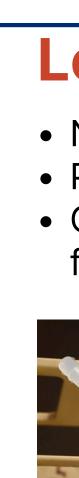


The Diagnostic Gap Current diagnostic pathways for reproductive health conditions are invasive and lead to unacceptable delays: • Endometriosis: Average 10-year diagnostic delay • <u>PCOS</u>: **70%** of cases remain undiagnosed • Adenomyosis: 1 in 3 women are asymptomatic and require invasive procedures for diagnosis • Ovarian Cancer: **54%** mortality rate due to delayed detection Despite menstrual fluid containing 930 proteins (385 unique) that drive inflammation, hormone signaling, and immune response pathways—critical biomarkers remain uncollected and unstudied

Proof of Concept and Initial Prototype

- Successful fabrication of cup with integrated collection chamber using precision CAD models and silicone molding
- Effective filtration of synthetic menstrual fluid analog with clots modeled by Jello and mucous strands modeled using slime
- Stable sample collection via vacutainer system (1.0-2.5 mL yield) without filter unit collapse

Testing with artificial blood at the vaginal angle

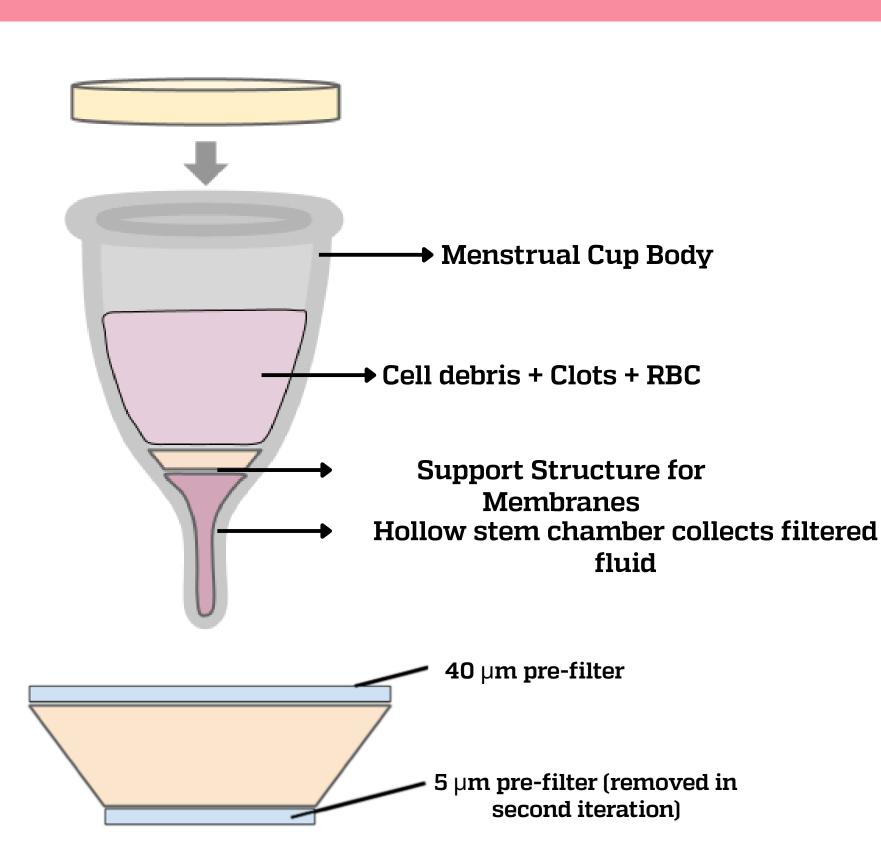

Blood passes through the filter

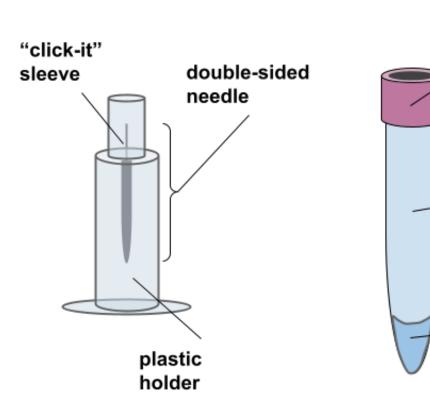
A picture of the sample being collected after filtration

Sample Integrity Layer-by-Layer coating technology with protease inhibitors, RNase inhibitors, and EDTA stabilizes critical protein and genetic markers

Solves the recruitment bottleneck in women's health research by enabling standardized, high-compliance sample collection at scale—eliminating unpredictable timing issues that plague current studies

¹Department of Chemical and Biomolecular Engineering, ²Department of Neuroscience

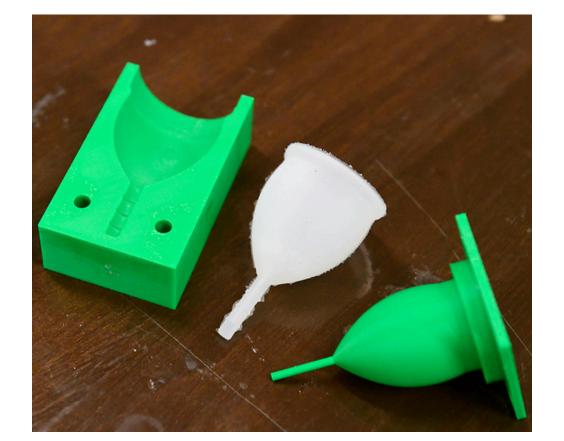

Our Solution: Integrated Sample Filtration and Collection


fluid

User-Centered Design

Prototype mimics a standard menstrual cup which integrates seamlessly into daily use enabling **non-invasive biomarker detection** during regular menstruation. "Click-it" vacutainer system enables easy sample extraction.

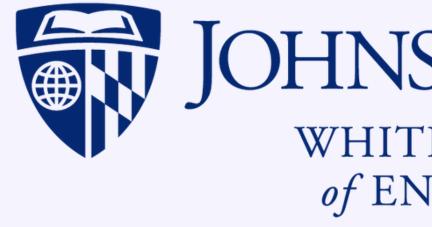
Research Revolution



• No flow observed through 5µm filter Pre-wetting essential to initiate flow Cross-shaped debris trap restricts folding for insertion

Design Changes

rubber stopper


vacuum tube

anticoagulant /

stabilizing buff

(4mL)

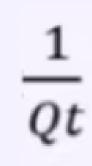
- Removing 5uM filter to address flow restriction and sample insufficiency while maintaining sample quality
- Mesh-based debris trap using 600uM silicone mesh instead of cross for robust clot-catching and folding maintenance
- Alternative Filter Materials such as hydrophilic nylon, cellulose acetate, and glass fiber for improved flow and filtration without the need for prewetting

Engineering Analysis and Flow Modeling

Governing Model: Darcy's Law

 ΔP n -Q – $\mu(\frac{L1}{K1A1} + \frac{L2}{K2A2})$

Assumptions: Laminar, steady-state flow; Newtonian fluid; homogeneous membrane


Corrections: Adjust for non-Newtonian behavior, variable viscosity, and pressure drop using experimental data and empirical model validation

ш	dro	ct

35°:

= 179 Pa

Growth Model

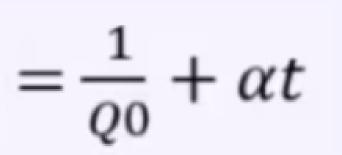
Assumptions: Uniform cake formation; time-dependent fouling; Fouling constant (α) not derived from menstrual fluid data.

Corrections: conduct timeresolved filtration experiments using menstrual fluid analogs across membranes. Measure flow rate decline and fit to Hermia's model to empirically derive α under both passive and vacuumassisted conditions.

loved in on)	Features	Values
,	Pre-filter	40 µm
	Final Filter	5 µm
	Permeabilities	1e ⁻¹⁰ ,1e ⁻¹²
/ fer	Passive Flow (mL/min)	0.282
	Fouled Yield (6h)	~ 6.4 mL

Pathway to Impact

- Animal blood testing
- *Ex-vivo* menstrual blood testing
- In-vivo menstrual blood and biocompatibility
- testing
- MVP finalization
- Research partnerships for biomarker discovery and validation


Connect with us!

OHNS HOPKINS WHITING SCHOOL of ENGINEERING

Hydrostatic Driving Force Assuming vaginal insertion angle of

$H = 3 \text{ cm} \times \sin(35^\circ) = 0.0172 \text{ m}$ $\Delta P = \rho g H = 1060 \times 9.81 \times 0.0172$

Modeling Fouling and Cake Formation: Hermia's Cake

