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Results _ Disusson
Normal vs Abnormal (Hypo & Hyper) Grad-CAM intensity peaks during saccades and remains centered on the pupil * A key strength of this work is the development of a
: .. synthetic saccade dataset generated entirely from public
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Saccadic datasets, without any protected patient information.
AUROC 0.98 0.80 > og . Regions * With a sensitivity of 0.81, the classification model shows
AUPRC 0.99 0.81 @ strong potential to be used as a screening tool in
Sensitivity 0.96 0.71 £ 06 - 4 ‘ emergency settings or even at home via mobile devices.
. o * A limitation is the lack of an additional clinical dataset to
Specificity 0.97 0.62 D '
% 0.4 1 externally validate our model performance.
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