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● Sepsis, defined as a dysregulated host  response to infection, is a leading cause of 
death globally with a mortality rate of  20-30%. 

● Early recognition and treatment of sepsis are vital; delays in antibiotic initiation in 
septic shock increase mortality by 7% per hour. 

● Existing sepsis prediction models—which rely on clinical variables, laboratory results, 
and non-waveform physiological data—have limited accuracy for sepsis-related 
outcomes of interest.

● Physiological waveforms (i.e., ECG, PPG, ABP) contain features which lend 
themselves to machine learning analysis and predictive modeling.   

● Foundation models provide a powerful framework for waveform analysis, capturing 
complex temporal dependencies and physiological patterns with high fidelity.

● The principal aim is to build a model for sepsis onset and outcome prediction that 
leverages high-frequency physiological waveform data.

● The core hypothesis is that physiological waveforms contain latent features that are 
markers of the early preclinical stages of sepsis, i.e. are predictive of sepsis.

Objectives

Introduction

Approach

Tokenization

Conclusion

Figure 4. Waveform Tokenization. (A) Overview of pipeline for discretizing raw ECG waveforms into 
representative tokens. (B–D) Results from applying this method to 10,000 ten-second ECG segments 
clustered into 100 representative tokens. (B) Over 95% of segments matched well (DTW distance < 500) 
to a token prototype. (C) A majority of clusters were well-separated indicating distinct token prototypes. (D) 
Sample token prototype (red) overlaid with sample raw waveform segment (blue) assigned to that cluster.

Figure 6. Token-Level Embedding Analysis of Sepsis Outcome Predictions. (A) The 
x-axis is the log-ratio of cosine similarity distances to the sepsis_yes and sepsis_no token 
embeddings (i.e., the classification tokens), while the y-axis indicates relative separation 
strength. Time tokens show minimal separation, while both static and lab-derived dynamic 
tokens exhibit predictive signal. (B) Top 10 tokens most proximal (by cosine similarity) to the 
sepsis and no-sepsis token embeddings. Extreme lab values and age groups seem more 
significant for outcome discrimination.
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Figure 2. Proposed Model Pipeline 
● Static and dynamic tokens are processed by ETHOS1—a transformer architecture 

with proven clinical utility in ICU-related tasks.
● Waveform tokens are processed in parallel using a modified version of ETHOS with 

LogSparse self-attention instead of full self-attention.
● A cross-attention fusion layer integrates embeddings from both streams.
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Figure 1B. Cohort Selection Criteria

Figure 1A. Observation & Prediction Window for Sepsis Onset + Outcome

Top 10 Tokens for Predicting
Sepsis Outcome

No Sepsis Sepsis

● Chloride Q8 (max)
● Magnesium Q1 (min)
● Age (> 90) (max)
● Neutrophils Q2  
● Neutrophils Q1 (min)

● Age (25-30)
● Age (16-20)
● Lactate Q2
● Total Bilirubin Q6
● RoA_ENT Q2
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Figure 3C. Distribution (Top) and Composition (Bottom) of Token Sequences by Lead Time. Longer 
lead times (e.g., 6h) result in shorter token sequences (on average) due to limited data availability. As 
sequence length increases, the proportion of dynamic and time tokens dominates, while the proportion of 
static tokens as a function of total tokens decreases.

Figure 5. ROC and PR Curves for Sepsis Onset Prediction at 1h, 3h and 6h Lead Times 
(Static and Dynamic Tokens Only). Model performance is relatively strong at shorter lead 
times, with higher AUROC and AUPRC values observed at 1h and 3h. Performance 
deteriorates substantially at a 6h lead time, with both metrics approaching levels expected 
from a no-skill classifier.
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Token Separation by Sepsis Discrimination
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Dynamic Tokenization Strategy
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Figure 3B. Tokenization Strategy for 
Lab Features. Each lab is discretized 
into 8 tokens using one of six strategies 
(S1-S6), determined by the underlying 
distribution of values in patient cohorts.

Figure 3A. Transformation of Raw EHR Data into 
Structured Token Sequences. Static tokens are prepended 
to each patient sequence, followed by dynamic tokens 
separated by time tokens to encode temporal gaps between 
measurements.
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● Using only static and dynamic clinical features, we were able to predict sepsis onset with 
moderate confidence. However, these feature sets may fail to capture the rich temporal 
and physiological complexity underlying early sepsis.

● We hypothesize that incorporating high-frequency physiological waveform data will 
significantly improve model performance, especially at longer lead times, by enabling 
more precise detection of subtle, preclinical changes indicative of sepsis.

● As a next step, we will focus on integrating waveform tokens using the approach in Fig. 2 
and Fig. 4A to fully leverage the potential of the transformer-based foundation model to 
extract latent features and improve early sepsis onset and outcome prediction.
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