=N
4
JOHNS HOPKINS

UNIVERSITY

Yi Luo!, Asimina Zoitou!, Kyungmin (Esther) Kwon?, Richa Singh?, JiWon Woo?, Nikita Sivakumar>,
Joseph L. Greenstem PhD1 3 Casey Overby Taylor PhD**, Amir Kheradmandz, Kemar Earl Green?

Deep Learning Detection of Subtle Dynamic Ocular Torsion
from Video Ocular Counter Roll (vVOCR)

Tianyi Ye!, Krishna Mukunda®-

!Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA; 2Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; 3Institute for
Computational Medicine, The Johns Hopkins University, Baltimore, Maryland, USA; *Department of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA;

e Ocular Torsion: rotation of the eye around optical axis
o Dynamic: rotational eye movement during the tilt
at the end of head tilt

® Degrees of dynamic torsion can be used to detect loss
of otolith-ocular function and other disorder diagnosis
(central/peripheral)

o Static: steady gaze maintainec

e Traditional methods involving iris tracking is unreliable:

o Hard to obtain good waveforms due to frequent eye
closures and blinks

o Videos taken with mobile devices have low quality
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Fig 1. Clinical Need: Overview design of automated, remote solution
for triage and diagnosis of dizzy or double vision patients

e 7.4% lifetime adult prevalence of vestibular vertigo
(inner ear disease)

e 74-81% of peripheral vestibular disorders are often
misdiagnosed or incorrectly managed

e Shortage in specialists that can accurately
assess/interpret eye movements

e Automated diagnosis in remote settings allows
patients to promptly receive necessary treatments

Video Ocular Counter Roll (vVOCR) dataset: 60 videos

from 15 health controls with 12 head/trunk

movements per video (frame rate: 100 Hz; resolution:

260 X 400 pixels)

e Data augmentation and balancing:
over-down-sampling and precise labeling algorithm

e Subject-wise train/val/test split representatively
(11:2:2)

e Models designed and constructed task-specifically —
optimized using grid search

e Model Interpretability: 2D/3D GradCAM method

e Robustness and generalization: 5-fold cross-validation
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T s Conclusions

subject-wise train/val/test split

5-fold validation

Clip Length

/ 500 ms 750 ms 1000 ms 500 ms 750 ms 1000 ms
Model

D 0.7987 / 0.7987 / 0.8275/ 0.8807 / 0.8508 / 0.8688 /
0.9011 0.9080 0.9092 0.9510 0.9377 0.9478

2 5D 0.8063 / 0.8081 / 0.8406 / 0.9018 / 0.9273/ 0.9303/
' 0.8738 0.8685 0.9060 0.9754 0.9782 0.9797

3D 0.9119/ 0.8825/ 0.8981 / 0.9735 / 0.9728 / 0.9694 /
0.9748 0.9554 0.9660 0.9964 0.9971 0.9945
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Table 1: ACC / AUC for subject-wise train/val/test sp

Torsional waveform

Raw GradCAM + Video
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it and average of 5-fold cross-validation
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ROC Curves of Best-Performing Models from selected Clip Lengths
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e Task-specific dataset and precise labeling completed
e Model comparisons and optimization completed
e Decent accuracies were achieved

e Time-series Interpretability model indicates that
ocular features and neurophysiology-supported
phenomena led to the model’s prediction

Future Direction

e Statistical analysis

e External validation & Generalization ability
Improvement

e Further interpretability and clinical relevance

e Torsion degree regression
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