A Particle Filter for Bayesian Word Segmentation

Benjamin Börschinger Mark Johnson

Macquarie University

November 30, 2011
Outline

Bayesian Word Segmentation

The Particle Filter learner

Experiments

Conclusion and Outlook
Word Segmentation

▶ one of the first tasks children have to master is to break speech into smaller units (e.g. words)

j ▲ u ▲ w ▲ a ▲ n ▲ t ▲ t ▲ u ▲ s ▲ i ▲ ѐ ▲ є ▲ b ▲ u ▲ k

“you want to see the book”

▶ learning to segment utterances ↔ learning a lexicon for the language
Bayesian Word Segmentation

- observed utterances are produced by drawing words from an unknown lexicon and concatenating the words
- given unsegmented data, infer the segmentation and the lexicon
- Bayesian bit: prefer smaller lexicons
- MDL approaches dating back to de Marcken, Brent and others
- State-of-the-art: Adaptor Grammars encoding linguistically motivated knowledge (syllable structure, tones,...)
- here: non-parametric model introduced by Goldwater 2007
The Goldwater Model for Word Segmentation

- lexicon is a distribution over words
- data assumed to arise from i.i.d. draws from (unknown) lexicon
- don’t know number nor nature of the words in advance
- ⇒ lexicon is a draw from a Dirichlet Process Prior
- ⇒ the base-distribution is a distribution over all possible words
- ⇒ the lexicon assigns probability mass to a subset
- in a Bigram model, there is a special lexicon for each word, and a shared back-off lexicon (hierarchical DP)
Inference

- data is corpus (unsupervised task)
- find posterior distribution over hypotheses, given data
- hypotheses are segmentations ⇔ lexicons

Data: thedog

Hypotheses:
- the dog
- the dog
- the dog
- the dog
- ...
Inference

- intractable to calculate posterior analytically
- MCMC sampling algorithms produce samples from the posterior
 ⇒ Monte Carlo approximation using the samples
- requires multiple iterations over the training data
Why Particle Filters?

- online (or sequential) learning algorithm
- “make use of observations one at a time, […] and then discard them before the next observations are used” (Bishop 2006:73)
- practical interest, e.g. large datasets or sequentially arriving data
- scientific interest, e.g. whether algorithm behaves similar to human learners
- this work: starting point for adressing these questions by showing how to build a Particle Filter for models like this
Particle Filters — The Idea

- update the posterior distribution, one observation at a time
- not exactly a new idea for Bayesians
- consider a hypothesis H, and two observations O_1, O_2
- $P(H|O_1) \propto P(O_1|H)P(H)$
- $P(H|O_1, O_2) \propto P(O_2|H)P(H|O_1)$
- “posterior at time t is prior at time $t + 1$”
- approximate each posterior with weighted set of samples or particles (Monte Carlo method, if number of particles goes to infinity, approximation converges on the true posterior)
- to get new posterior, simply update each particle and calculate weights
Updating an individual Particle

- each particle is a lexicon (cum grano salis)
- updating a lexicon corresponds to
 - sampling a segmentation given the current lexicon
 - adding the words in this segmentation to the lexicon
Updating a set of Particles

- weighted particles ⇒ finite approximation of posterior over lexicons
- updating weights based on likelihood of the observation
- here: also corrects for use of a proposal distribution during propagation (no efficient sampling method for true distribution)
- one particle tends to take all the mass ⇒ resample (SISR algorithm)
Experiments

- **unsupervised** segmentation of the Brent (1999) data
 - 9790 phonemically transcribed CDS utterances
- compare to a batch learner, and Pearl et al.’s DPS learner
- two questions of interest
 - recovering true posterior ⇒ look at log-probability of training data at end
 - expect to find a high probability solution
 - (doing Word Segmentation ⇒ look at segmentation metric)
- it’s known to be a hard task...
Pearl et al. (2011)’s algorithms

- an utterance based Metropolis Hastings sampler
 - batch learner, run for 20,000 iterations
- Dynamic Programming Sampling algorithm
 - samples a segmentation, given current lexicon
 - adds the words to the lexicon, considers next utterance
 - → a 1 particle Particle Filter
 - no possibility at all to correct earlier mistakes
Particle Filters considerably worse than batch learner
1 (DPS) vs 50 particles makes big difference
seems to ceil rather quickly ⇒ presumably, even larger numbers of particles required
Bigram model — log probability

- clear trend that more particles lead to higher probability solutions
- again, large improvement in going from 1 to 50
Bigram model — discussion

- marked difference between 1 and 50 particles
- trend that larger numbers lead to better performance
- Particle Filter “never looks back”, which may explain the need for large numbers
 - correcting earlier mistakes only indirectly by keeping many alternatives
 - number of possible segmentations is exponential
- ⇒ possibly relaxing the strict online nature is an alternative to the use of ever larger numbers of particles
Conclusion and Outlook

- presented a Particle Filter algorithm for Bayesian Word Segmentation
- a strict online learner can only get so far (theoretical guarantee, but...)
- starting point for extensions to the basic algorithm
 - already started experimenting with “resampling the past”
 - framework to study learning trajectories
 - can track learners progress in time
- idea ought to be applicable to other Bayesian Non-Parametric models (e.g. Adaptor Grammars)
The Goldwater Model for Word Segmentation

- lexicon is a distribution over words
- data assumed to arise from i.i.d. draws from (unknown) lexicon
- don’t know number nor nature of the words in advance
- \Rightarrow lexicon is a draw from a Dirichlet Process Prior
- \Rightarrow the base-distribution is a distribution over all possible words
- \Rightarrow the lexicon assigns probability mass to a subset
The Goldwater Unigram Model

\[\theta_{phon} \sim \text{Dirichlet}(\alpha_{phon}) \]

\[P_{phon}(x|\theta_{phon}) = \theta_{phon,x} \]

\[P_0(w = x_1 \ldots x_n|\theta_{phon}) = \left(\prod_{i=1}^{n} P_{phon}(x_i|\theta_{phon}) \right) P_{phon}(\text{stop}|\theta_{phon}) \]

\[\text{Lex}|\gamma, P_0, \theta_{phon} \sim \text{DP}(\gamma, P_0) \]

\[W_i|\text{Lex} \sim \text{Lex} \]

- prior on \(\theta_{phon} \) allows us to learn a distribution over phonemes from the lexicon
- in practice, integrate out \(\theta_{phon} \) and \(\text{Lex} \) \(\Rightarrow \) Chinese Restaurant Process over words
- cum grano salis: utterance boundaries as special word
Chinese Restaurant Process as Generative Process

“lexicon”

data
Illustration

\[P_{\text{data}} = P_0(a) \]
Illustration

\[P_{\text{data}} = P_0(a) \times \frac{\gamma P_0(\text{kitty})}{\gamma + 1} \]
Illustration

\[P_{\text{data}} = P_0(a) \times \frac{\gamma P_0(\text{kitty})}{\gamma+1} \times \frac{\gamma P_0(\$)}{\gamma+2} \]
$P_{data} = P_0(a) \times \frac{\gamma P_0(kitty)}{\gamma + 1} \times \frac{\gamma P_0(\$)}{\gamma + 2} \times \frac{1}{\gamma + 3}$
Unigram model — token f-score

- higher is better
- known that lower probability solutions “look” better (next slide)
Unigram model — log probability

- smaller is better
- batch algorithm wins by a large margin
- trend that more particles lead to better log probability
Unigram model — discussion

- Brent heuristic does extremely well for an online learner
- large numbers of particles required \(\Rightarrow\) unlikely to scale
- high dimensional state space (number of possible segmentations exponential)
- relaxation of “don’t look back” most likely to make Particle Filters useful in practice