The Johns Hopkins University
Department of Electrical and Computer Engineering
Electrical Engineering Program
Undergraduate Advising Manual (Reviewed August 2014)

TABLE OF CONTENTS:

1. Introduction

2. Degree Requirements
 2.1. ABET Criteria
 2.1.1. Mission Statement
 2.1.2. Student Outcomes
 2.1.3. Program Educational Objectives
 2.2. Faculty Advising
 2.3. Bachelor of Science in Electrical Engineering Degree
 2.4. Bachelor of Arts Degree
 2.5. Bachelor of Science/Master of Science in Engineering Degree

3. Academic and Professional Ethics

4. Professional Societies, Honor Societies, and Awards

5. General Information
 5.1. WSE Office of Academic Affairs
 5.2. JHU Office of Academic Advising
 5.3. Notice of Nondiscriminatory Policy

7. Sample Programs

8. Frequently Asked Questions

Useful Web Sites
 http://www.ece-jhu.org/
 http://engineering.jhu.edu/
 http://engineering.jhu.edu/academic-advising/

1. Introduction
The Department of Electrical and Computer Engineering offers two bachelors degree programs: one in Electrical Engineering and one in Computer Engineering (with close collaboration of the Computer Science Department). Electrical Engineering is concerned with a wide variety of topics in signals, systems and communications, photonics and optoelectronics, and computer engineering. Typically, introductory courses are taken in the first two years of study. These courses are Introduction to Electrical and Computer Engineering (520.137) and Digital System Fundamentals (520.142), usually taken in the freshman year; Circuits (520.213), Signals and Systems (520.214), Fields, Matter, and Waves (520.219-220), usually taken in the sophomore year. Additional courses in the undergraduate program are then selected in accordance with the student's interests and departmental advising procedures to meet the requirements of either the Bachelor of Science (B.S.) or the Bachelor of Arts (B.A.) degrees. The Department also offers a concurrent B.S./M.S.E. degree program for undergraduate majors. Students are encouraged to engage in independent projects or study, and to participate in research programs with the faculty.

The facilities and resources available to students are considerable. The newly created electronics prototyping facility in the Department of Electrical & Computer Engineering utilizes state of the art technology to support the design, fabrication, and other technical aspects of research and academic projects.

The Prototyping Facility consists of state of the art SMT equipment; a PCB milling machine to fabricate PCBs; a multilayer press to produce multilayer PCB that can be milled on the milling machine; Stencil Printer to apply solder paste selectively on the milled PCBs; a pick and place machine to accurately place SMD components on the finished PCB; reflow oven for lead free soldering; and two sophisticated, ergonomically designed Mantis microscopes for SMD component assembly.

Additional facilities include a Basic Electronics Lab, Cadence Computing Lab, ECE Projects Facility, Photonics Lab, and Microprocessor/FPGA Lab.

All students, faculty and staff must complete a specific training course dependent on which facility access is required or preferred.

Electrical and Computer engineering undergraduates have unlimited access (24 hours a day, seven days a week) to a student lounge designed to allow them to work individually on homework assignments or to collaborate as part of project teams. On one side, the lounge has individual workstations and tables and chairs for group discussions. Also available is a printer/scanner and wireless internet. The other side offers more casual seating and a mini-fridge and microwave. Students are found round-the-clock in this great space. The Electrical and Computer Department employs a Senior Lab Engineer, Sathapan Ramesh, S.Ramesh@jhu.edu.
2. Degree Requirements

2.1. ABET Criteria. The B.S. degree in Electrical Engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org. As part of the ABET requirements, the Electrical Engineering B.S. Degree Program has established the following:

2.1.1 Mission Statement. The Faculty of the Electrical Engineering Program at Johns Hopkins are committed to providing a rigorous educational experience that prepares students for further study and to professionally and ethically practice engineering in a competitive global environment. The mission of the program is to provide a stimulating and flexible curriculum in fundamental and advanced topics in electrical engineering, basic sciences, mathematics, and humanities, in an environment that fosters development of analytical, computational, and experimental skills and that involves students in design projects and research experiences; and to provide our electrical engineering graduates with the tools, skills and competencies necessary to understand and apply today’s technologies and become leaders in developing and deploying tomorrow’s technologies. From this mission statement, the Electrical Engineering faculty has established student outcomes and educational objectives for the B.S. in Electrical Engineering degree program.

2.1.2. Student Outcomes
The program has student outcomes (a) through (k) that prepare graduates to attain the program educational objectives:

(a) an ability to apply knowledge of mathematics, science, and engineering

(b) an ability to design and conduct experiments, as well as to analyze and interpret data

(c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

(d) an ability to function on multidisciplinary teams

(e) an ability to identify, formulate, and solve engineering problems

(f) an understanding of professional and ethical responsibility

(g) an ability to communicate effectively

(h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context

(i) a recognition of the need for, and an ability to engage in life-long learning

(j) a knowledge of contemporary issues
an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

2.1.3. Program Educational Objectives
The Program Educational Objectives (PEOs) for the electrical engineering (EE) at the Johns Hopkins University describe what EE graduates are expected to attain with a few years of graduation. The PEOs are determined in consultation with the Electrical and Computer Engineering External Advisory Committee and approved by the ECE faculty.

The educational objectives of the EE program are:

1. Our graduates will become successful practitioners in engineering and other diverse careers.
2. Some graduates will pursue advanced degree programs in engineering and other disciplines.

Faculty members will assess student performance to ensure that our educational outcomes and objectives are met. Students will also have an opportunity to provide feedback on their educational experience through course evaluations, as well as by meeting with internal (Academic Council) and external review boards (departmental advisory board, ABET review board). Before and after graduation, students will have the opportunity to assess their own educational progress and achievements by means of an exit interview and alumni surveys. The faculty will use the feedback obtained from these various assessment processes to improve the content and delivery of the program.

2.2. Faculty Advising

The success of each student's program will depend on effective faculty advising. Every undergraduate student in the Electrical Engineering Program must follow a program approved by faculty advisors. Each student and faculty advisor must consider our objectives and outcomes in planning a set of courses and projects that will satisfy degree requirements. The sample programs and the program checklist used by the faculty advisors illustrate course selections that will help students meet the program objectives and outcomes.

All incoming freshmen and transfer students will be advised by Dr. Ralph Etienne-Cummings, the ECE Department Chair, and Dr. Trac Tran, the Director of ECE Undergraduate Programs and Department Advising Coordinator. Upon entering their sophomore year, students will be asked to choose a faculty advisor based on their preference, or will be assigned another faculty advisor randomly. Barbara Sullivan, the Senior Administrative Coordinator, will arrange all changes. A student may change his faculty advisor at any time by contacting Dr. Tran. His office is in Barton Hall Room 207, telephone 410-516-7416, email: trac@jhu.edu. Both the ECE Chair and the Director of the Undergraduate Program must certify each student’s program as having met the requirements for graduation.

The faculty advisor assists the student in developing an approved program, including assignment of credits to the proper categories and judging the appropriateness of area designators. However, it should be understood that satisfaction of degree requirements is ultimately the responsibility of
the student. The student is expected to understand the degree requirements and engage in careful program planning with the faculty advisor. Students should also be familiar with requirements outlined in the University's Undergraduate Academic Manual http://www.jhu.edu/~advising/.

Faculty advisors may also help with other aspects of the student's academic career, such as admission to graduate and professional schools or career planning. They may be able to direct students to other advising and counseling resources that provide information on internship opportunities, and direct students to independent research and guided independent studies. Faculty advisors are also a means for undergraduate students to provide valuable feedback on all aspects of their educational experiences to improve the undergraduate education for all students.

The Electrical and Computer Engineering faculty make every effort to be available to their advisees, particularly during the scheduled fall and spring term advising weeks. The student is required to meet with his/her advisor at least once – and preferably more – each semester. It is the responsibility of the student to initiate these meetings with the advisor. It is important that students remain in close contact with their advisors and consult with them before making changes in their program. The faculty advisor must release advising holds on your registration record in ISIS before you can register for classes. This is typically done during Advising Week which is the week just before registration begins. Your Advising Hold will not be released until you have reviewed your course plans with the advisor. The faculty advisor will also sign add/drop forms. Please note that unless prior arrangements have been made, no faculty member other than the student's own advisor can sign the required forms.

2.3. Bachelor of Science in Electrical Engineering Degree

The B.S. degree in Electrical Engineering requires a minimum of one hundred and twenty-six (126) credits that must include:

- Forty-five (45) credits of ECE courses including Circuits (520.213), Signals and Systems (520.214), Fields, Matter and Waves I (520.219), one (1) introductory laboratory course (520.345, 520.349 or 520.372), and at least six (6) credits of advanced laboratory, design intensive, or senior design project courses. Up to six (6) credits of Computer Science courses may be used to satisfy the 45-credit requirement. A GPA of at least 2.0 must be maintained in ECE courses. **Courses in this group may not be taken Pass/Fail.**

- Six (6) credits of engineering courses from School of Engineering departments other than ECE, Applied Mathematics and Statistics, or General Engineering. Students must complete enough of the approved non-ECE advanced design labs so that they have at least twelve (12) credits of combined ECE and non-ECE advanced laboratory, design intensive, or senior design project courses. Courses in this group may not be taken Pass/Fail. **Entrepreneurship and Management courses in the Center for Leadership Education, CANNOT be counted as “other engineering courses”.**

- Twenty (20) credits of mathematics courses taken from the Mathematics Department or the Applied Mathematics and Statistics Department. Students must take Calculus II (110.109), Calculus III (110-202), Linear Algebra (110.201), Differential Equations
(110.302), and either Probability and Statistics (550.310/311) or Introduction to Probability (550.420). **Courses in this group may not be taken Pass/Fail.** Elementary or precalculus courses such as 110.105 or 550.111-112 are not acceptable. (Calculus I may be waived through an examination taken during freshman orientation. If not waived, it must be taken as a prerequisite to Calculus II).

- Sixteen (16) credits of basic sciences (physics, chemistry, biology, earth and planetary sciences) which must include General Physics (171.101-102), General Physics Laboratory (173.111-112), and Introductory Chemistry (030.101). **Courses in this group may not be taken Pass/Fail.**

- At least six (6), three-credit courses in humanities and social sciences. The humanities and social sciences courses are one of the strengths of the academic programs at Johns Hopkins. They represent opportunities for students to appreciate some of the global and societal impacts of engineering, to understand contemporary issues, and to exchange ideas with scholars in other fields. Some of the courses will help students to communicate more effectively, to understand economic issues, or to analyze problems in an increasingly international world. **The selection of courses should not consist solely of introductory courses, but should have both depth and breadth.** Typically, this means that students should take at least three (3) courses in a specific area with at least one of them at an advanced level.

- A programming language requirement must be met by taking Introduction to Java (600.107) or Intermediate Programming (600.120).

- Two (2) writing intensive (W) courses (at least 3 credits each) are required. **The writing intensive courses may not be taken Pass/Fail and require a C- or better grade.** Students may wish to consider a course in Technical Communications to fulfill one of the writing intensive requirements. The course **661.315, The Culture of the Engineering Profession**, is recommended by the ECE Faculty as a writing intensive course.

2.4. Bachelor of Arts Degree

To meet the requirements for the B.A. degree, the program must include:

- Thirty (30) credits of ECE courses. Three credits of computer science courses may be counted towards this requirement.

- Twenty (20) credits of mathematics or mathematical statistics courses. Typically, these include Calculus I (110.108), Calculus II (110.109) and Calculus III (110.202), or equivalent, and Linear Algebra (110.201). Elementary or pre-calculus courses, such as 110.105 or 550.111-112, are not acceptable.

- Eighteen (18) credits of humanities and social sciences courses.

- Four (4) writing intensive (W) courses.
Additional credits giving a total of at least one hundred twenty (120) credits.

Students should be aware that the B.A. degree program is not accredited by the Accreditation Board for Engineering and Technology (ABET).

2.5. Bachelor of Science/Master of Science in Engineering Degree

To meet the requirements for the combined B.S./M.S.E. degree, the program (in addition to the requirement of the B.S. degree stated above), must include:

- Eight one-semester graduate courses (xxx.400-xxx.799 level) approved by the advisor must be satisfactorily completed. These eight courses cannot include Independent Study, Dissertation Research, ECE Seminar, or Special Studies.
- Further depth of understanding must be demonstrated by satisfactorily completing either: (a) two additional one-semester courses approved by the advisor, or (b) by writing an M.S.E. essay acceptable to a member of the ECE faculty, or (c) by completing a special project acceptable to a member of the ECE faculty and writing the corresponding report.
- A course (including independent study) is satisfactorily completed if a grade of A+ to C- or “P” is obtained. No more than one C grade (C+, C, or C-) can be counted toward the requirements; a grade of D or F or two C+, C, or C- grades will receive notification (with a copy to his or her advisor) of academic performance concerns and an explanation that a second D or F or a third C+, C, or C- grade for a master’s student will result in termination from the program.
- At least six one-semester courses in the M.S.E. program must be offered by the ECE Department that are not Independent Study (cannot include Engineering for Professionals (EP) courses).
- No more than two courses may be chosen from the part-time Engineering for Professionals (EP) program.
- Every graduate course designated Independent Study, Dissertation Research, or Special Studies counted toward the M.S.E. degree must include a written report. A copy of the report will become part of the student’s permanent file.

The M.S.E. portion of the program is to be designed in consultation with the M.S.E. advisor, often the same faculty member as the undergraduate advisor. Students interested in the combined program should consider the advantages or disadvantages of such a program, particularly the financial aspects. For example, a qualified student interested in the Ph.D. degree can often obtain full financial support for the M.S.E. and Ph.D. at Johns Hopkins or elsewhere.

The Electrical and Computer Engineering Department and the Computer Science Department offer a joint B.S./M.S.E. program in which candidates may seek a combined B.S. degree in ECE and an M.S.E. degree in Computer Science. Applicants should apply directly to the Computer Science Department for admission to the M.S.E. program. Students in this program will have two (2) advisors: one for the undergraduate degree program and one for the graduate degree program.

3. Academic and Professional Ethics
Students at The Johns Hopkins University are expected to uphold high ethical standards. The Constitution of the Undergraduate Academic Ethics Board of the Krieger School of Arts and Sciences and the GWC Whiting School of Engineering states that:

"Undergraduate students enrolled in the School of Arts and Sciences or the GWC Whiting School of Engineering at The Johns Hopkins University assume a duty to conduct themselves in a manner appropriate to the University's mission as an institution of higher learning. Students are obliged to refrain from acts, which they know, or under the circumstances have reason to know, violate the academic integrity of the University. Violations of academic ethics include, but are not limited to: cheating, plagiarism, submitting the same or substantially similar work to satisfy the requirements of more than one course without permission; submitting as one's own the same or substantially similar work of another; knowingly furnishing false information to any agent of the University for inclusion in academic records; falsification, forgery, alteration, destruction or misuse of official University documents or seal."

The constitution further states in Article IV that "It is the responsibility of each student to report to the professor in charge of the course or to the Ethics Board any suspected violations of academic ethics as outlined in Article III." Students may obtain a copy of the Constitution of the Ethics Board from the JHU Office of Academic Advising, Garland Hall, Suite 3A. http://e-catalog.jhu.edu/undergrad-students/student-life-policies/

Students should also be aware that professional societies, industries, and government agencies all have ethical codes and standards to ensure both good business practices and to maintain the public trust. The Institute of Electrical and Electronics Engineers (IEEE) represents the profession of Electrical Engineering, and students should read that organization's code of ethics published on the web site: http://www.ieee.org/about/corporate/governance/p7-8.html.

4. Professional Societies, Honor Societies, and Awards

Undergraduates are encouraged to join the student chapter of the Institute of Electrical and Electronics Engineers (IEEE). Applications are available in 105 Barton Hall or at any of the regular meetings of the chapter.

The department sponsors a Chapter of Eta Kappa Nu, the Electrical Engineering honor society. Students with outstanding academic records are invited to join during their junior and senior years.

Each year, the ECE Department honors its outstanding graduating seniors with the John Boswell Whitehead Award for excellence in academic achievements, and with the William H. Huggins Award. The latter award is based on academic achievements and on service to the department and to fellow students. Additional Whitehead and Huggins Awards are given to outstanding juniors. Three recently added senior awards are the Charles A. Conklin Award for academic achievements; the Electrical and Computer Engineering Student Leadership Award for leadership and service in the Department; and the Muly Family Undergraduate Research Award for an exceptional undergraduate student conducting research in the Department.
5. General Information

5.1. WSE Office of Academic Affairs

The Office of Academic Affairs (103 Shaffer Hall) has general responsibilities for all engineering majors in the Whiting School of Engineering: http://engineering.jhu.edu/academic-advising/

The Vice Dean and his staff coordinate faculty advising, maintain student records, and handle academic problems that fall outside the scope of the faculty advisor. The office also provides support for non-department student organizations, such as the Society of Women Engineers and the Johns Hopkins Organization for Minority Engineers and Scientists. In addition, the office maintains and distributes undergraduate advising manuals for each of the engineering majors. Additional responsibilities include:

- Informing students regarding leaves of absence and withdrawals.
- Determining advanced standing and acceptance of coursework done at another college/university.
- Advising students on graduation eligibility.
- Informing students regarding proper procedures for taking summer school courses.
- Reporting unsatisfactory course performance to freshmen.
- Placing students on academic probation, monitoring students on probation and identifying students who are required to withdraw from the University.
- Interpreting University academic policy and departmental policy.
- Providing information about internship and study abroad opportunities in engineering.
- Coordinating tutoring for students in engineering courses.
- Informing students regarding the tutoring, study skills and pre-professional counseling services of the Office of Academic Advising.

5.2. JHU Office of Academic Advising

The Office of Academic Advising (Garland Hall, Suite 3A) provides the following services for engineering students: http://www.jhu.edu/~advising/index.html

- Coordinating premedical, pre-law and public health advising.
- Assisting students with disabilities in meeting their academic needs.
- Teaching effective study skills.
- Offering tutoring in many required courses.
- Maintaining a reference library of graduate and professional school publications.
- Providing information about national and international scholarships and fellowships, as well as summer internships.
- Providing information on study abroad.
5.3. Notice of Nondiscriminatory Policy

The Johns Hopkins University admits students of any race, color, sex, religion, national or ethnic origin, age, disability or veteran status to all of the rights, privileges, programs, benefits and activities generally accorded or made available to students at the University. It does not discriminate on the basis of race, color, sex, religion, sexual orientation, national or ethnic origin, age, disability or veteran status in any student program or activity, including the administration of its educational policies, admission policies, scholarship and loan payments, and athletic and other University-administrated programs or in employment. Accordingly, the University does not take into consideration personal factors that are irrelevant to the program involved.

If you are a student with a disability or believe you might have a disability that requires accommodations, please contact Abigail Hurson, JD, University Disability Services Officer, in the Office of Institutional Equity, Wyman Park, Suite 515, (410) 516-8949, ahurson@jhu.edu. A guide for students can be found here: http://web.jhu.edu/administration/jhuoie/disability/accommodations_students.html

1. The student completes:

 - An "Application for Graduation" online form in ISIS under their Program of Study (Note: any subsequent changes must be done on a hardcopy obtained from the Registrar’s Office. This form is then used by the Office of Academic Affairs to generate a list of candidates for B.S. and B.A degrees that is sent to Barbara Sullivan, the ECE Undergraduate Program Coordinator,

 - At the same time, a Degree Planning Checklist for the Electrical Engineering B.S. Degree from the ECE Departmental office or the web (www.ece.jhu.edu) should be completed and sent to Ms. Sullivan.

 - An "Assessment Questionnaire for the Electrical Engineering Program".

2. The student then:

 - Meets with his academic advisor to have the "Advising Checklist for the Electrical Engineering B.S. Degree" approved.

 - Returns the "Assessment Questionnaire for the Electrical Engineering Program" to Ms. Sullivan.

 - Meets with the Dr. Ralph Etienne-Cummings, ECE Chair to discuss the student’s experience at Hopkins.
3. The faculty advisor

- Receives a “CANDIDATE FOR B.S./B.A.” form and transcript for each of his advisees from Dr. Tran, the ECE Undergraduate Program Director.

- Meets with his advisees to review and approve their "Advising Checklist for the Electrical Engineering B.S./B.A. Degree". If necessary, the advisor fills out a “SUBSTITUTION/EXCEPTION/Waiver FORM” to justify the request of a substitution and/or exception and/or waiver of a Departmental requirement. Waivers cannot be made for University requirements.

- The academic advisor returns the “Advising Checklist for the Electrical Engineering B.S./B.A. Degree”, “SUBSTITUTION/EXCEPTION/Waiver FORM” if applicable, transcript, and “CANDIDATE FOR B.S./B.A.” form completed and signed to Ms. Sullivan who will coordinate the review and signatures of Dr. Tran and Dr. Etienne-Cummings, and who will return the information to the Vice Dean for Education.

- Notes:
 - The deadline to apply for spring term graduation is February 15.
 - Departmental Honors are only given for first majors, and only when the GPA is at least 3.5.

7. Sample Programs

The following tables show two sample programs fulfilling the requirements of the B.S. Degree in Electrical Engineering. The programs are oriented toward two different concentrations of interest for illustrative purposes only. All students are expected to plan, in consultation with their faculty advisors, programs best suited to their own interests.

All programs are subject to the following guidelines:

- All advanced placement credits must be applied to the category of the corresponding Homewood course.

- Transfer students from other institutions must complete at least 21 credits from the Electrical and Computer Engineering Departments at Johns Hopkins in order to be eligible for the B.S. degree.

- Courses taken through the School of Professional Studies in Business and Education (either evening or summer session) or the JHU/WSE Engineering Programs for Professionals may be counted only if taken with the advisor's prior written approval.

- Courses taken without the faculty advisor's written approval on the registration or add/drop form may not be counted.
ECE Signals, Systems and Communication Electives

520.401 Basic Communications
520.414 Image Processing and Analysis I
520.415 Image Processing and Analysis II
520.419 Theory of Iterative Algorithms I
520.432 Topics in Medical Imaging Systems
520.435 Digital Signal Processing
520.447 Introduction to Information Theory and Coding
520.465 Digital Communications I

ECE Photonics and Optoelectronics Electives

520.407 Optical and Electronic Properties of Materials
520.410 Fiber Optics and Photonics
520.457 Basic Quantum Mechanics for Engineers
520.481 Microwaves and High Speed Circuits
520.482 Introduction to Lasers
520.485 Advanced Semiconductor Devices

ECE Advanced Laboratory or Design Intensive Courses

520.424 FPGA Synthesis Laboratory
520.425 FPGA Projects Laboratory
520.427 Product Design Laboratory
520.448 Electronics Design Laboratory
520.450 Advanced Microprocessor Laboratory
520.454 Control Systems Design
520.483 Bio-Photonics Laboratory
520.487 Introduction to Microelectromechanical Systems (MEMS)
520.491 CAD Design of Digital VLSI Systems
520.495 Microfabrication Laboratory
520.498 Senior Design Project I
520.499 Senior Design Project II

Other Advanced Laboratory Courses

530.420 Robot Sensors and Actuators
530.421 Mechatronics
530.487 Introduction to MEMS
580.471 Biomedical Instrumentation
600.445 Computer Integrated Surgery I
600.446 Computer Integrated Surgery II
600.457 Computer Graphics
Sample Bachelor of Science in Electrical Engineering Program
Emphasis in Signals, Systems and Communications
(Courses in **Bold** are required)

<table>
<thead>
<tr>
<th>Fall-Year 1</th>
<th>Spring-Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>110.108</td>
<td>Calculus I</td>
</tr>
<tr>
<td>171.101</td>
<td>Physics I</td>
</tr>
<tr>
<td>173.111</td>
<td>Physics Lab I</td>
</tr>
<tr>
<td>520.137</td>
<td>Introduction to ECE</td>
</tr>
<tr>
<td>H&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall-Year 2</th>
<th>Spring-Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>110.202</td>
<td>Calculus III</td>
</tr>
<tr>
<td>030.101</td>
<td>Intro to Chemistry</td>
</tr>
<tr>
<td>520.213</td>
<td>Circuits</td>
</tr>
<tr>
<td>520.219</td>
<td>Fields, Matter & Waves I</td>
</tr>
<tr>
<td>H&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall-Year 3</th>
<th>Spring-Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>110.302</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>ECE Sig/Sys/Com Elect</td>
<td>3</td>
</tr>
<tr>
<td>520.345</td>
<td>ECE Laboratory</td>
</tr>
<tr>
<td>520.353</td>
<td>Control Systems</td>
</tr>
<tr>
<td>H&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall-Year 4</th>
<th>Spring-Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>ECE Sig/Sys/Com Elect.</td>
<td>3</td>
</tr>
<tr>
<td>520.498</td>
<td>Senior Design Project I</td>
</tr>
<tr>
<td>ECE Advanced Lab/Design Elect.</td>
<td>3</td>
</tr>
<tr>
<td>520.435</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>NonECE Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>16</td>
</tr>
</tbody>
</table>
Sample Bachelor of Science in Electrical Engineering Program

Emphasis in Photonics and Optoelectronics

(Courses in **Bold** are required)

<table>
<thead>
<tr>
<th>Fall-Year 1</th>
<th>Spring-Year 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>110.108</td>
<td>Calculus I</td>
</tr>
<tr>
<td>171.101</td>
<td>Physics I</td>
</tr>
<tr>
<td>171.111</td>
<td>Physics Lab I</td>
</tr>
<tr>
<td>520.137</td>
<td>Introduction to ECE</td>
</tr>
<tr>
<td>H&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall-Year 2</th>
<th>Spring-Year 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>110.202</td>
<td>Calculus III</td>
</tr>
<tr>
<td>030.101</td>
<td>Intro to Chemistry</td>
</tr>
<tr>
<td>520.213</td>
<td>Circuits</td>
</tr>
<tr>
<td>520.219</td>
<td>Fields, Matter & Waves I</td>
</tr>
<tr>
<td>H&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall-Year 3</th>
<th>Spring-Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>110.302</td>
<td>Differential Equations</td>
</tr>
<tr>
<td>ECE Photonics and Optoelectronics Elective</td>
<td>3</td>
</tr>
<tr>
<td>520.345</td>
<td>ECE Laboratory</td>
</tr>
<tr>
<td>Non-ECE Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td>H&S Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall-Year 4</th>
<th>Spring-Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>Course</td>
</tr>
<tr>
<td>ECE Photonics and Optoelectronics Elective</td>
<td>3</td>
</tr>
<tr>
<td>520.498</td>
<td>Senior Design Project I</td>
</tr>
<tr>
<td>ECE Advanced Lab/Design Elective</td>
<td>3</td>
</tr>
<tr>
<td>520.435</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Total Credits</td>
<td>16</td>
</tr>
</tbody>
</table>
8. Frequently Asked Questions

Q: I am an electrical engineering major planning to graduate. I have been told that I must meet new requirements that differ from the requirements in effect when I was admitted to the program. I cannot meet all the new requirements and do not want to delay graduation. What should I do?

A: Meet with your advisor and try to meet the new requirements as best as you can. Make a list of the new requirements that you cannot meet and ask for a letter from the chairman waiving those requirements.

Q: How do I count Business courses offered in the Applied Mathematics and Statistics Department?

A: Count these courses as electives. Please note: these courses CANNOT be counted as “other engineering” courses.

Q: Can I use 520.315/580.315 Information Processing of Sensory Signals to fulfill the Checklist Section II.A. Engineering Courses from Other Depts.

A: No, ECE (520) courses co-listed in other departments cannot be counted as “other engineering”.

Q: How do I get a senior design project? And is it necessary that the project be done in the ECE department and/or under the guidance of an ECE faculty member?

A: In order to get a senior design project, you must find a subject for your project and a faculty member willing to supervise you. As both subject matter and faculty sponsorship (not necessarily by an ECE faculty member) of senior design projects must be approved by your faculty advisor, you must discuss your plan with your advisor prior to undertaking the project.

Q: Can Computer Science credits fulfill the requirement of 6 credits of engineering courses from other departments?

A: Yes.

Q: I am majoring in EE. Can I take an ECE course pass/fail?

A: A student is allowed to (but not encouraged) to take an ECE course pass/fail. In this case, the course CANNOT be counted toward the 45-credit ECE requirement. It can only be counted as an ELECTIVE (area VI).

Q: Am I allowed to take humanities courses pass/fail?
A: In general, humanities courses can be taken pass/fail. The only exceptions are the two courses that count toward the writing intensive (W) course requirement. These may not be taken pass/fail.

Q: For my humanity/social sciences requirement, can I take courses coded NS or must they be only H or S?

A: Courses coded NS can be counted as (S), but not as natural science courses (N).

Q: Can I count a course coded (N), (S) as an (N) credit?

A: No. Courses coded NS can be counted as (S), but not as natural science courses (N).

Q: Can I count writing intensive courses (W) that do not carry an (H) or (S) descriptor as humanities and social science electives?

A: No.

Q: Can I count the first two courses in a foreign language as (H) credits if I am an engineering major?

A: Yes.

Q: How many credit hours of 520.XXX Independent study can I count towards the 45 required EE credits or 42 required EE/CS credits for the BSCE?

A: No more than 6.

Q: What are the prerequisites for Circuits (520.213)?

A: Calculus I (110.108) and Calculus II (110.109) are required, and Physics I (171.101) and Physics II (171.102) are recommended.

Q: Can BME Systems and Controls count toward my EE credit requirement as a substitute for Control Systems?

A: No.

Q: I have a score of 3 on the AP Calculus BC exam, which gives me 4 credits and exempts me from Calculus I (110.108). May I count my 4 credits from the AP Calculus exam towards fulfilling the mathematical requirements for my degree?

A: Yes, you may count the 4 credits from AP Calculus as part of the Mathematics and Mathematical Science Requirements provided that they show up on your transcript.

Q: Can I double-count graduate courses for both my B.S. and M.S.E. degrees?
A: No, you may count the course for either the B.S. or the M.S.E. degree, but not both.

Q: Calculus II and III were waived, but do not appear on my transcript. Can I use these courses to fulfill the Mathematics and Mathematical Science requirements?

A: If a course is waived, but does not appear on your transcript, it cannot be used to fulfill courses requirements. The only advantage of a course being waived is that you may be able to take more advanced courses.

Q: Is it possible for a freshman to take more than 18 credits a semester in the first semester?

A: No, Academic Advising will not permit you to take more than 18 credits in the first semester.

Q: As an entering freshman with advanced placement in Physics, do I have to take Physics Lab I and Physics Lab II?

A: As of March 10, 2005, students who earned credit for Physics I and/or Physics II through their scores on acceptable exams (Advanced Placement, GCE A-levels, or IB exams) are eligible to have Physics labs 173.111 and/or 173.112 waived. If you have credit for Physics I through one of the exams listed above and you have not already taken 173.111 at JHU, a notation will be added to your transcript "Physics Lab I waived." If you have credit for Physics II through one of the exams listed above and you have not already taken 173.112 at JHU, a notation will be added to your transcript "Physics lab II waived." You may take just the Physics Lab Courses 173.111, 173.112 if you have received AP credit for Physics I and/or Physics II.

Q: If Physics Lab was waived, do I still need (A) one year of a lab in a natural science and/or (B) only 15 credits of (N) courses rather than 16?

A: No, if Physics Lab was waived, you DO NOT need one year of a lab in a natural science, but you still need 16 credits of (N) courses.