Wierman, John C.

Professor
Applied Mathematics And Statistics

Whitehead Hall 211G
(410) 516-7211
wierman@jhu.edu

Jump to:

About

Education
  • Ph.D. 1976, University of Washington
Experience
  • 2009:  Research Fellow, Mittag-Leffler Institute, Royal Swedish Academy of Sciences
  • 2008 - 2008:  Invited Organizer and Chair, Mini-Symposium on Percolation Theory, 2008 SIAM Conference on Discrete Mathematics, University of Vermont
  • 2007 - 2007:  Program Co-Chair, SRCOS Summer Research Conference, Richmond, Virginia
  • 2003 - 2005:  President-Elect, Southern Regional Council on Statistics
  • 2002 - 2002:  Session Chair, Probability and Statistics, American Mathematical Society annual meeting, San Diego, CA
  • 2001 - 2002:  ASEE Research Fellow, Naval Surface Warfare Center
  • 1996 - Present:  Enrollment Prediction Modeler, Office of Admissions, Johns Hopkins University
  • 1987 - 1988:  Senior Research Fellow, Institute for Mathematics and Its Applications, University of Minnesota
  • 1982 - 1983:  Probability - Statistics Day Local Organizer, Johns Hopkins University Department of Mathematical Sciences
  • 1976 - 1981:  Assistant Professor of Mathematics, University of Minnesota
Research Areas
  • Discrete mathematics
  • Percolation theory
  • Probability Theory
  • Random graphs
  • Statistics
  • Stochastic Processes
Awards
  • 2018:  Member - Phi Eta Sigma
  • 2018:  Member - Pi Mu Epsilon
  • 2018:  Member - Sigma Xi
  • 2018:  Listed
  • 2018:  Listed
  • 2018:  Listed
  • 2018:  Listed
  • 2018:  Listed
  • 2018:  Listed
  • 2018:  Listed in Men of Achievement
  • 2012:  Paul Minton Service Award
  • 2010:  Teaching Excellence Award
  • 2004:  Elected Fellow
  • 2001:  Sabbatical Fellowship
  • 1995:  Honorary lifetime membership - Golden Key Society
  • 1985:  National Academy of Sciences Exchange Visits (Poland: 1985 - 1987 - 1989)
  • 1984:  Elected Fellow - Institute of Mathematical Statistics
  • 1971:  National Science Foundation Graduate Fellowship
  • 1970:  Inducted as Member
Presentations
  • "Rigorous upper bounds for percolation thresholds of 3D lattices", 2018 Joint Mathematics Meetings.  San Diego California, United States of America (the).  January 13, 2018
  • "An unexpected expectation trick for maximums and minimums of two random variables", 2018 Joint Mathematics Meetings.  San Diego California, United States of America (the).  January 13, 2018
  • "Asymmetric and symmetric rendezvous on the unit cube", 2018 Joint Mathematics Meetings.  San Diego California, United States of America (the).  January 13, 2018
  • "Investigating bounds for the bond and site percolation thresholds of a 2-uniform lattice", 2018 Joint Mathematics Meetings.  San Diego California, United States of America (the).  January 10, 2018
  • "Efficient and perfect domination on Archimedean lattices", 2018 Joint Mathematics Meetings.  San Diego California, United States of America (the).  January 10, 2018
  • "Rendezvous search on the edges of Platonic solids", 2018 Joint Mathematics Meetings.  San Diego California, United States of America (the).  January 10, 2018
  • "Uncovering percolation bounds for the (3,4,3,12;3,12,12) lattice", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 28, 2017
  • "Bounds for bond percolation thresholds of 2-uniform lattices", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 28, 2017
  • "Properties and rigorous bounding methods of minimal domination ratios on infinite graphs", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 27, 2017
  • "Efficient and perfect domination on Archimedean lattices", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 27, 2017
  • "Symmetric rendezvous on the cube", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 27, 2017
  • "Rendezvous search on the edges of Platonic solids", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 27, 2017
  • "Strict inequalities between bond percolation thresholds of Archimedean lattices", Mathfest 2017.  Chicago Illinois, United States of America (the).  July 27, 2017
  • "Strict inequalities between bond percolation thresholds of Archimedean lattices.", 48th Southeastern International Conference on Combinatorics, Graph Theory and Computing.  Boca Raton Florida, United States of America (the).  March 10, 2017
  • "Improved percolation threshold bounds for Archimedean lattices", 2017 Joint Mathematics Meetings.  Atlanta Georgia, United States of America (the).  January 4, 2017
  • "Improved Percolation Threshold Bounds for Archimedean Lattices", Mathfest 2016.  Columbus, Ohio.  August 5, 2016
  • "A probabilistic model for optimal soccer shots", Woodrow Wilson Research Scholarship Poster Session.  Johns Hopkins University.  April 21, 2016
  • "Bounds for bond percolation thresholds of two three-dimensional lattices,", Central Section Meeting.  North Dakota State University, Fargo, North Dakota.  April 17, 2016
  • "Bounds for bond percolation thresholds of Archimedean lattices", 30th National Conference on Undergraduate Research.  University of North Carolina at Asheville, Asheville, North Carolina.  April 8, 2016
  • "Exact enumeration of self-avoiding walks on non-transitive lattices", 47th Southeastern International Conference on Combinatorics, Graph Theory, and Computing.  Florida Atlantic University, Boca Raton, Florida.  March 10, 2016
  • "Rigorous bounds relating bond percolation thresholds of two three-dimensional lattices", 47th Southeastern International Conference on Combinatorics, Graph Theory, and Computing.  Florida Atlantic University, Boca Raton, Florida.  March 10, 2016
  • "A lower bound for the difference between the bond percolation thresholds of the cubic and face-centered cubic lattices", 2016 Joint Mathematics Meetings.  Seattle, Washington.  January 7, 2016
  • "A disproof of Tsallis' conjecture for the exact bond percolation threshold of the kagome lattice", Mathematics Department Colloquium.  Colorado Springs, Colorado.  November 5, 2015
  • "An upper bound for the bond percolation threshold of the cubic lattice", 2015 Joint Statistics Meetings.  Seattle, Washington.  August 12, 2015
  • "On percolation threshold curves for 3-dimensional hypergraphs", 17th Conference on Random Structures & Algorithms.  Carnegie Mellon University, Pittsburgh, Pennsylvania.  July 28, 2015
  • "On percolation threshold curves for 3-dimensional hypergraphs", 38th Conference on Stochastic Processes and Their Applications.  Oxford University, Oxford, England.  July 15, 2015
  • "An upper bound for the bond percolation threshold of the cubic lattice.", 46th Southeastern International Conference on Combinatorics, Graph Theory, and Computing.  Florida Atlantic University, Boca Raton, Florida.  March 6, 2015
  • "Improving the upper bound for the bond percolation threshold of the cubic lattice.", Joint Mathematics Meetings.  San Antonio, Texas.  January 13, 2015
  • "On percolation threshold curves for 3-uniform hypergraphs.", Joint Mathematics Meetings.  San Antonio, Texas.  January 13, 2015
  • "Network flow approach in solving rigorous bounds for percolation thresholds of Archimedean lattices.", Joint Mathematics Meetings.  San Antonio, Texas.  January 13, 2015
  • "The class joke contest: Encouraging creativity and improving attendance", Joint Mathematics Meetings.  San Antonio, Texas.  January 10, 2015
  • "A disproof of Tsallis' conjecture for the exact percolation threshold of the kagome lattice.", Mathfest.  Portland, Oregon.  August 7, 2014
  • "A disproof of Tsallis' conjecture using the substitution method", 2014 National Conference on Undergraduate Research.  University of Kentucky, Lexington, Kentucky.  April 3, 2014
  • "On Tsallis' prediction for the bond percolation threshold of the kagome lattice", Erdos 101.  Memphis, Tennessee.  March 28, 2014
  • "On exact site percolation thresholds for a class of two-dimensional lattices", 45th Southeastern International Conference on Combinatorics, Graph Theory, and Computing.  Florida Atlantic University, Boca Raton, Florida.  March 5, 2014

Publications

Journal Articles
  • Wierman JC (2017).  On bond percolation threshold bounds for Archimedean lattices with degree three.  Journal of Physics A: Mathematical and Theoretical.  50(29).
  • Wierman JC, Jeffrey Braun (2017).  An unexpected expectation trick for maximums and minimums..  College Mathematics Journal.
  • Wierman JC (2017).  Strict inequalities between bond percolation thresholds of Archimedean lattices..  Congressus Numerantium.  229.  231--244.
  • Wierman JC (2016).  Tight bounds for the bond percolation threshold of the (3, 122) lattice.  Journal of Physics A: Mathematical and Theoretical.  49(47).
  • Wierman JC (2016).  The Class Joke Contest: Encouraging Creativity and Improving Attendance.  American Statistician.  70(3).
  • Wierman J, McCarthy S (2016).  An upper bound for the bond percolation threshold of the cubic lattice.  Congressus Numerantium.  12 pp..
  • Wierman J (2016).  Tight bounds for the bond percolation threshold of the (3,12^2) lattice.  Journal of Physics A: Mathematical and Theoretical.  49.  475002.
  • Wierman J, Yu G (2016).  Rigorous bounds relating bond percolation thresholds of two three-dimensional lattices.  Congressus Numerantium.  227.  157--176.
  • Wierman J (2016).  Exact enumeration of self-avoiding walks on FCC and BCC lattices.  Congressus Numerantium.  226.  199--212.
  • Wierman JC (2016).  The class joke contest: Encouraging creativity and improving attendance.  The American Statistician.  70.  257--259.
  • Wierman JC, Yu G, Huang T (2015).  A disproof of Tsallis' bond percolation threshold conjecture for the kagome lattice.  Electronic Journal of Combinatorics.  22(2).
  • Sedlock MR, Wierman JC (2015).  Exact site percolation thresholds for a class of two-dimensional lattices..  Congressus Numerantium.  221.  55-71.
  • Sedlock MR, Wierman JC (2015).  Exact site percolation thresholds for a class of two-dimensional lattices..  Congressus Numerantium.  221.  55-71.
  • Wierman JC, Yu G, Huang T (2015).  A disproof of Tsallis' bond percolation threshold conjecture for the kagome lattice.  Electronic Journal of Combinatorics.  22.  P2.52.
  • Ziff RM, Scullard CR, Wierman JC, Sedlock MRA (2012).  The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices.  Journal of Physics A: Mathematical and Theoretical.  45(49).
  • Ziff RM, Scullard CD, Wierman J, Sedlock MR (2012).  The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices.  Journal of Physics A: Mathematical and Theoretical.  45.  494005.
  • Wierman J, Nathan A, Lim E (2012).  Bond percolation threshold bounds for planar lattices with generators with four boundary vertices.  Congressus Numerantium.  213.  169-183.
  • Wierman JC, Ziff RM (2011).  Self-dual planar hypergraphs and exact bond percolation thresholds.  Electronic Journal of Combinatorics.  18(1).
  • Wierman J, Ziff RM (2011).  Self-dual hypergraphs and exact bond percolation thresholds.  Electronic Journal of Combinatorics.  18(1).  P61.
  • Markström K, Wierman JC (2010).  Aperiodic non-isomorphic lattices with equivalent percolation and random-cluster models.  Electronic Journal of Combinatorics.  17(1).
  • Sedlock MRA, Wierman JC (2009).  Equality of bond-percolation critical exponents for pairs of dual lattices.  Physical Review E - Statistical, Nonlinear, and Soft Matter Physics.  79(5).
  • Xiang P, Wierman JC (2009).  A CLT for a one-dimensional class cover problem.  Statistics and Probability Letters.  79(2).
  • Sedlock MR, Wierman J (2009).  Equality of bond percolation critical exponents for pairs of dual lattices.  Physical Review E.  79.  051119.
  • Xiang P, Wierman J (2009).  A CLT for a one-dimensional class cover problem.  Statistics & Probability Letters.  79(2).  223-233.
  • Markstrom K, Wierman J (2009).  Aperiodic non-isomorphic lattices with equivalent percolation and random-cluster models.  Electronic Journal of Combinatorics.  17.  R48.
  • Wierman JC, Xiang P (2008).  A general SLLN for the one-dimensional class cover problem.  Statistics and Probability Letters.  78(9).
  • Wierman J, Xiang P (2008).  A general SLLN for the one-dimensional class cover problem.  Statistics & Probability Letters.  78(9).  1110-1118.
  • May WD, Wierman JC (2007).  The application of non-crossing partitions to improving percolation threshold bounds.  Combinatorics Probability and Computing.  16(2).
  • Wierman JC, Naor DP, Smalletz J (2007).  Incorporating variability into an approximation formula for bond percolation thresholds of planar periodic lattices.  Physical Review E - Statistical, Nonlinear, and Soft Matter Physics.  75(1).
  • Wierman J, Naor DP, Smalletz JS (2007).  Incorporating variability into an approximation formula for bond percolation thresholds of planar periodic lattices.  Physical Review E.  75(1).  011114.
  • Wierman J, Aronhime L, Camerer M, Gibbs B (2007).  Creating a framework for undergraduate entrepreneurs to start and manage student-run businesses.  ASEE Annual Conference and Exposition, Conference Proceedings.
  • May WD, Wierman J (2007).  The application of non-crossing partitions to improving percolation threshold bounds.  Combinatorics, Probability & Computing.  16(2).  285-307.
  • Wierman J, Smalletz JS, Lui C (2007).  Percolation threshold approximations based on the second moment of the degree distribution.  Congressus Numerantium.  186.  199-211.
  • Ceyhan E, Priebe CE, Wierman JC (2006).  Relative density of the random r-factor proximity catch digraph for testing spatial patterns of segregation and association.  Computational Statistics and Data Analysis.  50(8).
  • Parviainen R, Wierman JC (2006).  Inclusions and non-inclusions among the Archimedean and Laves lattices, with applications to bond percolation thresholds.  Congressus Numerantium.  176.  43-63.
  • Ceyhan E, Priebe C, Wierman J (2006).  Relative density of the random r-factor proximity catch digraph for testing spatial patterns of segregation and association.  Computational Statistics and Data Analysis.  50(8).  1925-1964.
  • May WD, Wierman J (2006).  Algorithms for non-crossing partitions.  Congressus Numerantium.  179.  65-88.
  • Wierman J, Naor DP, Cheng R (2006).  An improved site percolation threshold formula for two-dimensional matching lattices.  Physical Review E.  72.  066116.
  • Wierman JC, Naor DP, Cheng R (2005).  Improved site percolation threshold universal formula for two-dimensional matching lattices.  Physical Review E - Statistical, Nonlinear, and Soft Matter Physics.  72(6).
  • Aronhime L, Wierman J (2005).  Practical entrepreneurship at Johns Hopkins university.  ASEE Annual Conference and Exposition, Conference Proceedings.
  • May WD, Wierman JC (2005).  Using symmetry to improve percolation threshold bounds.  Combinatorics Probability and Computing.  14(4).
  • Wierman JC, Naor DP (2005).  Criteria for evaluation of universal formulas for percolation thresholds.  Physical Review E - Statistical, Nonlinear, and Soft Matter Physics.  71(3).
  • Wierman J, Naor DP, Cheng R (2005).  Improved site percolation threshold universal formula for two-dimensional matching lattices.  Physical Review E.  72(6).  066116.
  • May WD, Wierman J (2005).  Using symmetry to improve percolation threshold bounds.  Combinatorics, Probability & Computing.  14(4).  549-566.
  • Wierman JC, Naor DP (2005).  Criteria for evaluation of universal formulas for percolation thresholds.  Physical Review E.  71.  036143.
  • Wierman J, Cheng R, May WD (2005).  Estimating bond percolation thresholds using the substitution method.  Congressus Numerantium.  170.  113-122.
  • Lam G, Moradi S, Lad M, Yagoda B, Wierman J (2005).  Inclusions among 2-uniform tilings.  Congressus Numerantium.  176.  45-55.
  • Lad M, Lam G, Wierman J, Moradi S, Yagoda B (2005).  On inclusions and non-inclusions among 2-uniform, Archimedean, and Laves lattices.  Congressus Numerantium.  172.  43-63.
  • Lin X, Wierman J (2005).  Cycles as constraint graphs in multi-type percolation.  Congressus Numerantium.  171.  67-75.
  • Wierman JC, Marchette DJ (2004).  Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction.  Computational Statistics and Data Analysis.  45(1).
  • Wierman J, Marchette DJ (2004).  Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction.  Computational Statistics & Data Analysis.  45(1).  3-23.
  • Wierman JC, Camerer M (2003).  Lessons from starting an entrepreneurship program.  ASEE Annual Conference Proceedings.
  • Allen RH, Aronhime LB, Shoukas AA, Wierman JC (2003).  Integrating biomedical engineering with entrepreneurship and management: An undergraduate experience.  ASEE Annual Conference Proceedings.
  • Wierman JC (2003).  Upper and lower bounds for the Kagomé lattice bond percolation critical probability.  Combinatorics Probability and Computing.  12(1).
  • Wierman J (2003).  Pairs of graphs with site and bond percolation critical probabilities in opposite orders.  Discrete Applied Mathematics.  129(2-3).  545-548.
  • May WD, Wierman J (2003).  Recent improvements to the substitution method for bounding percolation thresholds.  Congressus Numerantium.  162.  5-25.
  • Wierman JC, Naor DP (2003).  Desirable properties of universal formulas for percolation thresholds.  Congressus Numerantium.  163.  125-142.
  • Wierman J (2003).  Upper and lower bounds for the kagome lattice bond percolation critical probability.  Combinatorics, Probability & Computing.  12(1).  95-111.
  • Xiang P, Wierman J (2003).  Limit theory for the domination number of random class cover catch digraphs.  Congressus Numerantium.  162.  169-179.
  • Wierman JC (2002).  An improved upper bound for the hexagonal lattice site percolation critical probability.  Combinatorics Probability and Computing.  11(6).
  • Wierman JC (2002).  Percolation threshold is not a decreasing function of the average coordination number.  Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics.  66(4).
  • DeVinney J, Wierman JC (2002).  A SLLN for a one-dimensional class cover problem.  Statistics and Probability Letters.  59(4).
  • Wierman JC (2002).  Accuracy of universal formulas for percolation thresholds based on dimension and coordination number.  Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics.  66(2).
  • Wierman JC (2002).  Bond Percolation Critical Probability Bounds for Three Archimedean Lattices.  Random Structures and Algorithms.  20(4).
  • Wierman JC (2002).  On the range of bond percolation thresholds for fully triangulated graphs.  Journal of Physics A: Mathematical and General.  35(4).
  • Wierman J (2002).  An improved upper bound for the hexagonal lattice site percolation critical probability.  Combinatorics, Probability & Computing.  11(6).  629-643.
  • Wierman J (2002).  On the range of bond percolation thresholds for fully triangulated graphs.  Journal of Physics A: Mathematical & General.  35(4).  959-964.
  • Wierman J (2002).  Accuracy of universal formulas for percolation thresholds based on dimension and coordination number.  Physical Review E.  66(2).  027105.
  • Wierman JC (2002).  Site percolation critical probability bounds for the (4,8^2) and (4,6,12) lattices.  Congressus Numerantium.  150.  117-128.
  • Wierman JC, Vahidi-Asl MQ (2002).  A conjectured lower bound for bond percolation critical probabilities of regular planar graphs.  Congressus Numerantium.  154.  201-216.
  • Wierman J (2002).  Bond percolation critical probability bounds for three Archimedean lattices.  Random Structures & Algorithms.  20(4).  507-518.
  • Wierman J (2002).  The percolation threshold is not a decreasing function of the average coordination number.  Physical Review E.  66(4).  046125.
  • DeVinney J, Wierman J (2002).  A SLLN for a one-dimensional class cover problem.  Statistics & Probability Letters.  59(4).  425-435.
  • Alm SE, Wierman JC (1999).  Inequalities for Means of Restricted First-Passage Times in Percolation Theory.  Combinatorics Probability and Computing.  8(4).
  • Alm SE, Wierman J (1999).  Inequalities for means of restricted first-passage times in percolation theory.  Combinatorics, Probability & Computing.  8(4).  307-315.
  • Wierman JC (1995).  Substitution Method Critical Probability Bounds for the Square Lattice Site Percolation Model.  Combinatorics, Probability and Computing.  4(2).
  • Wierman J (1995).  Substitution method critical probability bounds for the square lattice site percolation model.  Combinatorics, Probability & Computing.  4.  181-188.
  • Wierman JC (1994).  Equality of directional critical exponents in multiparameter percolation models.  Journal of Physics A: Mathematical and General.  27(6).
  • Wierman J (1994).  Equality of directional critical exponents in multiparameter percolation models.  Journal of Physics A: Mathematical & General.  27(6).  1851-1858.
  • Luczak T, Pittel B, Wierman J (1994).  The structure of a random graph at the point of the phase transition.  Transactions of the American Mathematical Society.  341(2).  721-748.
  • Luczak T, Pittel B, Wierman JC (1994).  The structure of a random graph at the point of the phase transition.  Transactions of the American Mathematical Society.  341(2).
  • Appel MJ, Wierman J (1993).  AB-percolation on bond-decorated graphs.  Journal of Applied Probability.  30(1).  153-166.
  • Wierman J (1992).  Equality of the bond percolation critical exponents for two pairs of dual lattices.  Combinatorics, Probability & Computing.  1.  95-105.
  • Vahidi-Asl MQ, Wierman JC (1992).  Upper and lower bounds for the route length of first-passage percolation in Voronoi tessellations.  Bulletin of the Iranian Mathematical Society.  19.  15-28.
  • Wierman JC (1992).  Equality of the Bond Percolation Critical Exponents for Two Pairs of Dual Lattices.  Combinatorics, Probability and Computing.  1(1).
  • Wierman J (1990).  Review of "Percolation" by Geoffrey Grimmett.  Science.  247(4940).  351-351.
  • Luczak T, Wierman JC (1989).  Counterexamples in AB percolation.  Journal of Physics A: General Physics.  22(2).
  • Luczak T, Wierman JC (1989).  The chromatic number of random graphs at the double-jump threshold.  Combinatorica.  9(1).
  • BOLLOBÁS B, WIERMAN JC (1989).  Subgraph Counts and Containment Probabilities of Balanced and Unbalanced Subgraphs in a Large Random Graph.  Annals of the New York Academy of Sciences.  576(1).
  • Scheinerman E, Wierman J (1989).  Optimal and near-optimal broadcast in random graphs.  Discrete Applied Mathematics.  25(3).  289-297.
  • Scheinerman ER, Wierman JC (1989).  Optimal and near-optimal broadcast in random graphs.  Discrete Applied Mathematics.  25(3).
  • Luczak T, Wierman J (1989).  Counterexamples in AB percolation.  Journal of Physics A: Mathematical & General.  22(2).  185-191.
  • Luczak T, Wierman J (1989).  The chromatic number of random graphs at the double-jump threshold.  Combinatorica.  9(1).  39-49.
  • Bollobas B, Wierman J (1989).  Subgraph counts and containment probabilities of balanced and unbalanced subgraphs in a large random graph.  Annals of the New York Academy of Sciences.  576.  63-70.
  • Wierman JC (1988).  Bond percolation critical probability bounds derived by edge contraction.  Journal of Physics A: General Physics.  21(6).
  • Scheinerman ER, Wierman JC (1988).  On circle containment orders.  Order.  4(4).
  • Luczak T, Wierman JC (1988).  Critical probability bounds for two-dimensional site percolation models.  Journal of Physics A: General Physics.  21(14).
  • Nowicki K, Wierman JC (1988).  Subgraph counts in random graphs using incomplete u-statistics methods.  Discrete Mathematics.  72(1-3).
  • Nowicki K, Wierman J (1988).  Subgraph counts in random graphs using incomplete U-statistics methods.  Discrete Mathematics.  72(1-3).  299-310.
  • Scheinerman E, Wierman J (1988).  On circle containment orders.  Order - A Journal on the Theory of Ordered Sets and its Applications.  4(4).  315-318.
  • Nowicki K, Wierman JC (1988).  Subgraph Counts in Random Graphs Using Incomplete U-statistics methods.  Annals of Discrete Mathematics.  38(C).
  • Luczak T, Wierman J (1988).  Critical probability bounds for two-dimensional site percolation models.  Journal of Physics A: Mathematical & General.  21(14).  3131-3138.
  • Wierman J (1988).  Om AB Percolation on bipartite graphs.  Journal of Physics A: Mathematical & General.  21(8).  1945-1949.
  • Wierman J (1988).  AB percolation on close-packed graphs.  Journal of Physics A: Mathematical & General.  21(8).  1939-1944.
  • Wierman J (1988).  Bond percolation critical probability bounds derived by edge contraction.  Journal of Physics A: Mathematical & General.  21(6).  1487-1492.
  • Appel MJ, Wierman JC (1987).  On the absence of infinite AB percolation clusters in bipartite graphs.  Journal of Physics A: Mathematical and General.  20(9).
  • Scheinerman ER, Wierman JC (1987).  Infinite AB percolation clusters exist.  Journal of Physics A: General Physics.  20(5).
  • Wierman JC, Appel MJ (1987).  Infinite AB percolation clusters exist on the triangular lattice.  Journal of Physics A: Mathematical and General.  20(9).
  • Wierman J (1987).  Directed site percolation and dual filling models.  Annals of Discrete Mathematics.  33.  339-352.
  • Appel MJ, Wierman J (1987).  Infinite AB percolation clusters exist on the triangular lattice.  Journal of Physics A: Mathematical & General.  20(9).  2533-2537.
  • Gimbel J, Kurtz D, Lesniak L, Scheinerman ER, Wierman JC (1987).  Hamiltonian closure in random graphs.  North-Holland Mathematics Studies.  144(C).
  • Appel MJ, Wierman J (1987).  On the absence of infinite AB percolation clusters in bipartite graphs.  Journal of Physics A: Mathematical & General.  20(9).  2527-2531.
  • Gimbel J, Kurtz D, Lesniak L, Scheinerman E, Wierman JC (1987).  Hamiltonian closure in random graphs.  Annals of Discrete Mathematics.  33.  59-67.
  • Scheinerman E, Wierman J (1987).  Infinite AB percolation clusters exist.  Journal of Physics A: Mathematical & General.  20(5).  1305-1307.
  • Wierman JC (1987).  Directed site percolation and dual filling models.  North-Holland Mathematics Studies.  144(C).
  • Wierman JC (1985).  Critical Percolation Probabilities*.  North-Holland Mathematics Studies.  118(C).
  • Wierman JC (1985).  Critical percolation probabilities.  Annals of Discrete Mathematics.  28.  349-359.
  • Wierman JC (1984).  A bond percolation critical probability determination based on the star-triangle transformation.  Journal of Physics A: General Physics.  17(7).
  • Wierman JC (1984).  Counterexamples in percolation: the site percolation critical probabilities pH and pT are unequal for a class of fully triangulated graphs.  Journal of Physics A: Mathematical and General.  17(3).
  • Wierman J (1984).  Counterexamples in percolation: The site percolation critical probabilities p_H and p_T are unequal for a class of fully triangulated graphs.  Journal of Physics A: Mathematical & General.  17.  637-646.
  • Wierman J (1984).  A bond percolation critical probability determination based on the star-triangle transformation.  Journal of Physics A: Mathematical & General.  17.  1525-1530.
  • Wierman JC (1984).  MIXED PERCOLATION ON THE SQUARE LATTICE..  Journal of Applied Probability.  21(2).
  • Wierman J (1984).  Mixed percolation on the square lattice.  Journal of Applied Probability.  21.  247-259.
  • Beer M, Stoeckert C, Wierman J, Wiggins J (1984).  Histone positions within the nucleosome using platinum labeling and the scanning transmission electron microscope.  Journal of Molecular Biology.  177.  483-505.
  • Wierman J (1984).  Review of "Percolation Theory for Mathematicians," by Harry Kesten.  Bulletin of the American Mathematical Society.  11.  404-409.
  • Wierman JC (1983).  On square lattice directed percolation and resistance models.  Journal of Physics A: General Physics.  16(15).
  • Wierman J (1983).  On square lattice directed percolation and resistance models.  Journal of Physics A: Mathematical & General.  16.  3545-3551.
  • Wierman J (1982).  Percolation theory (Special invited paper).  Annals of Probability.  10.  509-524.
  • Wierman J (1981).  Bond percolation on the honeycomb and triangular lattices.  Advances in Applied Probability.  13.  298-313.
  • Wierman J (1980).  Weak moment conditions for time coordinates in first-passage percolation models.  Journal of Applied Probability.  17.  968-978.
  • Gray L, Smythe RT, Wierman J (1980).  Lower bounds for the critical probabilty in percolation models with oriented bonds.  Journal of Applied Probability.  17.  979-986.
  • Wierman J (1979).  The front velocity of the simple epidemic.  Journal of Applied Probability.  16.  409-415.
  • Smythe RT, Wierman J (1978).  First-passage percolation on the square lattice, III.  Advances in Applied Probability.  10.  155-171.
  • Reh W, Wierman J (1978).  On conjectures in first-passage percolation theory.  Annals of Probability.  6.  388-397.
  • Wierman J (1978).  On critical probabilities in percolation theory.  Journal of Mathematical Physics.  19.  1979-1982.
  • Wierman JC (1977).  On critical probabilities in percolation theory.  Journal of Mathematical Physics.  19(9).
  • Chan Y, Wierman J (1977).  On the Berry-Esseen theorem for U-statistics.  Annals of Probability.  5.  136-139.
  • Smythe RT, Wierman J (1977).  First passage percolation on the square lattice, I.  Advances in Applied Probability.  6.  38-54.
  • Smythe RT, Wierman J (1977).  First passage percolation on the square lattice, II.  Advances in Applied Probability.  9.  283-295.
  • Wierman J (2016).  Bounds for bond percolation thresholds of Archimedean lattices with degree three.  Journal of Physics A: Mathematical and Theoretical.  12 pp..
  • Ceyhan E, Wierman J, Xiang P (2016).  Law of large numbers for a two-dimensional class cover problem.  Advances in Applied Probability.  25 pp..
Books
  • Smythe RT, Wierman JC (1978).  First-Passage Percolation on the Square Lattice, Lecture Notes in Mathematics.  671.
Book Chapters
  • Wierman J (2010).  Percolation theory.  Handbook of Engineering, Quality Control and Physical Sciences.
  • Wierman J (2010).  Percolation theory.  Encyclopedia of Statistical Sciences, Second Edition.  John Wiley & Sons.  9.
  • Wierman J (2010).  Percolation theory.  Encyclopedia of Operations Research and Management Science.
  • Wierman J (2008).  Percolation thresholds - Exact.  Encyclopedia of Complexity and System Science.
  • Wierman JC (2004).  A susceptible-infected-susceptible model with reintroduction for computer virus epidemics.  Statistical Methods in Computer Security.  175-186.
  • Wierman J (1990).  Bond percolation critical probability bounds for the kagome lattice by a substitution method.  Disorder in Physical Systems.  349-360.
  • Vahidi-Asl MQ, Wierman JC (1989).  A shape result for first-passage percolation on the Voronoi tessellation and Delaunay triangulation.  Random Graphs '89.  247-262.
  • Wierman J (1989).  AB percolation: a brief survey.  Combinatorics & Graph Theory.  25.  241-251.
  • Wierman JC (1987).  Duality for k-degree percolation on the square lattice.  Proceedings of the Workshop on Percolation and Ergodic Theory of Infinite Particle Systems, IMA Volumes in Mathematics and its Applications.  8.  311-323.
  • Wierman JC (1985).  Duality for directed site percolation.  Particle Systems, Random Media, and Large Deviations, Contemporary Mathematics Series.  41.  363-380.
  • Wierman JC (1985).  Percolation theory.  Encyclopedia of Statistical Sciences.  6.  674-679.
  • Wierman J (1984).  Critical probabilities in percolation models.  The Mathematics and Physics of Disordered Media, Lecture Notes in Mathematics.  1035.  300-313.
Conference Proceedings
  • Wierman JC (2015).  An improved upper bound for the bond percolation threshold of the cubic lattice.  Proceedings of the 2015 Joint Statistics Meetings.  American Statistical Association.  3610-3620.
  • Smalletz JS, Wierman J (2007).  Exploring optimal parameter values in an approximation formula for bond percolation thresholds of planar periodic lattices.  2007 Proceedings of the National Conference on Undergraduate Research.
  • Lui C, Wierman J (2007).  Improving site percolation threshold approximations using the second moment of the degree of the lattice.  2007 Proceedings of the National Conference on Undergraduate Research.
  • Wierman J, Camerer M, Gibbs BG, Aronhime L (2007).  Creating a framework for undergraduate entrepreneurs to start and manage student-run businesses.  2007 Proceedings of the American Society for Engineering Education [CD-ROM].
  • Wierman J (2006).  Construction of infinite self-dual graphs.  Proceedings of the 5th Hawaii International Conference on Statistics, Mathematics, and Related Fields.
  • Wierman J (2006).  Chance and Risk: An activity-based course in probabilistic thinking for humanities majors.  Proceedings of the 5th Hawaii International Conference on Statistics, Mathematics, and Related Fields.
  • Lad M, Lam G, Wierman J (2005).  Using lattice inclusions to prove percolation threshold bounds.  2005 Proceedings of the National Conference on Undergraduate Research [CD-ROM].
  • Wierman J (2005).  Improvements in bounds and estimates for percolation thresholds.  Proceedings of the 4th Hawaii International Conference on Statistics, Mathematics, and Related Fields.  1071-1087.
  • Aronhime L, Wierman J (2005).  Practical entrepreneurship at Johns Hopkins University.  2005 Proceedings of the American Society for Engineering Education [CD-ROM].
  • Wierman JC, Xiang P (2003).  Limit theory for the domination number of random class cover catch digraphs.  Proceedings of the 2003 Symposium on the Interface of Statistics and Computing.
  • Wierman JC, Camerer M (2003).  Lessons from starting an entrepreneurship program.  2003 Proceedings of the American Society for Engineering Education, Entrrepreneurship Section.
  • Allen R, Aronhime L, Shoukas AA, Wierman JC (2003).  Integrating biomedical engineering with entrepreneurship and management: an undergraduate experience.  2003 Proceedings of the American Society for Engineering Education.
  • Wierman JC (2002).  Probabilistic analysis of a computer virus epidemic model.  Proceedings of the Workshop on Statistical and Machine Learning in Computer Intrusion Detection.
  • Wierman J (2002).  A susceptible-infected-susceptible model with reintroduction for computer virus epidemics.  2002 Proceedings of the American Statistical Association, Statistical Computing Section.  [CD-ROM].
  • Vahidi-Asl MQ, Wierman JC (1990).  First-passage percolation on the Voronoi tessellation and Delaunay triangulation.  Random Graphs '87.  341-359.
  • Wierman JC (1999).  A multi-type percolation model.  Paul Erdos and his Mathematics: Research Communications.  278-280.
Back to top