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trafficking is often sparse and anonymized when imputing missing data .
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e To use data simulation and imputation methods to Objective: Find variables in the data that have high correlations with each other. 0.00. ATy Tereasin - | | S
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e To use graph covariance and geodesic distance to e Our algorithm results in a >5000x speedup compared to the Microsoft Intelligence Toolkit
find similarities within the data e Top variable pairs are extracted to be used for downstream prediction and root cause analysis :
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o X3 ~ Bernoulli(0.9) x X1 for aII. t, which is highly i‘l’g 1 e LLMs can contextualize trafficking trends by linking data patterns to global events (e.g.,
dependent on X1 throughout time. L ' o recessions, COVID-19) and shifts in enforcement (e.g., TIP Reports, Palermo Protocol)
o X4 ~Bernoulli(0.1 + 0.1 t) x X1 for all t, which vl ‘ | e We used ChatGPT o4-mini-high to conduct web searches and generate year-by-year
exhibits increasing dependence on X1 as time 135 - interpretations of how debt-bondage earnings covary with other coercion tactics like
progresses. ] e document withholding, false promises, and forced labor
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o X6 ~ Bernoulli(0.1 + 0.2 (t — 10)) x X1 for all t. . L
. . . o 2010-2012: A boom-bust cycle driven by economic crisis and subsequent
This attribute has a shifting dependence on X1, law-enforcement crackdowns
with the strength of dependence decreasing . o . L . -
3 . . - o 2016-2018: Record highs in ID confiscation tied to stricter border control policies.
fromt=1to 10 and then increasing fromt =10
{0 21 0.4 e This approach enables policymakers, NGOs, and researchers to not only track trends but
o X7 ~ Bernoulli(0.1) for t < 21, and X7 ~ ) also understand the why behind them, allowing for more data-informed interventions
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experiences a sudden surge in dependence at O 02 e Data imputation methods are able to fill in otherwise missing data while preserving trends
that time point. over time
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Counter Trafficking Data Collaborative (CTDC) T e Our covariance algorithm provides an efficient means of assessing the similarity of
e Largest publicly available individual-level data on ' relationships between variables
?;?an tretlf_ﬁckmg inc. over 220,000 victims across 2005 2010 2015 2020 e Changes in covariance over time can be mapped to historical or geopolitical events which
countnes | —«— Pair (meansDebtBondageEarnings, meansWithholdDocs) may help to explain those changes
* Aggregated across several different data sources —— Pair (meansDebtBondageEarnings, meansFalsePromises)
° Olne-hot encoded.: 2_1 time steps, 156 variables ~air (meansDebtBondagekarnings, meanskxcessiveWorkHours) 1. https://www.ctdatacollaborative.org/page/global-synthetic-dataset
e High degree of missingness (50+%) —e— Pair (meansDebtBondageEarnings, isForcedLabour) 2. https://github.com/microsoft/intelligence-toolkit
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