

Nikhil Choudhary¹, Liora Dsilva¹, Yifan Ding¹, Naisargik Lenka¹, Eileen Su¹, Preethan Bachina¹, Carl Harris¹, Casey Overby-Taylor¹, Joseph L. Greenstein¹, Robert D. Stevens^{1,2,3,4}

ICU

Discharge

Introduction

- Sepsis, defined as a dysregulated host response to infection, is a leading cause of death globally with a mortality rate of **20-30%**.
- Early recognition and treatment of sepsis are vital; delays in antibiotic initiation in septic shock increase mortality by **7% per hour**.
- Existing sepsis prediction models—which rely on clinical variables, laboratory results, and non-waveform physiological data—have limited accuracy for sepsis-related outcomes of interest.
- Physiological waveforms (i.e., ECG, PPG, ABP) contain features which lend themselves to machine learning analysis and predictive modeling.
- Foundation models provide a powerful framework for waveform analysis, capturing complex temporal dependencies and physiological patterns with high fidelity.

Objectives

- The principal aim is to build a model for **sepsis onset and outcome prediction** that leverages high-frequency physiological waveform data.
- The core hypothesis is that physiological waveforms contain latent features that are markers of the early preclinical stages of sepsis, i.e. are predictive of sepsis.

Decoding Physiological Waveforms for Early Prediction of Sepsis

Departments of ¹Biomedical Engineering, ²Anesthesiology and Critical Care Medicine, ³Neurology, ⁴Neurosurgery at Johns Hopkins University EN.580.680: Precision Care Medicine

representative tokens. (B–D) Results from applying this method to 10,000 ten-second ECG segments clustered into 100 representative tokens. (B) Over 95% of segments matched well (DTW distance < 500) to a token prototype. (C) A majority of clusters were well-separated indicating distinct token prototypes. (D) Sample token prototype (red) overlaid with sample raw waveform segment (blue) assigned to that cluster.

¹Renc P, Jia Y, Samir AE, Was J, Li Q, Bates DW, Sitek A. Zero shot health trajectory prediction using transformer. NPJ Digit Med. 2024 Sep 19;7(1):256. doi: 10.1038/s41746-024-01235-0. PMID: 39300208; PMCID: PMC11412988.

•	Token Type static lab time No Sepsis	Top 10 Tokens for Predicting Sepsis Outcome	
••••••••••••••••••••••••••••••••••••••	Sepsis	No Sepsis	Sepsis
		 Chloride Q8 (max) Magnesium Q1 (min) Age (> 90) (max) Neutrophils Q2 Neutrophils Q1 (min) 	 Age (25-30) Age (16-20) Lactate Q2 Total Bilirubin Q6 RoA_ENT Q2

• As a next step, we will focus on **integrating waveform tokens** using the approach in **Fig. 2** and Fig. 4A to fully leverage the potential of the transformer-based foundation model to extract latent features and improve early sepsis onset and outcome prediction.