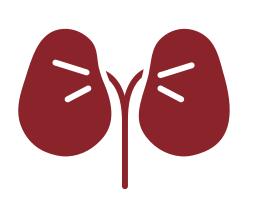


Clinical Problem of Acute Kidney Injury Readmissions

Acute Kidney Injury (AKI): Incidence of sudden kidney damage, limiting the body's capability to filter blood and urine for nutrients and waste

Negatively Impacts **Patient Prognosis and Increases Strain on Hospital Resources**



AKI Hospital Discharge:

Causes increased risk of

readmission or death within

90 days

Leads To: Cardiovascular Disease **Chronic Kidney Disease** Infections More

Hospitals Need a Generalizable and **Accurate Scoring System for Predicting Post-AKI Hospital Readmission**

Aims

Characterize Readmission Post Hospitalization and Identify Risk Factors

- **Develop a Post-AKI Readmission Prediction** Mode
- **Establish a Patient-Level Readmission Score**

Significance and Innovation

Significance? Contributes a scoring system for personalized, datadriven interventions to target follow-up care and reduce readmission rates for high risk patients

Innovation? Utilizing comprehensive KPMOCE electronic health record (EHR) data integrated with the Hopkins PMAP platform to advance beyond limited single-center cohorts

Applied Clinical Value? Guides readmission prevention strategies allowing for optimization of hospital resource allocation and enablement of targeted interventions

References

Scan to view our full reference list:

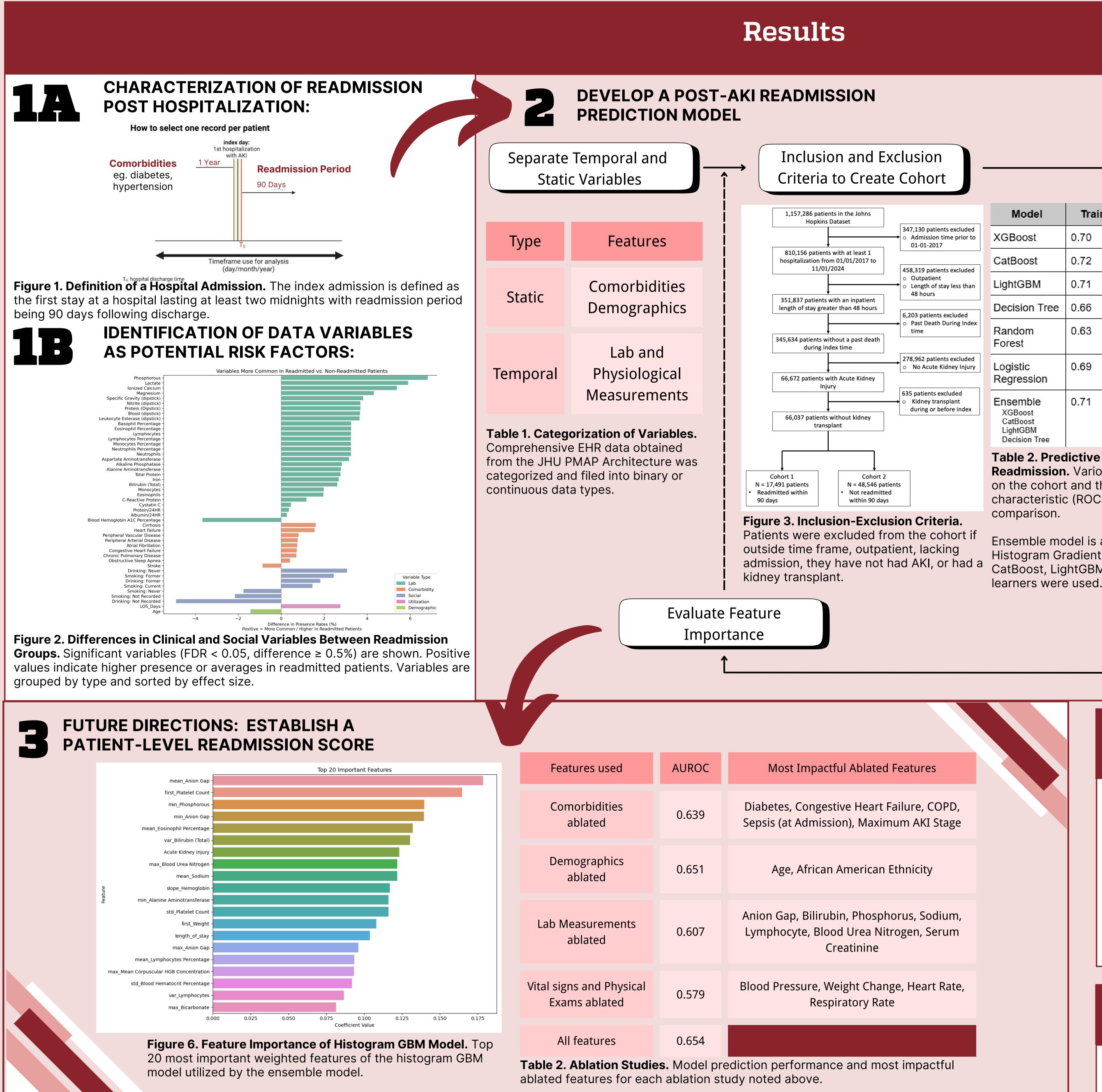
Scholarly citations · Methodological frameworks · Clinical relevance

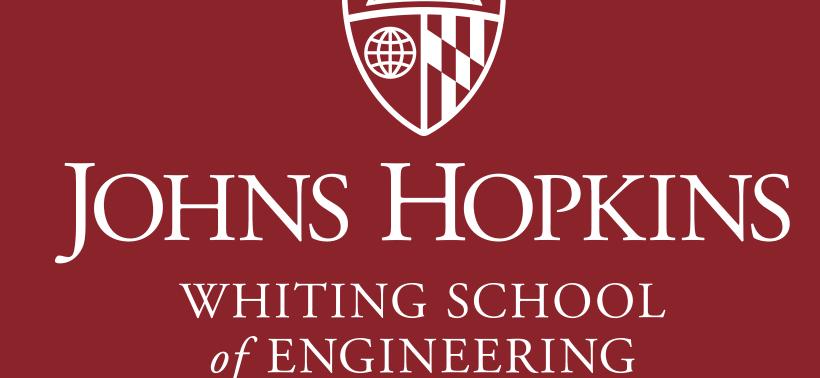
https://bit.ly/teamFalconref

Predicting Hospital Readmission Following Acute Kidney Injury

Cheng-Yi Li¹, Emma Meihofer¹, Nicolas Jos¹, Ruihan Yuan¹, Zixi Xiao¹, Maya Sharma¹, Heather Thiessen Philbrook², Jack Bitzel², Joseph Greenstein, Ph.D¹, Casey Overby Taylor, Ph.D.¹ Steven Menez, M.D. M.H.S.² Chirag Parikh, MBBS, Ph.D.²

¹Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218;²Division of Nephrology, Johns Hopkins School of Medicine, Baltimore, MD 21218





	Train Predictive	Mode
ning AUROC	Testing AUROC	1.0
	0.65	
	0.65	0.8
	0.65	9.0 Rate
	0.56	sitive I
	0.64	True Positive Rate
	0.64	0.2
	0.65	0.0

 Table 2. Predictive Models of Hospital

0.71

0.63

0.69

0.71

Readmission. Various predictive models were tes on the cohort and their receiver operating characteristic (ROC) curves were plotted for

Ensemble model is a stacked model using a Histogram Gradient Boosting meta-model. XGBoost, CatBoost, LightGBM, and Decision Tree base

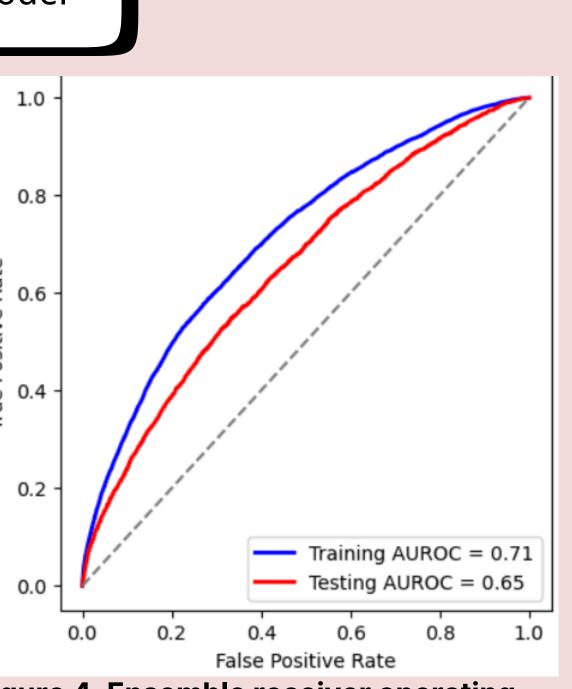


Figure 4. Ensemble receiver operating characteristic curve displaying model performance in predicting readmission. Chosen operating point for this model optimized specificity and negative predictive value. This was intended to reduce the number of false negatives, as hospital readmissions are costly within healthcare, and most importantly to the patient

Specificity: 0.33 Sensitivity: 0.83 Positive Predictive Value: 0.30 Negative Predictive Value: 0.85

Conclusion		
1. Rich, Multi-Center Cohort: We built a large post-AKI inpatient cohort (> 60 k admissions), capturing both static (demographics, comorbidities) and temporal (labs, vitals, physiologic trends) data streams.		
2. Robust Predictive Performance: A stacked gradient-boosting ensemble (XGBoost + CatBoost + LightGBM) predicts 90-day, all-cause readmission with a validated AUROC \approx 0.65, outperforming conventional logistic regression and single-tree models.		
3. Actionable Clinical Insights: Feature importance and systematic ablation highlight dynamic vital signs and bedside physiological measures as the strongest drivers of risk—laying the groundwork for a concise, bedside-ready post-AK readmission score.		
Acknowledgements		
This study was supported by the Kidney Precision Medicine Center of Excellence (KPMCoE) and Caring for OutPatiEnts after Acute Kidney Injury (COPE-AKI) randomized clinical trial (NIH U01DK129984).		