Calendar

Feb
11
Thu
ECE Special Seminar: Amir Manbachi
Feb 11 @ 3:05 pm
ECE Special Seminar: Amir Manbachi

Note: This is a virtual presentation. Here is the link for where the presentation will be taking place.

Title: Towards building a clinically-inspired ultrasound innovation hub: Design, Development and Clinical Validation of novel Ultrasound hardware for Imaging, Therapeutics, Sensing and other applications.

Abstract: Ultrasound is a relatively established modality with a number of exciting, yet not fully explored applications, ranging from imaging and image-guided navigation, to tumor ablation, neuro-modulation, piezoelectric surgery, and drug delivery. In this talk, Dr. Manbachi will be discussing some of his ongoing projects aiming to address low-frequency bone sonography, minimally invasive ablation of neuro-oncology and implantable sensors for spinal cord blood flow measurements.

Bio: Dr. Manbachi is an Assistant Professor of Neurosurgery and Biomedical Engineering at Johns Hopkins University. His research interests include applications of sound and ultrasound to various neurosurgical procedures. These applications include imaging the spine and brain, detection of foreign body objects, remote ablation of brain tumors, monitoring of blood flow and tissue perfusion, as well as other upcoming interesting applications such as neuromodulation and drug delivery. His teaching activities mentorship with BME Design Teams as well as close collaboration with clinical experts in Surgery and Radiology at Johns Hopkins.

His previous work included the development of ultrasound-guided spine surgery. He obtained his PhD from the University of Toronto, under the supervision of Dr. Richard S.C. Cobbold. Prior to joining Johns Hopkins, he was a postdoctoral fellow at Harvard-MIT Division of Health Sciences and Technology (2015-16) and the founder and CEO of Spinesonics Medical (2012–2015), a spinoff from his doctoral studies.

Amir is an author on >25 peer-reviewed journal articles, > 30 conference proceedings, 10 invention disclosures / patent applications and a book entitled “Towards Ultrasound-guided Spinal Fusion Surgery.” He has mentored 150+ students, has so far been raised $1.1M of funding and his interdisciplinary research has been recognized by a number of awards, including University of Toronto’s 2015 Inventor of Year award, Ontario Brain Institute 2013 fellowship, Maryland Innovation Initiative and Cohen Translational Funding.

Dr. Manbachi has extensive teaching experience, particularly in the field of engineering design, medical imaging and entrepreneurship (both at Hopkins and Toronto), for which he received the University of Toronto’s Teaching Excellence award in 2014, as well as Johns Hopkins University career centre’s award nomination for students’ “Career Champion” (2018) and finally Johns Hopkins University Whiting School of Engineering’s Robert B. Pond Sr. Excellence in Teaching Excellence Award (2018).

Feb
25
Thu
ECE Seminar: Ashutosh Dutta
Feb 25 @ 3:00 pm
ECE Seminar: Ashutosh Dutta

Note: This is a virtual presentation. Here is the link for where the presentation will be taking place.

Title: 5G Security – Opportunities and Challenges

Abstract: Software Defined Networking (SDN) and Network Function Virtualization (NFV) are the key pillars of future networks, including 5G and beyond that promise to support emerging applications such as enhanced mobile broadband, ultra-low latency, massive sensing type applications while providing the resiliency in the network. Service providers and other vertical industries (e.g., Connected Cars, IOT, eHealth) can leverage SDN/NFV to provide flexible and cost-effective service without compromising the end user quality of service (QoS). While NFV and SDN open up the door for flexible networks and rapid service creation, these also offer both security opportunities while also introducing additional challenges and complexities, in some cases. With the rapid proliferation of 4G and 5G networks, operators have now started the trial deployment of network function virtualization, especially with the introduction of various virtualized network elements in the access and core networks. While several standardization bodies (e.g., ETSI, 3GPP, NGMN, ATIS, IEEE) have started looking into the many security issues introduced by SDN/NFV, additional work is needed with larger security community including vendors, operators, universities, and regulators.

This talk will address evolution of cellular technologies towards 5G but will largely focus on various security challenges and opportunities introduced by SDN/NFV and 5G networks such as Hypervisor, Virtual Network Functions (VNFs), SDN controller, orchestrator, network slicing, cloud RAN, edge cloud, and security function virtualization. This talk will introduce a threat taxonomy for 5G security from an end-to-end system perspective, potential threats introduced by these enablers, and associated mitigation techniques. At the same time, some of the opportunities introduced by these pillars will also be discussed. This talk will also highlight some of the ongoing activities within various standards communities and will illustrate a few deployment use case scenarios for security including threat taxonomy for both operator and enterprise networks.

Bio: Ashutosh Dutta is currently senior scientist and 5G Chief Strategist at the Johns Hopkins University Applied Physics Laboratory (JHU/APL). He is also a JHU/APL Sabbatical Fellow and adjunct faculty at The Johns Hopkins University. Ashutosh also serves as the chair for Electrical and Computer Engineering Department of Engineering for Professional Program at Johns Hopkins University. His career, spanning more than 30 years, includes Director of Technology Security and Lead Member of Technical Staff at AT&T, CTO of Wireless for NIKSUN, Inc., Senior Scientist and Project Manager in Telcordia Research, Director of the Central Research Facility at Columbia University, adjunct faculty at NJIT, and Computer Engineer with TATA Motors. He has more than 100 conference, journal publications, and standards specifications, three book chapters, and 31 issued patents. Ashutosh is co-author of the book, titled, “Mobility Protocols and Handover Optimization: Design, Evaluation and Application” published by IEEE and John & Wiley.

As a Technical Leader in 5G and security, Ashutosh has been serving as the founding Co-Chair for the IEEE Future Networks Initiative that focuses on 5G standardization, education, publications, testbed, and roadmap activities. Ashutosh serves as IEEE Communications Society’s Distinguished Lecturer for 2017-2020 and as an ACM Distinguished Speaker (2020-2022) Ashutosh has served as the general Co-Chair for the premier IEEE 5G World Forums and has organized 65 5G World Summits around the world.

Ashutosh served as the chair for IEEE Princeton / Central Jersey Section, Industry Relation Chair for Region 1 and MGA, Pre-University Coordinator for IEEE MGA and vice chair of Education Society Chapter of PCJS. He co-founded the IEEE STEM conference (ISEC) and helped to implement EPICS (Engineering Projects in Community Service) projects in several high schools. Ashutosh has served as the general Co-Chair for the IEEE STEM conference for the last 10 years. Ashutosh served as the Director of Industry Outreach for IEEE Communications Society from 2014-2019. He was recipient of the prestigious 2009 IEEE MGA Leadership award and 2010 IEEE-USA professional leadership award. Ashutosh currently serves as Member-At-Large for IEEE Communications Society for 2020-2022.

Ashutosh obtained his BS in Electrical Engineering from NIT Rourkela, India; MS in Computer Science from NJIT; and Ph.D. in Electrical Engineering from Columbia University, New York under the supervision of Prof. Henning Schulzrinne.  Ashutosh is a Fellow of IEEE and senior member of ACM.

Sep
9
Thu
Distinguished Lecture Series: Peter Abadir, Associate Professor of Medicine, Johns Hopkins University School of Medicine
Sep 9 @ 3:00 pm – 4:00 pm
Distinguished Lecture Series: Peter Abadir, Associate Professor of Medicine, Johns Hopkins University School of Medicine

Note: This is a virtual presentation. Here is the link for where the presentation will be taking place.

Title: Engineering Innovations to Change Aging: A Geriatrician’s Attempt at Standing Circuits.

Abstract: The population of older adults with chronic illnesses and functional and cognitive decline is rapidly expanding in the US and worldwide. In parallel, there has been a rapid emergence of new uses for artificial intelligence (AI) and technology in health care driven by developments in sensors, computing at macro and micro scales, communication networks, and progress in deep learning and other reasoning methods. Despite these parallel trends, little focused effort has been made on bridging the gap between the growing needs of older adults and their caregivers and these AI and technology developments. This is partly because the clinical needs of this vulnerable population are tremendous, including dementia, depression, polypharmacy, delirium, incontinence, vertigo, falls, spontaneous bone fractures, failure to thrive, neglect and abuse, and social isolation. The impact of social isolation and depression became even more evident during this recent COVID pandemic, given that almost half of women age over 75 live alone. Properly managing these complex needs of older adults requires special training and expertise, and to complicate matters more, physicians specialized in taking care of older adults are in short demand. An estimated 1.07 geriatricians exist per 10,000 elderly residents in the United States. To design practical AI tools and technologies to better care for older adults, Engineers/Scientists must work hand in hand with Clinical providers specially trained to understand and manage the complex needs of older adults at the physical, cognitive and social domains. In addition, the successful development, testing, and piloting of these technologies require collaboration with clinical researchers that have access to substantial research infrastructure and older patients in real-world clinical settings. Here we will focus on the impact of aging and discuss our attempts at connecting wires between the clinicians and engineers, including establishing Gerotech Incubators to foster collaboration between Geriatricians and Engineers.

Bio: Dr. Peter Abadir is an assistant professor of medicine at the Johns Hopkins University School of Medicine. His area of clinical expertise is geriatric medicine.

After receiving his medical degree from the University of Al Fateh, Dr. Abadir completed his residency in family medicine at the University of Kentucky College of Medicine. He performed his fellowship in geriatric medicine and gerontology at the Johns Hopkins University School of Medicine.

Dr. Abadir’s research interests include changes in the renin angiotensin aldosterone system with aging, signal transduction and the role of the cross talk between angiotensin II receptor in aging, and understanding the role of angiotensin II in the development of vascular aging.

He has been recognized by the Hopkins Department of Medicine with the W. Leigh Thompson Excellence in Research Award. He is a member of the American Geriatrics Society and The Gerontological Society of America.

 

Back to top