Weinert, Howard L.

Professor
Electrical And Computer Engineering

Barton Hall 211
(410) 516-2387
howard@jhu.edu

Jump to:

About

Education
  • Ph.D. 1972, Stanford
  • Bachelor of Arts 1967, Rice University
  • Master of Science 1968, Stanford
Research Areas
  • High performance algorithms for signal and image processing with large data sets

Publications

Journal Articles
  • Pollock DSG, Proietti T, Ruiz E, Weinert H (2013).  The third special issue on Statistical Signal Extraction and Filtering.  Computational Statistics and Data Analysis.  58(1).  1-3.
  • Weinert HL (2009).  A fast compact algorithm for cubic spline smoothing.  Computational Statistics and Data Analysis.  53(4).  932-940.
  • Meyer GGL, Weinert H, Cooper AB (2007).  Greetings.  Forty-first Annual Conference on Information Sciences and Systems, CISS 2007 - Proceedings.
  • Weinert HL (2007).  Efficient computation for Whittaker-Henderson smoothing.  Computational Statistics and Data Analysis.  52(2).  959-974.
  • Economakos CE, Weinert HL (1996).  Smoothing for random fields modeled by partial differential equations.  IEEE Transactions on Automatic Control.  41(4).  575-578.
  • Chen J, Weinert HL (1994).  Stationarity and Reciprocity in Stochastic Multipoint Boundary Value Systems.  IEEE Transactions on Automatic Control.  39(5).  1114-1116.
  • Chen J, Weinert HL (1993).  A New Characterization for Multivariate Gaussian Reciprocal Processes.  IEEE Transactions on Automatic Control.  38(10).  1601-1602.
  • Weinert HL (1991).  Smoothing for multipoint boundary value models.  Systems and Control Letters.  17(6).  445-452.
  • Weinert HL (1991).  A note on efficient smoothing for boundary value models.  International Journal of Control.  53(2).  503-507.
  • Kayalar S, Weinert HL (1989).  Oblique projections: Formulas, algorithms, and error bounds.  Mathematics of Control, Signals, and Systems.  2(1).  33-45.
  • Kayalar S, Weinert HL (1988).  Error bounds for the method of alternating projections.  Mathematics of Control, Signals, and Systems.  1(1).  43-59.
  • Riddle LR, Weinert HL (1988).  Recursive linear smoothing for dissipative hyperbolic systems.  Mechanical Systems and Signal Processing.  2(1).  77-96.
  • Riddle LR, Weinert HL (1987).  RECURSIVE LINEAR SMOOTHING FOR THE 2-D HELMHOLTZ EQUATION..  IFAC Proceedings Series.  (3).  49-54.
  • Riddle LR, Weinert HL (1986).  RECURSIVE LINEAR SMOOTHING FOR HYPERBOLIC SYSTEMS..  142-146.
  • Riddle LR, Weinert HL (1986).  FAST ALGORITHMS FOR THE RECONSTRUCTION OF IMAGES FROM HYPERBOLIC SYSTEMS..  Proceedings of the IEEE Conference on Decision and Control.  173-178.
  • Riddle LR, Weinert HL (1986).  SOLUTIONS TO THE ALGEBRAIC RICCATI EQUATION FOR PARABOLIC SYSTEMS..  147-148.
  • Meyer GGL, Weinert HL (1986).  On the design of fault-tolerant signal detectors.  IEEE Transactions on Acoustics, Speech, and Signal Processing.  34(4).  973-978.
  • Meyer GGL, Weinert HL (1984).  EFFECTS OF HARDWARE FAULTS ON SIGNAL DETECTOR PERFORMANCE..  Proceedings of the IEEE Conference on Decision and Control.  642-643.
  • Meyer GGL, Weinert HL (1984).  ANALYSIS OF AN ERROR DETECTION SCHEME FOR PARALLEL COMPUTATIONS..  265-266.
  • Sidhu GS, Weinert HL (1984).  Vector-valued Lg-splines II. Smoothing splines.  Journal of Mathematical Analysis and Applications.  101(2).  380-396.
  • Weinert HL (1984).  On the Inversion of Linear Systems.  IEEE Transactions on Automatic Control.  29(10).  956-958.
  • Meyer GGL, Weinert HL (1983).  FAULT TOLERANT PARALLEL IMPLEMENTATIONS OF THE KALMAN FILTER..  Proceedings - Annual Allerton Conference on Communication, Control, and Computing.  610-612.
  • Weinert HL (1983).  Sample Function Properties of a Class of Smoothed Estimates.  IEEE Transactions on Automatic Control.  28(7).  803-805.
  • Desai UB, Weinert HL, Yusypchuk GJ (1983).  Discrete-Time Complementary Models and Smoothing Algorithms: The Correlated Noise Case.  IEEE Transactions on Automatic Control.  28(4).  536-539.
  • Meyer GGL, Weinert HL (1982).  COMPUTATIONAL STRUCTURES FOR PARALLEL LINEAR REGRESSION..  644.
  • Meyer GGL, Weinert HL (1982).  APPROACH TO RELIABLE PARALLEL DATA PROCESSING..  Proceedings of the IEEE Conference on Decision and Control.  2.  796-797.
  • Weinert HL (1981).  ON ADJOINT AND COMPLEMENTARY SYSTEMS..  Proceedings of the IEEE Conference on Decision and Control.  1.  123-124.
  • Desai UB, Weinert HL, Yusypchuk GJ (1981).  DISCRETE-TIME COMPLEMENTARY MODELS AND SMOOTHING ALGORITHMS: THE CORRELATED NOISE CASE..  Proceedings of the IEEE Conference on Decision and Control.  3.  1048-1053.
  • Weinert HL, Desai UB (1981).  On Complementary Models and Fixed-Interval Smoothing.  IEEE Transactions on Automatic Control.  26(4).  863-867.
  • Weinert HL, Byrd RH, Sidhu GS (1980).  A stochastic framework for recursive computation of spline functions: Part II, smoothing splines.  Journal of Optimization Theory and Applications.  30(2).  255-268.
  • Sidhu GS, Weinert HL (1979).  Dynamical recursive algorithms for Lg-spline interpolation of EHB data.  Applied Mathematics and Computation.  5(2).  157-185.
  • Sidhu GS, Weinert HL (1979).  Vector-valued Lg-splines I. Interpolating splines.  Journal of Mathematical Analysis and Applications.  70(2).  505-529.
  • Weinert HL, Sidhu GS (1978).  A Stochastic Framework for Recursive Computation of Spline Functions: Part I, Interpolating Splines.  IEEE Transactions on Information Theory.  24(1).  45-50.
  • Weinert HL (1978).  On an Optimization Problem for a Wiener Process.  Communications in Statistics - Simulation and Computation.  7(4).  417-435.
  • Weinert HL, Sidhu GS (1977).  On uniqueness conditions for optimal curve fitting.  Journal of Optimization Theory and Applications.  23(2).  211-216.
  • Weinert HL, Sidhu GS, Byrd RH (1977).  STOCHASTIC ERROR ANALYSIS OF SPLINE APPROXIMATION..  Proceedings of the IEEE Conference on Decision and Control.  1070-1073.
  • Weinert HL, Sidhu GS (1976).  STOCHASTIC FRAMEWORK FOR OPTIMAL CURVE FITTING..  935-943.
  • Phatak A, Weinert H, Segall I, Day CN (1976).  Identification of a modified optimal control model for the human operator.  Automatica.  12(1).  31-41.
  • Weinert HL, Kailath T (1976).  A Spline-Theoretic Approach to Minimum-Energy Control.  IEEE Transactions on Automatic Control.  21(3).  391-393.
  • Tse E, Weinert HL (1975).  Structure Determination and Parameter Identification for Multivariable Stochastic Linear Systems.  IEEE Transactions on Automatic Control.  20(5).  603-613.
  • Kailath T, Weinert HL (1975).  An RKHS Approach to Detection and Estimation Problems—Part II: Gaussian Signal Detection.  IEEE Transactions on Information Theory.  21(1).  15-23.
  • Weinert HL, Kailath T (1974).  MINIMUM ENERGY CONTROL USING SPLINE FUNCTIONS..  169-172.
  • Tse E, Weinert HL (1973).  STRUCTURE DETERMINATION AND PARAMETER IDENTIFICATION FOR MULTIVARIABLE STOCHASTIC LINEAR SYSTEMS..  604-610.
  • Tse E, Weinert H (1973).  Correction and Extension of “On the Identifiability of Parameters”.  IEEE Transactions on Automatic Control.  18(6).  687-688.
  • Phatak AV, Weinert HL (1973).  IDENTIFIABILITY OF THE OPTIMAL CONTROL MODEL FOR THE HUMAN OPERATOR..  510-511.
  • Kailath T, Geesey RT, Weinert HL (1972).  Some Relations Among RKHS Norms, Fredholm Equations, and Innovations Representations.  IEEE Transactions on Information Theory.  18(3).  341-348.
Books
  • Weinert HL (2018).  Fast Compact Algorithms and Software for Spline Smoothing.  Springer.
  • Weinert HL (2001).  Fixed Interval Smoothing for State Space Models.  Kluwer.
Book Chapters
  • Weinert HL (2013).  Discrete spline smoothing.  SpringerBriefs in Computer Science.  (9781461454953).  37-45.
  • Weinert HL (2013).  Introduction.  SpringerBriefs in Computer Science.  (9781461454953).  1-4.
  • Weinert HL (2013).  QR algorithm.  SpringerBriefs in Computer Science.  (9781461454953).  19-28.
  • Weinert HL (2013).  Cholesky algorithm.  SpringerBriefs in Computer Science.  (9781461454953).  5-18.
  • Weinert HL (2013).  FFT algorithm.  SpringerBriefs in Computer Science.  (9781461454953).  29-35.
Back to top