Skip to main content

Grayson, Warren

Associate Professor
Som Biomedical Engineering

Smith Bldg Rm 5023
(410) 502-6306

Jump to:


Three WSE researchers awarded Maryland Stem Cell Research Fund grants

June 24, 2016

Three Whiting School of Engineering researchers have received grants from the Maryland Stem Cell Research Fund. Sharon Gerecht, Kent Gordon Croft Investment Management Faculty Scholar in the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering and associate director of the Institute for NanoBioTechnology, and Warren Grayson, associate professor in the Department of Biomedical […]

Read More



Journal Articles
  • Morrissette-McAlmon J, Ginn B, Somers S, Fukunishi T, Thanitcul C, Rindone A, Hibino N, Tung L, Mao HQ, Grayson W (2020).  Biomimetic Model of Contractile Cardiac Tissue with Endothelial Networks Stabilized by Adipose-Derived Stromal/Stem Cells.  Scientific Reports.  10(1).
  • Gilbert-Honick J, Iyer SR, Somers SM, Takasuka H, Lovering RM, Wagner KR, Mao HQ, Grayson WL (2020).  Engineering 3D skeletal muscle primed for neuromuscular regeneration following volumetric muscle loss.  Biomaterials.  255.
  • Gilbert-Honick J, Grayson W (2020).  Vascularized and Innervated Skeletal Muscle Tissue Engineering.  Advanced Healthcare Materials.  9(1).
  • Est-Witte SE, Farris AL, Tzeng SY, Hutton DL, Gong DH, Calabresi KG, Grayson WL, Green JJ (2020).  Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells.  Acta Biomaterialia.
  • Altamirano DE, Noller K, Mihaly E, Grayson WL (2020).  Recent advances toward understanding the role of transplanted stem cells in tissue-engineered regeneration of musculoskeletal tissues.  F1000Research.  9.
  • Nyberg E, Farris A, O'Sullivan A, Rodriguez R, Grayson W (2019).  Comparison of stromal vascular fraction and passaged adipose-derived stromal/stem cells as point-of-care agents for bone regeneration.  Tissue Engineering - Part A.  25(21-22).  1459-1469.
  • Guo Y, Gilbert-Honick J, Somers SM, Mao HQ, Grayson WL (2019).  Modified cell-electrospinning for 3D myogenesis of C2C12s in aligned fibrin microfiber bundles.  Biochemical and Biophysical Research Communications.  516(2).  558-564.
  • Somers SM, Zhang NY, Morrissette-McAlmon JBF, Tran K, Mao HQ, Grayson WL (2019).  Myoblast maturity on aligned microfiber bundles at the onset of strain application impacts myogenic outcomes.  Acta Biomaterialia.  94.  232-242.
  • Rindone AN, Kachniarz B, Achebe CC, Riddle RC, O'Sullivan AN, Dorafshar AH, Grayson WL (2019).  Heparin-Conjugated Decellularized Bone Particles Promote Enhanced Osteogenic Signaling of PDGF-BB to Adipose-Derived Stem Cells in Tissue Engineered Bone Grafts.  Advanced Healthcare Materials.  8(10).
  • Li X, Cho B, Martin R, Seu M, Zhang C, Zhou Z, Choi JS, Jiang X, Chen L, Walia G, Yan J, Callanan M, Liu H, Colbert K, Morrissette-McAlmon J, Grayson W, Reddy S, Sacks JM, Mao HQ (2019).  Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction.  Science Translational Medicine.  11(490).
  • Farris AL, Cook CA, Grayson WL (2019).  Mathematical modeling of oxygen release from hyperbarically loaded polymers.  Biotechnology Progress.  35(2).
  • Freeman FE, Browe DC, Diaz-Payno PJ, Nulty J, Von Euw S, Grayson WL, Kelly DJ (2019).  Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering.  European Cells and Materials.  38.  168-187.
  • Nyberg E, O’Sullivan A, Grayson W (2019).  ScafSlicr: A MATLAB-based slicing algorithm to enable 3D-printing of tissue engineering scaffolds with heterogeneous porous microarchitecture.  PLoS ONE.  14(11).
  • Farris AL, Lambrechts D, Zhang N, Rindone A, Nyberg EL, O’sullivan A, Burris SJ, Free K, Grayson WL (2019).  Tunable oxygen-releasing, 3d-printed scaffolds improve in vivo osteogenesis.  Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium.  40.  425.
  • Gilbert-Honick J, Wagner KR, Mao HQ, Grayson WL (2019).  Engineering 3D skeletal muscle primed for neuromuscular regeneration following volumetric muscle loss.  Transactions of the Annual Meeting of the Society for Biomaterials and the Annual International Biomaterials Symposium.  40.  336.
  • Nyberg E, Grayson W (2018).  Assessing the Minimum Time-Period of Normoxic Preincubation for Stable Adipose Stromal Cell-Derived Vascular Networks.  Cellular and Molecular Bioengineering.  11(6).  471-481.
  • Yuan D, Somers SM, Grayson WL, Spector AA (2018).  A Poroelastic Model of a Fibrous-Porous Tissue Engineering Scaffold.  Scientific Reports.  8(1).
  • Gilbert-Honick J, Ginn B, Zhang Y, Salehi S, Wagner KR, Mao HQ, Grayson WL (2018).  Adipose-derived Stem/Stromal Cells on Electrospun Fibrin Microfiber Bundles Enable Moderate Muscle Reconstruction in a Volumetric Muscle Loss Model.  Cell Transplantation.  27(11).  1644-1656.
  • Salehi S, Tran K, Grayson WL (2018).  Advances in perfusion systems for solid organ preservation.  Yale Journal of Biology and Medicine.  91(3).  301-312.
  • Mendez A, Rindone AN, Batra N, Abbasnia P, Senarathna J, Gil S, Hadjiabadi D, Grayson WL, Pathak AP (2018).  Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Optical Imaging.  Tissue Engineering - Part C: Methods.  24(7).  430-440.
  • Gilbert-Honick J, Iyer SR, Somers SM, Lovering RM, Wagner K, Mao HQ, Grayson WL (2018).  Engineering functional and histological regeneration of vascularized skeletal muscle.  Biomaterials.  164.  70-79.
  • Spector AA, Yuan D, Somers S, Grayson WL (2018).  Biomechanics of stem cells.  Journal of Physics: Conference Series.  991(1).
  • Morrissette-McAlmon J, Blazeski A, Somers S, Kostecki G, Tung L, Grayson WL (2018).  Adipose-derived perivascular mesenchymal stromal/stem cells promote functional vascular tissue engineering for cardiac regenerative purposes.  Journal of Tissue Engineering and Regenerative Medicine.  12(2).  e962-e972.
  • Grayson W, Stephenson M (2018).  Recent advances in bioreactors for cell-based therapies [version 1; referees: 2 approved].  F1000Research.  7.
  • Xie EG, Cook CA, Grayson WL, Benkoski JJ (2018).  Novel surfactant self-assembly process generates multi-scale surface topographies for stem cell growth and differentiation.  Hemijska Industrija.  72(2).  69-80.
  • Spector AA, Grayson WL (2017).  Stem Cell Fate Decision Making: Modeling Approaches.  ACS Biomaterials Science and Engineering.  3(11).  2702-2711.
  • Stephenson MK, Farris AL, Grayson WL (2017).  Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.  Current Rheumatology Reports.  19(8).
  • Somers SM, Spector AA, Digirolamo DJ, Grayson WL (2017).  Biophysical stimulation for engineering functional skeletal muscle.  Tissue Engineering - Part B: Reviews.  23(4).  362-372.
  • Nyberg E, Rindone A, Dorafshar A, Grayson WL (2017).  Comparison of 3D-Printed Poly-ϵ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.  Tissue Engineering - Part A.  23(11-12).  503-514.
  • Nyberg EL, Farris AL, Hung BP, Dias M, Garcia JR, Dorafshar AH, Grayson WL (2017).  3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.  Annals of Biomedical Engineering.  45(1).  45-57.
  • Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, Dorafshar AH, Grayson WL (2016).  Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration.  ACS Biomaterials Science and Engineering.  2(10).  1806-1816.
  • Cook CA, Huri PY, Ginn BP, Gilbert-Honick J, Somers SM, Temple JP, Mao HQ, Grayson WL (2016).  Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.  Biotechnology and Bioengineering.  113(8).  1825-1837.
  • Nyberg E, Holmes C, Witham T, Grayson WL (2016).  Growth factor-eluting technologies for bone tissue engineering.  Drug Delivery and Translational Research.  6(2).  184-194.
  • Hutton DL, Grayson WL (2016).  Hypoxia Inhibits de Novo Vascular Assembly of Adipose-Derived Stromal/Stem Cell Populations, but Promotes Growth of Preformed Vessels.  Tissue Engineering - Part A.  22(1-2).  161-169.
  • Farris AL, Rindone AN, Grayson WL (2016).  Oxygen delivering biomaterials for tissue engineering.  Journal of Materials Chemistry B.  4(20).  3422-3432.
  • Deshpande RS, Grayson WL, Spector AA (2015).  A modeling insight into adipose-derived stem cell myogenesis.  PLoS ONE.  10(9).
  • Hung BP, Hutton DL, Kozielski KL, Bishop CJ, Naved B, Green JJ, Caplan AI, Gimble JM, Dorafshar AH, Grayson WL (2015).  Platelet-Derived Growth Factor BB Enhances Osteogenesis of Adipose-Derived but Not Bone Marrow-Derived Mesenchymal Stromal/Stem Cells.  Stem Cells.  33(9).  2773-2784.
  • Cook CA, Hahn KC, Morrissette-McAlmon JBF, Grayson WL (2015).  Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments.  Biomaterials.  52(1).  376-384.
  • Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM (2015).  Stromal cells and stem cells in clinical bone regeneration.  Nature Reviews Endocrinology.  11(3).  140-150.
  • Temple JP, Hutton DL, Hung BP, Huri PY, Cook CA, Kondragunta R, Jia X, Grayson WL (2014).  Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.  Journal of Biomedical Materials Research - Part A.  102(12).  4317-4325.
  • Hutton DL, Kondragunta R, Moore EM, Hung BP, Jia X, Grayson WL (2014).  Tumor necrosis factor improves vascularization in osteogenic grafts engineered with human adipose-derived stem/stromal cells.  PLoS ONE.  9(9).
  • Huri PY, Ozilgen BA, Hutton DL, Grayson WL (2014).  Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.  Biomedical Materials (Bristol).  9(4).
  • Zhang S, Liu X, Barreto-Ortiz SF, Yu Y, Ginn BP, DeSantis NA, Hutton DL, Grayson WL, Cui FZ, Korgel BA, Gerecht S, Mao HQ (2014).  Creating polymer hydrogel microfibres with internal alignment via electrical and mechanical stretching.  Biomaterials.  35(10).  3243-3251.
  • Correia C, Grayson W, Eton R, Gimble JM, Sousa RA, Reis RL, Vunjak-Novakovic G (2014).  Human adipose-derived cells can serve as a single-cell source for the in vitro cultivation of vascularized bone grafts.  Journal of Tissue Engineering and Regenerative Medicine.  8(8).  629-639.
  • Hutton DL, Grayson WL (2014).  Stem cell-based approaches to engineering vascularized bone.  Current Opinion in Chemical Engineering.  3.  75-82.
  • Temple JP, Yeager K, Bhumiratana S, Vunjak-Novakovic G, Grayson WL (2014).  Bioreactor cultivation of anatomically shaped human bone grafts.  Methods in Molecular Biology.  1202.  57-78.
  • Huri PY, Wang A, Spector AA, Grayson WL (2014).  Multistage Adipose-Derived Stem Cell Myogenesis: An Experimental and Modeling Study.  Cellular and Molecular Bioengineering.  7(4).  497-509.
  • Hung BP, Salter EK, Temple J, Mundinger GS, Brown EN, Brazio P, Rodriguez ED, Grayson WL (2013).  Engineering bone grafts with enhanced bone marrow and native scaffolds.  Cells Tissues Organs.  198(2).  87-98.
  • Hutton DL, Moore EM, Gimble JM, Grayson WL (2013).  Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells.  Tissue Engineering - Part A.  19(17-18).  2076-2086.
  • Yilgor Huri P, Cook CA, Hutton DL, Goh BC, Gimble JM, DiGirolamo DJ, Grayson WL (2013).  Biophysical cues enhance myogenesis of human adipose derived stem/stromal cells.  Biochemical and Biophysical Research Communications.  438(1).  180-185.
  • Hung BP, Hutton DL, Grayson WL (2013).  Mechanical control of tissue-engineered bone.  Stem Cell Research and Therapy.  4(1).
  • Ghone NV, Grayson WL (2012).  Recapitulation of mesenchymal condensation enhances in vitro chondrogenesis of human mesenchymal stem cells.  Journal of Cellular Physiology.  227(11).  3701-3708.
  • Tzeng SY, Hung BP, Grayson WL, Green JJ (2012).  Cystamine-terminated poly(beta-amino ester)s for siRNA delivery to human mesenchymal stem cells and enhancement of osteogenic differentiation.  Biomaterials.  33(32).  8142-8151.
  • Hutton DL, Logsdon EA, Moore EM, Gabhann FM, Gimble JM, Grayson WL (2012).  Vascular morphogenesis of adipose-derived stem cells is mediated by heterotypic cell-cell interactions.  Tissue Engineering - Part A.  18(15-16).  1729-1740.
  • Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, Spitalnik PF, Grayson WL, Vunjak-Novakovic G (2012).  Engineering bone tissue from human embryonic stem cells.  Proceedings of the National Academy of Sciences of the United States of America.  109(22).  8705-8709.
  • Salter E, Goh B, Hung B, Hutton D, Ghone N, Grayson WL (2012).  Bone tissue engineering bioreactors: A role in the clinic?.  Tissue Engineering - Part B: Reviews.  18(1).  62-75.
  • Correia C, Grayson WL, Park M, Hutton D, Zhou B, Guo XE, Niklason L, Sousa RA, Reis RL, Vunjak-Novakovic G (2011).  In vitro model of vascularized bone: Synergizing vascular development and osteogenesis.  PLoS ONE.  6(12).
  • Tzeng SY, Yang PH, Grayson WL, Green JJ (2011).  Synthetic poly(ester amine) and poly(amido amine) nanoparticles for efficient DNA and siRNA delivery to human endothelial cells..  International journal of nanomedicine.  6.  3309-3322.
  • Grayson WL, Bhumiratana S, Cannizzaro C, Vunjak-Novakovic G (2011).  Bioreactor cultivation of functional bone grafts..  Methods in molecular biology (Clifton, N.J.).  698.  231-241.
  • Grayson WL, Marolt D, Bhumiratana S, Fröhlich M, Guo XE, Vunjak-Novakovic G (2011).  Optimizing the medium perfusion rate in bone tissue engineering bioreactors.  Biotechnology and Bioengineering.  108(5).  1159-1170.
  • Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL, Vunjak-Novakovic G (2011).  Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds.  Biomaterials.  32(11).  2812-2820.
  • Gimble JM, Grayson W, Guilak F, Lopez MJ, Vunjak-Novakovic- G (2011).  Adipose tissue as a stem cell source for musculoskeletal regeneration.  Frontiers in Bioscience - Scholar.  3 S(1).  69-81.
  • Rockwood DN, Gil ES, Park SH, Kluge JA, Grayson W, Bhumiratana S, Rajkhowa R, Wang X, Kim SJ, Vunjak-Novakovic G, Kaplan DL (2011).  Ingrowth of human mesenchymal stem cells into porous silk particle reinforced silk composite scaffolds: An in vitro study.  Acta Biomaterialia.  7(1).  144-151.
  • Wan LQ, Kang SM, Eng G, Grayson WL, Lu XL, Huo B, Gimble J, Guo XE, Mow VC, Vunjak-Novakovic G (2010).  Geometric control of human stem cell morphology and differentiation.  Integrative Biology.  2(7-8).  346-353.
  • Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010).  Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: Effects of pre-differentiation, soluble factors and medium perfusion.  Osteoarthritis and Cartilage.  18(5).  714-723.
  • Grayson WL, Fröhlich M, Yeager K, Bhumiratana S, Chan ME, Cannizzaro C, Wan LQ, Liu XS, Guo XE, Vunjak-Novakovic G (2010).  Engineering anatomically shaped human bone grafts.  Proceedings of the National Academy of Sciences of the United States of America.  107(8).  3299-3304.
  • Fröhlich M, Grayson WL, Marolt D, Gimble JM, Kregar-Velikonja N, Vunjak-Novakovic G (2010).  Bone grafts engineered from human adipose-derived stem cells in perfusion bioreactor culture.  Tissue Engineering - Part A.  16(1).  179-189.
  • Zhao F, Grayson WL, Ma T, Irsigler A (2009).  Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds.  Journal of Cellular Physiology.  219(2).  421-429.
  • Grayson WL, Martens TP, Eng GM, Radisic M, Vunjak-Novakovic G (2009).  Biomimetic approach to tissue engineering.  Seminars in Cell and Developmental Biology.  20(6).  665-673.
  • Ma T, Grayson WL, Fröhlich M, Vunjak-Novakovic G (2009).  Hypoxia and stem cell-based engineering of mesenchymal tissues.  Biotechnology Progress.  25(1).  32-42.
  • Fröhlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G (2008).  Tissue engineered bone grafts: Biological requirements, tissue culture and clinical relevance.  Current Stem Cell Research and Therapy.  3(4).  254-264.
  • Grayson WL, Bhumiratana S, Cannizzaro C, Chao PHG, Lennon DP, Caplan AI, Vunjak-Novakovic G (2008).  Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone.  Tissue Engineering - Part A..  14(11).  1809-1820.
  • Grayson WL, Chao PHG, Marolt D, Kaplan DL, Vunjak-Novakovic G (2008).  Engineering custom-designed osteochondral tissue grafts.  Trends in Biotechnology.  26(4).  181-189.
  • Grayson WL, Zhao F, Bunnell B, Ma T (2007).  Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells.  Biochemical and Biophysical Research Communications.  358(3).  948-953.
  • Chao PHG, Grayson W, Vunjak-Novakovic G (2007).  Engineering cartilage and bone using human mesenchymal stem cells.  Journal of Orthopaedic Science.  12(4).  398-404.
  • Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006).  Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs.  Journal of Cellular Physiology.  207(2).  331-339.
  • Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW (2006).  Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development.  Biomaterials.  27(9).  1859-1867.
  • Zhao F, Grayson W, Ma T (2005).  Perfusion flow affects human mesenchymal stem cell expansion, Ecm structure, and progenicity in 3d scaffolds.  AIChE Annual Meeting, Conference Proceedings.  8794.
  • Zhao F, Pathi P, Grayson W, Xing Q, Locke BR, Ma T (2005).  Effects of oxygen transport on 3-D human mesenchymal stem cell metabolic activity in perfusion and static cultures: Experiments and mathematical model.  Biotechnology Progress.  21(4).  1269-1280.
  • Grayson WL, Ma T, Bunnell B (2004).  Human mesenchymal stem cells tissue development in 3D PET matrices.  Biotechnology Progress.  20(3).  905-912.
Book Chapters
  • Rindone AN, Nyberg E, Grayson WL (2018).  3D-printing composite polycaprolactone-decellularized bone matrix scaffolds for bone tissue engineering applications.  Methods in Molecular Biology.  1577.  209-226.
  • Huri PY, Morrissette-McAlmon J, Grayson WL (2018).  Myogenic differentiation of ascs using biochemical and biophysical induction.  Methods in Molecular Biology.  1773.  123-135.
  • Salehi S, Naved BA, Grayson WL (2016).  Three-Dimensional Printing Approaches for the Treatment of Critical-Sized Bone Defects.  Advanced Surfaces for Stem Cell Research.  233-278.
  • Hung BP, Huri PY, Temple JP, Dorafshar A, Grayson WL (2015).  Craniofacial Bone.  3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine.  215-230.
  • Huri PY, Temple JP, Hung BP, Cook CA, Grayson WL (2015).  Bioreactor Technology for Oral and Craniofacial Tissue Engineering.  Stem Cell Biology and Tissue Engineering in Dental Sciences.  117-130.
  • Huri PY, Grayson WL (2014).  Engineering functional bone grafts for craniofacial regeneration.  Tissue and Organ Regeneration: Advances in Micro- and Nanotechnology.  589-620.
  • Grayson WL, Vunjak-Novakovic G, Obradovic B (2012).  Bioreactors in tissue engineering.  Cell and Tissue Engineering.  9783642219139.  217-227.
  • Bhumiratana S, Cimetta E, Tandon N, Grayson W, Radisic M, Vunjak-Novakovic G (2012).  Tissue engineering bioreactors.  Tissue Engineering: Principles and Practices.  22-1-22-32.
  • Freshney RI, Obradovic B, Grayson W, Cannizzaro C, Vunjak-Novakovic G (2007).  Principles of tissue culture and bioreactor design.  Principles of Tissue Engineering.  155-183.
Back to top