

Engineering Assistive Technologies for Disabilities: E-Trike, Nasal Spray Assist, Seizure Detection System, Hug-A-Bear

Introduction

The Volunteers for Medical Engineering Club at **JHU** is a student organization affiliated with **The IMAGE Center of Maryland**, a non-profit organization dedicated to designing and testing assistive aids/devices for community members with disabilities within the greater Baltimore area.

Low-Cost Nasal Spray Assist

<u>Goal</u>: Develop a mechanical assist device allowing individuals with hindered grip strength or hand dexterity to dispense a nasal spray bottle.

Description: Taking inspiration from the candy Push Pops, we created a shell to go around the nasal spray bottle. This reconfigured the hand configuration of dispensing from a vertical "pinching" motion to a horizontal "pushing" motion. This model is designed to be 3D-printed, which allows for the device to be lowcost and accessible. Future steps involve a series of mechanical tests to ensure the product is strong, safe, and reduces required force as intended.

Fig. 1. Device Ideation of the Nasal Spray Assist

Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA

Alexander Tinana¹, Tunde Ayodeji², Victoria Allen², Ryan Nguyen³, Leqi Shen⁴, Brianna Wu¹, Rich Bauernschub, MS², Niel Leon, BSME² ¹Department of Materials Science and Engineering, ²Department of Mechanical Engineering, ³Department of Biomedical Engineering, ⁴Department of Biology, Johns Hopkins Zanvyl Krieger School of Arts and Sciences, Baltimore, MD, USA

Hug-A-Bear System

Goal: Produce a robotic teddy bear programmed to give a hug to a child to assist with anxiety management.

Description: Hug-A-Bear was conceptualized as a comfort aid for children with separation anxiety and/or panic disorders. The system is designed to provide physical comfort, appropriately responding to a child's hug in a familiar form factor and pleasant, relieving manner. To realize this goal, a large teddy bear will be fit with an endoskeleton containing 3-DOF (degree of freedom) servo motor robot arms and a compartmentalized electrical system, designed to ensure safety and comfort.

Fig. 2. Hug-A-Bear Frame

Seizure Detection System

Goal: Design a wearable seizure detection system to alert guardians of oncoming seizures.

Description: Collaborating with the

OpenSeizureDetector project, an open-source

application for affordable seizure care, we strived to reduce the high false positive rate of existing models and worked towards re-designing the current

Android app interface to improve user accessibility.

Fig. 3. OpenSeizureDetector Workflow and App UI

OpenSe

E-Trike for Degenerative Joint Disease

izure	eDetector		•
		1010	·
Detecto g OK	or Android App Versi	on 4.2.10	
Phone	e (Demo Mode) 1.0 s)		
SD CN	IN HR O2		
	OK		
Т	MUTE	RAISE	
	ALARMS	ALARM	
n Stati iresho	us Id=100)		
<mark>o =48</mark>	(threshold=57)		
a: 1: 4. / 4			
bility (1	from CNN) (%)		
bility (1	from CNN) (%)		150
bility (1	from CNN) (%)		150
bility (1	from CNN) (%)		150
bility (1	from CNN) (%)		150
bility (1	from CNN) (%)		150
bility (1	from CNN) (%)		150 120 90
bility (1	from CNN) (%)		150
	from CNN) (%)		150 120 90 60
	from CNN) (%)		150 120 90 60
	from CNN) (%)		150 120 90 60 30
	from CNN) (%)	124 102	150 120 90 60 30

<u>Goal</u>: Assemble an adapted and inexpensive electric trike with trunk support according to protocol used by UMD's VME branch.

Description: For adults with disabilities, stability and required pedal torque may be significant detractors to riding a bike. However, market e-bikes are prohibitively expensive and still lack sufficient stability. To make a suitable bike for our client, we adapted a standard adult e-bike frame. A torque adjuster controlled by the pedals and a set of handlebar controls sends power to the front powered wheel. The bike is fit with an LCD display, and all electronics are enclosed in a waterproof rear case. Additionally, a more-stable bike seat will be added. The E-trike makes bike riding newly accessible to a patient who may not otherwise be able to, at a reduced cost.

Acknowledgements

We would like to thank our advisors, Professor Rich Bauernschub and Niel Leon for their continued advice. We are grateful towards the **Department** of Mechanical Engineering, WSE Manufacturing, and the IMAGE **Center of Maryland** for their invaluable support and funding throughout our research and activities.

Torque Adjuster

