Thesis Proposal: Yansong Zhu

October 17, 2019 @ 3:00 pm – 4:00 pm
Olin Hall 305

Title: Advanced Image Reconstruction and Analysis for Fluorescence Molecular Tomography (FMT) and Positron Emission Tomography (PET)

Abstract: Molecular imaging provides efficient ways to monitor different biological processes noninvasively, and high-quality imaging is necessary in order to fully explore the value of molecular imaging. To this end, advanced image generation algorithms are able to significantly improve image quality and quantitative performance. In this research proposal, we focus on two imaging modalities, fluorescence molecular tomography (FMT) and positron emission tomography (PET), that fall in the category of molecular imaging. Specifically, we studied the following two problems: i) reconstruction problem in FMT and ii) partial volume correction in brain PET imaging.

Reconstruction in FMT: FMT is an optical imaging modality that uses diffuse light for imaging. Reconstruction problem for FMT is highly ill-posed due to photon scattering in biological tissue, and thus, regularization techniques tend to be used to alleviate the ill-posed nature of the problem. Conventional reconstruction algorithms cause oversmoothing which reduces resolution of the reconstructed images. Moreover, a Gaussian model is commonly chosen as the noise model although most FMT systems based on charged-couple device (CCD) or photon multiplier tube (PMT) are contaminated by Poisson noise. In our work, we propose a reconstruction algorithm for FMT using sparsity-initialized maximum-likelihood expectation maximization (MLEM). The algorithm preserves edges by exploiting sparsity, as well as taking Poisson noise into consideration. Through simulation experiments, we compare the proposed method with pure sparse reconstruction method and MLEM with uniform initialization. We show the proposed method holds several advantages compared to the other two methods.

Partial volume correction of brain PET imaging: The so-called partial volume effect (PVE) is caused by the limited resolution of PET systems, reducing quantitative accuracy of PET imaging. Based on the stage of implementation, partial volume correction (PVC) algorithms could be categorized into reconstruction-based and post-reconstruction methods.Post reconstruction PVC methods can be directly implemented on reconstructed PET images and do not require access to raw data or reconstruction algorithms of PET scanners. Many of these methods use anatomical information from MRI to further improve their performance. However, conventional MR guided post-reconstruction PVC methods require segmentation of MR images and assume uniform activity distribution within each segmented region. In this proposal, we develop post-reconstruction PVC method based on deconvolution via parallel level set regularization. The method is implemented with non-smooth optimization based on the split Bregman method. The proposed method incorporates MRI information without requiring segmentation or making any assumption on activity distribution. Simulation experiments are conducted to compare the proposed method with several other segmentationfree method, as well as conventional segmentation-based PVC method. The results show the proposed method outperforms other segmentation-free method and shows stronger resistance to MR information mismatch compared to conventional segmentation-based PVC method.

Back to top