

Introduction

- Effective cardiopulmonary resuscitation (CPR) is critical for improving survival outcomes in cardiac arrest.
- End-tidal carbon dioxide (ETCO₂), the concentration of CO_2 at exhalation, has emerged as a real-time, noninvasive indicator of cardiac output during resuscitation, with higher ETCO₂ levels correlating with improved perfusion and return of spontaneous circulation (ROSC).
- Algorithm-guided ETCO₂-based CPR introduces a datadriven approach to optimize chest compression depth, rate, and ventilation in real time, maximizing physiological effectiveness and potentially transforming current CPR practices.

Method	Chest Compression Rate (compressions/min)	Epinephrine Administration Rate (minutes between doses)
Standard CPR	100	every 4 min
ETCO ₂ - Guided Algorithm CPR	Initially 100; <u>If ETCO₂<30 torr,</u> <u>increase by 10;</u> (Note: Up to max 150)	Initially every 4 min; <u>If ETCO₂<30 torr,</u> increase to every 2 min

Table 1: The difference between standard CPR and ETCO₂-guided CPR.

Objectives

Hypothesis

- Use of an ETCO2-guided resuscitation algorithm will improve rates of return of spontaneous circulation (ROSC) as compared with standard CPR.
- Use of an ETCO2-guided resuscitation algorithm will improve intra-arrest hemodynamics.

Specific Aims

- Enhance the analysis of CPR physiological waveform data by implementing advanced data preprocessing, evaluation, hypothesis-driven statistical and comparative analysis.
- Apply statistical tests, including 2-way ANOVA, to assess the impact of data aggregation intervals on analytical outcomes.
- Compare findings to the initial study to evaluate whether increased experimental granularity yields comparable or novel insights. If so, use to motivate future clinical trials.

Comparative Analysis of Standard vs. End-Tidal Carbon Dioxide-Guided Pediatric Cardiopulmonary Resuscitation

Wenrui Hu¹, Xuanli Liu¹, Anirudh Nistala¹, Megna Sankaranarayanan¹, Peijia Ye¹, Joseph Greenstein, Ph.D.¹, Casey O. Taylor, Ph.D.¹, Dr. Caitlin O'Brien, MD, MPH²

¹Department of Biomedical Engineering, Johns Hopkins University; ²Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine

- No apparent significance was found in MVP and ITP between
- Analysis supports future clinical trials to validate and optimize