Rhythmic Demodulation for Zero-Resource Speech Recognition

Pascal Clark
24 July, 2012

also with
Les Atlas, Ivars Kirsteins, Greg Sell

Human Language Technology Center of Excellence, JHU
Motivating Question

What is the data rate of speech?

– Phonetic?
– **Syllabic**?
– Word?

The syllable in speech recognition:

– Phonological stability → “minimal recognition unit” (Fujimura, 1975)
– Demonstrated importance in human perception (Greenberg, 1997)
– Possible timing cues for theta waves in the brain (Ghitza and Greenberg, 2009)
Main Idea

Sources of speaker-dependent temporal variations include:
- Speaking rate mismatch
- Prosody, stress, pronunciation

Goal: An acoustic signal model for detecting and normalizing rhythmic variations between spoken terms.

Results: Two feature vector streams for Aren’s Same/Different keyword detection evaluation.
A Physical Descriptor of Speech Rhythm

Syllabic rate around 3 – 4 Hz (typically)
What’s Wrong with Fourier?

Speech is not periodic.

Houtgast and Steeneken, 1985; Drullman, et al., 1994; Hermansky and Morgan, 1994
Rhythm is Instead Event-Driven

Spectrogram

Rhythmic Modulation

Mel scale (frequency)

Uniform time

Non-metric time
Rhythmic Demodulation (Part 1 of 3)

Smooth time-frequency representation (pitch-adaptive here):

Take one row:

A “modulator” time series
Rhythmic Demodulation (2 of 3)

Idealized modulator:

Rhythmic model with **sparse activations** and Gaussian signal basis ("rhythmogram" approach, Lee and Todd, 2004)
Rhythmic Demodulation (3 of 3)

A systematic decoder based on matching pursuits (Mallat and Zhang, 1993), showing all activations after 20 iterations per row:
Principal Components of Rhythm

Rhythmic random process: \(m[n] = \int a(\omega) \cos(\omega n) - b(\omega) \sin(\omega n) \, d\omega \)

Gaussian random variables

\[
\text{var}\{a\} = \text{var}\{b\} \\
E\{ab\} \neq 0
\]

\[
\text{var}\{a\} \neq \text{var}\{b\} \\
E\{ab\} \neq 0
\]
Super-Vector Formation

$M_1[n]$

Time

n_0

Autoconvolution Estimator

Autocorrelation Estimator

Localizing (complementary) analysis

Power spectral analysis

Time

n_0
Speech Super-Vector Example
Conclusion

Operational definition of syllabic rhythm:
- Sparse activations
- Non-uniform timing
- Non-periodic due to local variation

Localized deconvolution reveals underlying pattern of syllabic activations.

Possible speaker invariance?