 0 at the most downstream location in Cases 1–4
does correspond to the primary reattachment point R1 owing to the closing of the mean separation bubble
upstream of the trailing edge with ZNMF forcing.

With ZNMF forcing in Cases 1 and 2, the separation bubble reduces in size from both the sides, i.e. not
only does the primary reattachment point R1 move upstream, but also the primary separation point S1 moves
downstream.22 attributed such a two-sided reduction in the size of the mean separation bubble to a feedback
effect resulting from mean flow deformation caused by ZNMF forcing. Larger negative values of 〈Cf 〉 in the
separated region for Cases 1–4 than those for Cases 0 and 5 arise from the downstream convection of large
coherent vortices formed from the discretization of the separated shear layer. 〈Cf 〉 distribution for Case 1
also shows secondary separation and reattachment of the induced flow caused by vortex roll-up. Based on
the criterion of maximal flow attachment as defined by wall shear stress, amongst the five cases with ZNMF
forcing, Case 2 with forcing at fJ = 2f0

lock results in most effective separation control. Table 4 summarizes
the location and size of the mean separation bubbles obtained from LES of Cases 1–5 on Grid II.

The spanwise-averaged power spectra corresponding to temporal variations of cross-stream velocity v
in the shear layer, separated region and wake, obtained from LES of Cases 1–5 on Grid II are shown in
figures 19–23, respectively. The slopes corresponding to F−5/3 and F−7 variations corresponding to the
inertial subrange and dissipation range, respectively, as discussed before, are also included in some of these
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Figure 18. Distribution of streamwise local mean skin-friction coefficient 〈Cf 〉, on the spanwise mid-section of
the airfoil surface, obtained from LES of Cases 0–3 at Rec = 6× 104. Grid I: ◦ , Case 0. Grid II: , Case 0
(No forcing); , Case 1 (fJ = f0

lock); , Case 2 (fJ = 2f0
lock); , Case 3 (fJ = 3f0

lock); , Case 4
(fJ = 4f0

lock); , Case 5 (fJ = 10f0
lock).

Table 4. Location and size of the mean separation bubble

obtained from LES of Cases 1–3 at Rec = 6 × 104 on Grid
II.

Case S1 R1 Lsep = R1 − S1 Hsep

1 0.6659c 0.9342c 0.2683c 0.0170c

2 0.6828c 0.8959c 0.2131c 0.0118c

3 0.6617c 0.9907c 0.3290c 0.0349c

4 0.6466c 0.9926c 0.3460c 0.0336c

5 0.6242c 1.0897c 0.4655c 0.0601c

plots. For cases with forcing that results in effective control (i.e. cases 1–4), the forcing frequency shows up as
the most dominant frequency in the spectra of shear layer at the location of ZNMF jet actuation. However,
nonlinear interaction of the ZNMF jet with the shear layer instabilities also gives rise to superharmonics
that grow in amplitude with downstream development. Whereas the superharmonics become dominant over
the forcing frequency and govern the roll-up of the shear layer in Case 1 (see figures 19a–19c), the forcing
frequency remains the dominant frequency over the entire length of the separated shear layer in Cases 2, 3
and 4 (figures 20a–20c, 21a–21c and 22a–22c). This is in accordance with the spectral dynamics of the
shear layer observed in the 2-D simulations. The ZNMF forcing is also seen to suppress random high-
frequency modes and sustain only the forcing frequency and its superharmonics in the shear layer. Sustained
amplification of the Kelvin–Helmholtz instability in Case 4 due to ZNMF forcing transitions the laminar
shear layer to turbulence as is evident in the spectrum in figure 22(c) that shows distinct inertial subrange
and dissipation range corresponding to turbulent flow.

While in Case 1, only the pinch-off of the rolled-up vortices from the shear layer and the wake vortex
shedding from the pressure side are locked on to the forcing frequency, the ZNMF forcing at fJ = 2f0

lock in
Case 2 causes the entire system to lock on to the fundamental forcing frequency. Also, only in Case 2 does
ZNMF forcing suppress random high-frequency modes in the entire flow field suggesting strongest resonance
at fJ = 2f0

lock which then translates to most effective separation control as observed previously. On the
other hand, because the separated shear layer transitions to turbulence in Case 4, the rolled-up vortices are
less coherent and therefore fail to register a distinct peak in the spectrum shown in figure 21(d). For all
cases, a well-developed turbulent flow is found to be established in the wake at least within 40% of the chord
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as measured from the trailing face. Thus, except for the turbulent flow in the wake, the overall spectral
dynamics and the resulting lock-on states of the forced flow in the 3-D simulations are very much in line
with those in the 2-D simulations.

VII. Conclusions

Large-eddy simulations were used to study the effects of three-dimensionality on the dynamics of the sep-
arated flow and its control in a flow configuration proposed by Mittal et al1 for investigating active separation
control using zero-net-mass-flux jets. LES of the unforced separated flow showed that the boundary layer
separates earlier and the separated shear layer rolls up farther away than in 2-D simulations, resulting in an
open mean separation bubble that is considerably larger than its 2-D counterpart. As in 2-D simulations,
the entire system was found to be locked on to a single frequency of f0

lockc/U∞ = 2.14 owing to an absolute
instability.20 It was also found that the scaling laws f0

sepLsep/U∞ ≈ 1 and f0
wakeWwake/U∞ ≈ 0.24, observed

in the 2-D simulations, also hold in 3-D simulations. This implies that these laws have approximately the
same constant of proportionality in both 2-D and 3-D simulations and so the apparent decrease in f0

sepc/U∞
with increase in Lsep in going from 2-D to 3-D simulations.

ZNMF forcing of the above separated flow in LES was found to result in two-dimensionalization of the
bulk flow. Even though, the shear layer undergoes earlier transition to turbulence due to ZNMF forcing,
this accelerated laminar–turbulent transition does not play as significant a role in separation control as the
large coherent structures that result from the discretization of the shear layer due to ZNMF forcing. While
forcing at f0

lock and 2f0
lock reduced the size of the separation bubble significantly and reestablished pressure

recovery in the aft-chord region, forcing at 4f0
lock and 10f0

lock was essentially ineffective, thereby confirming
the exclusive effectiveness of forcing in the medium-frequency range in both 2-D and 3-D simulations. In
particular, forcing at fJ = 2flock generated a train of vortices close to the wall that led to regularization
of the flow field and most effective separation control. Except for the well-developed turbulent flow in the
wake, the overall spectral dynamics and the resulting lock-on states of the forced flow in the 3-D simulations
were very much in agreement with those in the 2-D simulations.
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