

and cyclic voltammetry to measure cortisol using our E-MIP. The system includes a programmable tiny pico microcontroller and low-power Bluetooth transmission. This compact multi-layer PCB design is compatible with IOS and Android and is rechargeable via USB-C. Currently the dimensions of the PCB are 29mm x 45mm.

CortiTrack: Decode Stress, Drive Care

Nishtaa Modi¹, Sukriti Gupta², Riya Gupta³, Kevin Toralez⁴, Dr.Richard Lee⁵ 1. Department of Chemical and Biomolecular Engineering, JHU. 2. Department of Applied Mathematics and Statistics, JHU. 3. Department of Biomedical Engineering, JHU. 4. Department of Electrical and Computer Engineering, JHU. 5. Department of Psychiatry, JHUSOM

Microneedles 3D printed using biocompatible resin.

Vel	locity ocity vector inlet 8.944e-01
	- 6.708e-01
	- 4.472e-01
	- 2.236e-01
[m	0.000e+00 s^-1]

needle

Microneedle Array Testing

Testing mechanical strength and depth of skin penetration.

Flow testing results – velocity vector for 3D model. Using Ansys Fluent to simulate fluid uptake functionality. Flow rate: 0.0023mL/s per

Overall Device Schematics