Introduction

Our Microsystems and Computer Engineering curriculum offers courses in Computer Systems Design, Integrated Circuits Design, Microfabrication and MEMS, Embedded Systems Design (FPGA), Implementation Sensory Information Processing, Brain-Machine Interfaces, Neurally Integrated Prosthetics and Robotics. These courses span various departments in the Whiting School of Engineering, and can also be taken in other divisions of the University, per the ECE MSE Program guidelines.

General Requirements

Satisfy the following requirements:

1) Completion of eight one-semester graduate courses (400-799 level), and
2) Completion of two additional graduate courses, or a master’s essay, or special research project approved by an ECE faculty member.
3) Six of the courses MUST have a 520.xxx course number. The other four can be from any other department, but of those four, only two can be from the Johns Hopkins Engineering for Professionals (EP) Program.

List of ECE Courses Relevant to the Concentration

Courses in the ECE Department (not all courses are offered every year):

EN.520.407 Introduction to the Physics of Electronic Devices (J. Khurgin)
EN.520.419 Iterative Algorithms (G. Meyer)
EN.520.420 Theory & Design of Iterative Algorithms II (G. Meyer)
EN.520.424 FPGA Synthesis Lab (R. Jenkins)
EN.520.425 FPGA Senior Projects Lab (R. Jenkins)
EN.520.427 Product Design Lab (P. Pouliquen)
EN.520.445 Audio Signal Processing (M. Elhilali)
EN.520.448 Electronics Design Lab (P. Pouliquen)
EN.520.450 Advanced Micro-Processor Lab (R. Glaser)
EN.520.459 Quantum Mechanics for Engineering (T. Schlesinger)
EN.520.481 Microwaves and High Speed Circuits
EN.520.485 Advanced Semiconductor Devices (J. Khurgin)
EN.520.491 CAD Design of Digital VLSI Systems I (R. Etienne-Cummings)
EN.520.492 Mixed-Mode VLSI Systems (P. Pouliquen)
EN.520.495 Microfabrication Laboratory (A. Andreou; J. Wang)
EN.520.515 Processing of Audio and Visual Signals (H. Hermansky)
EN.520.627 Photovoltaics and Energy Devices (S. Thon)
EN.520.680 Speech and Auditory Processing by Humans and Machines (H. Hermansky)
EN.520.735 Sensory Information Processing (A. Andreou)
EN.520.738 Advanced Electronic Lab Design (P. Pouliquen)
EN.520.761 Large Scale Analog Computation (A. Andreou; R. Etienne-Cummings)
EN.520.762 Seminar on Large Scale Analog Computation (A. Andreou; R. Etienne-Cummings)
EN.520.771 Advanced Integrated Circuits (A. Andreou)
EN.520.772 Advanced Integrated Circuits (A. Andreou)
EN.520.773 Advanced Topics in Microsystem Fabrication (A. Andreou)

Relevant Courses in Other Departments
Courses in the Johns Hopkins Engineering for Professionals (EP) Program

Electrical and Computer Engineering (EP)
EN.525.405 Intermediate Electromagnetics (Thomas; Weiss)
EN.525.406 Electronic Materials (Charles)
EN.525.407 Introduction to Electronic Packaging (Charles)
EN.525.408 Digital Telephony (Blodgett; Carmody)
EN.525.412 Computer Architecture (Cameron)
EN.525.415 Embedded Microprocessor Systems (Stakem)
EN.525.418 Antenna Systems (Weiss)
EN.525.420 Electromagnetic Transmission Systems (Sequeira)
EN.525.421 Introduction to Electronics and the Solid State I (Charles)
EN.525.422 Introduction to Electronics and the Solid State II (Charles)
EN.525.423 Principles of Microwave Circuits (Abita)
EN.525.424 Analog Electronic Circuit Design I (Baisden)
EN.525.428 Introduction to Digital CMOS VLSI (Martin)
EN.525.434 High-Speed Digital Design and Signal Integrity (Eaton)
EN.525.438 Introduction to Wireless Technology (Roddewig)
EN.525.441 Computer and Data Communication Networks I (Hanson)
EN.525.441 Computer and Data Communication Networks I (Nasrabadi)
EN.525.442 FPGA Design Using VHDL (Hourani)
EN.525.442 FPGA Design Using VHDL (Meitzler)
EN.525.442 FPGA Design Using VHDL (Wenstrand; Haber)
EN.525.443 Real-Time Computer Vision (Burlina; Dementhon)
EN.525.445 Modern Navigation Systems (Jablonski)
EN.525.446 DSP Hardware Lab (Wenstrand; Haber)
EN.525.451 Introduction to Electric Power Systems (Alvandi)
EN.525.484 Microwave Systems and Components (Marks, Kaul)
EN.525.712 Advanced Computer Architecture (Cameron)
EN.525.713 Analog Integrated Circuit Design (Martin)
EN.525.723 Computer and Data Communication Networks II (Hanson)
EN.525.725 Power Electronics (Katsis)
EN.525.736 Smart Antennas for Wireless Communications (Roddewig)
EN.525.738 Advanced Antenna Systems (Weiss)
EN.525.742 System-on-a-Chip FPGA Design Lab (Wenstrand; Haber)
EN.525.743 Embedded Systems Development Lab (Houser)
EN.525.754 Wireless Communication Circuits (Houser; Kaul)
EN.525.768 Wireless Networks (Refaei)
EN.525.774 RF and Microwave Circuits I (Penn; Thompson)
EN.525.775 RF and Microwave Circuits II (Penn; Thompson)
EN.525.779 RF Integrated Circuits (Penn; Wilson)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.525.786</td>
<td>Human Robotics Interaction (Lesho; Armiger)</td>
</tr>
<tr>
<td>EN.525.787</td>
<td>Microwave Monolithic Integrated Circuit (MMIC) Design (Penn; Thompson)</td>
</tr>
<tr>
<td>EN.525.788</td>
<td>Power Microwave Monolithic Integrated Circuit (MMIC) Design (Dawson)</td>
</tr>
<tr>
<td>EN.525.796</td>
<td>Introduction to High-Speed Electronics and Optoelectronics (Sova; Vichot)</td>
</tr>
</tbody>
</table>

Applied Biomedical Engineering (EP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.585.408</td>
<td>Medical Sensors and Devices (Thakor)</td>
</tr>
<tr>
<td>EN.585.411</td>
<td>Principles of Medical Instrumentation and Devices (Maybhate)</td>
</tr>
<tr>
<td>EN.585.414</td>
<td>Rehabilitation Engineering (Smith)</td>
</tr>
<tr>
<td>EN.585.425</td>
<td>Biomedical Engineering Practice and Innovation (Logsdon; Maybhate)</td>
</tr>
</tbody>
</table>

Computer Science (EP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.605.416</td>
<td>Multiprocessor Architecture and Programming (Zheng)</td>
</tr>
<tr>
<td>EN.605.445</td>
<td>Artificial Intelligence (Butcher)</td>
</tr>
<tr>
<td>EN.605.447</td>
<td>Neural Networks (Fleischer)</td>
</tr>
<tr>
<td>EN.605.713</td>
<td>Robotics (Lapin)</td>
</tr>
<tr>
<td>EN.605.728</td>
<td>Quantum Computation (Zaret)</td>
</tr>
<tr>
<td>EN.605.746</td>
<td>Machine Learning (Sheppard)</td>
</tr>
</tbody>
</table>

Mechanical Engineering (EP)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.535.428</td>
<td>Computer-Integrated Design and Manufacturing (Ivester)</td>
</tr>
</tbody>
</table>

Courses in Material Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.510.611</td>
<td>Solid State Physics (T. Poehler)</td>
</tr>
<tr>
<td>EN.510.612</td>
<td>Solid State Physics (T. Poehler)</td>
</tr>
<tr>
<td>EN.510.618</td>
<td>Electronic and Photonic Processes and Devices (T. Poehler)</td>
</tr>
</tbody>
</table>

Courses in Computer Science

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.600.420</td>
<td>Parallel Programming (R. Burns)</td>
</tr>
<tr>
<td>EN.600.428</td>
<td>Compilers & Interpreters (P. Froehlich)</td>
</tr>
<tr>
<td>EN.600.433</td>
<td>Computer Systems (P. Froehlich)</td>
</tr>
<tr>
<td>EN.600.436</td>
<td>Algorithms for Sensor-Based Robotics (G. Hager)</td>
</tr>
<tr>
<td>EN.600.437</td>
<td>Distributed Systems (Y. Amir)</td>
</tr>
<tr>
<td>EN.600.450</td>
<td>Network Embedded Systems & Sensor Networks (M. Chang)</td>
</tr>
<tr>
<td>EN.600.475</td>
<td>Introduction to Machine Learning (M. Dredze)</td>
</tr>
<tr>
<td>EN.600.476</td>
<td>Machine Learning in Complex Domains (S. Saria)</td>
</tr>
<tr>
<td>EN.600.615</td>
<td>Big Data, Small Languages, Scalable Systems (Y. Ahmad)</td>
</tr>
<tr>
<td>EN.600.636</td>
<td>Algorithms for Sensor-Based Robotics (G. Hager)</td>
</tr>
<tr>
<td>EN.600.645</td>
<td>Computer Integrated Surgery I (Graduate) (R. Taylor)</td>
</tr>
<tr>
<td>EN.600.646</td>
<td>Computer Integrated Surgery II (Graduate) (R. Taylor)</td>
</tr>
<tr>
<td>EN.600.661</td>
<td>Computer Vision (Graduate) (R. Vidal)</td>
</tr>
<tr>
<td>EN.600.735</td>
<td>Seminar in Machine Learning(J. Sheppard)</td>
</tr>
</tbody>
</table>

Courses in Mechanical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN.530.414</td>
<td>Computer-Aided Design (D. Stoianovici)</td>
</tr>
<tr>
<td>EN.530.416</td>
<td>Advanced Mechanical Design (M. Dehghani)</td>
</tr>
<tr>
<td>EN.530.421</td>
<td>Mechatronics (G. Chirikjian)</td>
</tr>
</tbody>
</table>
EN.530.445 Introduction to Biomechanics (S. Belkoff)
EN.530.470 Space Vehicle Dynamics & Control (M. Ozimek; T. McGee)
EN.530.620 Robot Sensors and Actuators (Graduate) (L. Whitcomb)
EN.530.624 Dynamics of Robots and Spacecraft (Graduate) (G. Chirikjian)
EN.530.646 Robot Devices, Kinematics, Dynamics, and Control (N. Cowan)
EN.530.657 Physical Acoustics (A. Prosperetti)
EN.530.672 Biosensing & BioMEMS (J. Wang)
EN.530.676 Locomotion in Mechanical and Biological Systems (N. Cowan)

ECE Activity in Microsystems and Computer Engineering

Core Faculty
- Andreas Andreou
- Ralph Etienne-Cummings
- Mounya Elhilali
- Amy Foster
- Hynek Hermansky
- Jacob Khurgin
- Gerard Meyer
- Philippe Pouliquen

Current Research Activity
- Brain-inspired, Energy-aware Computing Architectures for Big Data
- Active Ultrasound Pattern Injection System (AUSPIS)
- DARPA Unconventional Processing of Signal for Intelligent Data Exploitation (UPSIDE)
- Bidirectional Neuro-prostheses
- Energy Efficient Closed-loop Compressed Sensing Based Neural Recording System
- Proto-object Based Dynamic Visual Saliency Model
- Wireless Biotelemetry Using Ultra-wideband Communications
- Neurmorphic Cognitive Circuits and Systems
- Detect, Identify, Classify and Transmit Information in Speech
- Sensory Information Processing for Robotics Applications
- Probabilistic Computer Systems and Applications

Contact Information
Debbie Race, Academic Program Administrator
The Johns Hopkins University
Dept. of Electrical and Computer Engineering
3400 N. Charles St., Barton Hall 105
Baltimore, MD 21218

Phone: 410-516-4808
Fax: 410-516-5566