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● Ocular Torsion: rotation of the eye around optical axis

○ Dynamic: rotational eye movement during the tilt

○ Static: steady gaze maintained at the end of head tilt

● Degrees of dynamic torsion can be used to detect loss 
of otolith-ocular function and other disorder diagnosis 
(central/peripheral)

● Traditional methods involving iris tracking is unreliable:

○ Hard to obtain good waveforms due to frequent eye 
closures and blinks

○ Videos taken with mobile devices have low quality
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Fig 1. Clinical Need: Overview design of automated, remote solution 
for triage and diagnosis of dizzy or double vision patients

● 7.4% lifetime adult prevalence of vestibular vertigo 
(inner ear disease)

● 74-81% of peripheral vestibular disorders are often 
misdiagnosed or incorrectly managed

● Shortage in specialists that can accurately 
assess/interpret eye movements

● Automated diagnosis in remote settings allows 
patients to promptly receive necessary treatments

Overview of Model

● Video Ocular Counter Roll (vOCR) dataset: 60 videos 
from 15 health controls with 12 head/trunk 
movements per video (frame rate: 100 Hz; resolution: 
260 ✕ 400 pixels)

● Data augmentation and balancing: 
over-down-sampling and precise labeling algorithm

● Subject-wise train/val/test split representatively 
(11:2:2) 

● Models designed and constructed task-specifically → 
optimized using grid search

● Model Interpretability: 2D/3D GradCAM method 
● Robustness and generalization: 5-fold cross-validation 
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Results

● Statistical analysis 

● External validation & Generalization ability 
improvement

● Further interpretability and clinical relevance

● Torsion degree regression

● Task-specific dataset and precise labeling completed

● Model comparisons and optimization completed

● Decent accuracies were achieved

● Time-series Interpretability model indicates that 
ocular features and neurophysiology-supported 
phenomena led to the model’s prediction

Table 1: ACC / AUC for subject-wise train/val/test split and average of 5-fold cross-validation 

subject-wise train/val/test split 5-fold validation

Clip Length 
/

 Model
500 ms 750 ms 1000 ms 500 ms 750 ms 1000 ms

2D 
0.7987 / 
0.9011

0.7987 / 
0.9080

0.8275 / 
0.9092

0.8807 / 
0.9510

0.8508 / 
0.9377

0.8688 / 
0.9478

2.5D
0.8063 / 
0.8738

0.8081 / 

0.8685

0.8406 / 

0.9060

0.9018 / 

0.9754

0.9273 / 

0.9782

0.9303 / 

0.9797

3D
0.9119 / 
0.9748

0.8825 / 

0.9554

0.8981 / 

0.9660

0.9735 / 

0.9964

0.9728 / 

0.9971

0.9694 / 

0.9945
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